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ABSTRACT 

Objective: There is a need for tools enabling efficient evaluation of amyloid- and tau-PET images 

suited for both clinical and research settings. The purpose of this study was to assess and validate 

a semi-automated imaging workflow, called Biomarker Localization, Analysis, Visualization, 

Extraction, and Registration (BLAzER). We tested BLAzER using two different segmentation 

platforms, FreeSurfer (FS) and Neuroreader (NR), for regional brain PET quantification in images 

from participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.  

Methods: 127 amyloid-PET and 55 tau-PET studies along with corresponding volumetric MRI 

were obtained from ADNI. The BLAzER workflow utilizes segmentation of MR images by FS or 

NR, then visualizes and quantifies regional brain PET data using FDA-cleared software (MIM), 

enabling quality control to ensure optimal registration and detect segmentation errors. 

Results: BLAzER analysis required only ~5 min plus segmentation time. BLAzER using FS 

segmentation showed strong agreement with ADNI for global amyloid-PET standardized uptake 

value ratios (SUVRs) (r = 0.9922, p < 0.001) and regional tau-PET SUVRs across all Braak 

staging regions (r > 0.97, p < 0.001) with high inter-operator reproducibility for both (ICC > 0.97) 

and nearly identical dichotomization as amyloid-positive or -negative (2 discrepant cases out of 

127). Comparing FS vs. NR segmentation with BLAzER, the global SUVRs were strongly 

correlated for global amyloid-PET (r = 0.9841, p < 0.001), but were systematically higher (4% on 

average) with NR, likely due to more inclusion of white matter, which has high florbetapir binding.  

Conclusions: BLAzER provides an efficient workflow for regional brain PET quantification. FDA-

cleared components and the ability to visualize registration reduce barriers between research and 

clinical applications. 

Keywords: Positron Emission Tomography (PET), Neuroimaging, Amyloid-β (Aβ), Tau, (18F)AV-

45, (18F)AV-1451 
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INTRODUCTION 

Positron emission tomography (PET) neuroimaging applications have increased in both 

research and clinical setting in recent years. PET provides the ability to study functional and 

molecular processes in the brain in vivo, allowing exploration of an array of normal and 

pathological states, including neurodegenerative disorders, psychiatric conditions, and neuro-

oncology. Quantitation of PET data is well-established for research applications but less so in 

routine clinical settings. Recent research demonstrates the utility of quantification to supplement 

visual assessment for clinical PET, especially in Alzheimer’s disease (AD) using the glucose 

analogue 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and amyloid PET tracers [1-4]. Quantification of 

targeted brain regions of interest (ROIs) [5, 6]  is enabled using masks generated by automated 

magnetic resonance imaging (MRI) segmentation algorithms, such as the widely used reference 

standard in research, FreeSurfer (FS) [7-9], or the FDA-cleared and ISO-certified Neuroreader 

(NR) [10-13]. By registering the segmentation mask with the PET scan, ROIs can be defined for 

PET measurements without laborious and potentially imprecise or biased manual delineation 

methods [6, 14]. Barriers to the use of this approach to quantitation of brain PET, particularly for 

clinical applications, include computationally intensive software, time-consuming workflows, the 

need for real-time visualization of the primary and processed data for quality control, and limited 

availability of FDA-cleared software suitable for this purpose. 

Accuracy and precision are key features of effective image analysis methods to ensure 

that the extracted biomarker data can provide reliable in vivo information of the physiological state 

or disease process of interest. However, efficiency, ease of use, and availability are also essential 

features for widespread and routine implementation of quantitative brain PET. Many current 

techniques require lengthy post-processing time [2, 15] and/or heavy computational workload [16, 

17]. Incorrect segmentation of the brain MRI data and misregistration between PET and 

segmented brain regions are potential sources of error when extracting of regional PET data 

based on ROIs defined through fully automated segmentation [15]. Additionally, although 

qualitative and quantitative assessment can be performed separately, the ability to easily visualize 
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images in real-time at different states of processing and registration can provide an important 

degree of quality control and allow for user input to correct problematic studies. Many of the 

current fully automated processing workflows that involve only inputs and outputs to optimize 

speed, can be liable to unidentified errors because there is no opportunity to visualize the 

processed images [18, 19]. Finally, other barriers to routine implementation of quantitative brain 

PET include the lack of versatility in existing tools to analyze images acquired or processed by 

different platforms, radiotracers, and segmentation algorithms. Radiotracers commonly used for 

brain PET analysis in AD include [11C]Pittsburgh compound B (PiB) [20], [18F]florbetapir [21, 22], 

[18F]florbetaben [23], and [18F]flutemetamol [24]  for amyloid-β (Aβ), [18F]flortaucipir for tau [25-

28], and [18F]FDG [29, 30] for glucose metabolism. Multicenter clinical trials and longitudinal 

studies can benefit from a versatile workflow to standardize PET quantification [31]. 

Although a number of effective research workflows exist for regional brain PET analysis 

that combine one or more of the previously discussed features [8, 19, 32-35], quantification still 

has not been widely implemented in routine clinical brain PET for AD, which relies primarily on 

visual assessment and components validated for routine clinical use. FDA clearance and ISO-

certification are key features of not only NR, but also MIM, software that provides image 

visualization and quantification capabilities. Combining features of such tools could help lower the 

barriers between clinical and research workflows. However, to the best of our knowledge, no 

workflow exists that is efficient and easy for physicians and technologists to use, automatically 

segments ROIs in a customizable fashion, consists of FDA-cleared components, and allows for 

both qualitative and quantitative assessment for brain PET data in a clinical environment. 

We present here a novel brain Biomarker Localization, Analysis, Extraction, and 

Registration (BLAzER) workflow for analysis of PET based on segmented brain MRI. We 

demonstrate that BLAzER works well for both global and regional PET quantification of brain 

amyloid- and tau-PET, respectively, in Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

participants spanning normal cognition, mild cognitive impairment (MCI), and AD dementia. 

Although this report focuses on AD biomarkers, BLAzER can be applied to any PET neuroimaging 
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study that utilizes MR-based segmentation for defining ROIs. Additionally, we compare two 

different inputs for segmentation, FS and NR, which could be used with BLAzER for research and 

clinical applications, respectively. 

 

METHODS 

Study Population 

Images were downloaded from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (http://www.loni.ucla.edu/ADNI/). ADNI was launched in 2003 as a public-private 

partnership, led by principal investigator Michael W. Weiner, MD. The primary goal of ADNI has 

been to test whether serial magnetic resonance imaging (MRI), PET, other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early AD. All studies were approved by local Institutional 

Review Board at each institution through ADNI. Additional information is available at the ADNI 

website (www.adni-info.org). 

127 amyloid-PET and 55 tau-PET studies were selected from ADNI for a total of 178 

unique subjects (4 overlap). Subjects were selected to represent the spectrum of ADNI 

participants in terms of cognitive status (cognitively normal (CN), mild cognitive impairment (MCI), 

and Alzheimer’s disease (AD)), and age (cohorts aged 55-59, 60–69, 70–79, and ≥80). Subject 

selection was performed prior to beginning image review or analysis and was based on the 

preceding demographic criteria alone to capture the broad range of neuropathology available in 

ADNI (Table 1). Selection was blinded to the actual quality of the scans and output of the data, 

and image analysis was performed blind to subjects’ cognitive status or age group. No exclusions 

were made at time of selection or subsequently during the analysis (i.e. all of the initially selected 

studies were included in the final analysis).  
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Image sets used for analysis 

 All subjects in both the amyloid-PET and tau-PET cohorts had a volumetric brain MRI scan 

performed within 1 year of the PET study. MRI studies were performed using standard T1-

weighted sagittal 3D MPRAGE (magnetization prepared rapid gradient echo) sequences acquired 

from various 3T scanners with a 1.25 x 1.25-mm in-plane spatial resolution and 1.2-mm slice 

thickness with 256 x 256 voxel resolution according to ADNI specifications. 

 Amyloid- and tau-PET studies were acquired with [18F]florbetapir (also called AV-45) and 

[18F]flortaucipir (also called AV-1451), respectively. PET images were obtained on different 

scanners of varying resolutions, each with its platform-specific acquisition protocol. Therefore, as 

part of the ADNI protocol, all raw PET images undergo pre-processing for quality control and 

standardization purposes at the University of Michigan [36]. In summary, 4 x 5 min dynamic image 

frames, acquired 50 to 70 minutes post-injection, were co-registered to the first extracted frame 

of the raw image file. Then, the 6 five-minute frames were averaged to form a static PET image 

and reoriented into a standard 160 x 160 x 96 voxel image grid with 1.5-mm cubic voxels. Finally, 

each image set was filtered with a scanner-specific filter function to produce images of uniform 

isotropic resolution of 8 mm FWHM, which is the approximate resolution of the lowest resolution 

scanners used in ADNI. Only the fully pre-processed, standardized, co-registered, and averaged 

PET images were used for this study. Further details on the ADNI acquisition protocol are 

available on the website (http://adni.loni.usc.edu/methods). 

 

Image Analysis 

MRI Segmentation 

 Volumetric MRI images were segmented by either FreeSurfer v6.0.0 (Boston, MA) or 

Neuroreader (Brainreader, Horsens, Denmark). FS, an open-source software, has been validated 

as a tool to measure brain volumes in various neurological diseases when compared to either 

manual delineation [6] or other algorithms [14]. FS uses a complex algorithm with a series of 

normalization and motion-correction approaches prior to even starting its intensity-based 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/608323doi: bioRxiv preprint 

http://adni.loni.usc.edu/methods
https://doi.org/10.1101/608323


7 

 

approach to parcellate the brain into not only the larger cortical structures, but also subregions to 

allow targeted measurement of specific ROIs [8, 9]. FS segmentation produces detailed ROIs, 

which allow for spatial delineation of brain regions beyond the main cortical and subcortical brain 

structures. Customization of brain regions is particularly useful in analysis of tau-PET studies in 

Alzheimer’s disease where pathology follows characteristic Braak staging regions [37]. 

NR’s separation of gray matter (GM), white matter (WM), and cerebral spinal fluid (CSF) 

uses an intensity-based approach along with a template, similar to other available approaches 

[38, 39] such as the widely used Automatic Anatomic Labeling (AAL) template [19]. Similar to 

AAL, NR is highly efficient, with segmentation of an individual case processed in approximately 

15 minutes compared to 8 to 12 hours for FS. However, segmented brains from NR provide larger 

cortical and subcortical brain regions compared to FS, limiting customization beyond anatomical 

boundaries defined by their atlas. 

FS studies were loaded on a supercomputer environment (Cheaha, Birmingham, AL) in 

order to run all 184 volumetric MRI input files simultaneously through parallel computing. 

Parcellated, segmented brain images were converted from MGZ to DICOM format using 3DSlicer 

v4.6 (Boston, MA). Alternatively, NR automatically produced segmented brains in DICOM format 

for the same MPRAGE scans. Each of the segmentation output files along with source volumetric 

MRI and pre-processed PET scans were then visualized and quantified using an automated 

workflow on a multi-modal imaging software – MIM v6.6.13 (MIM Software Inc., Cleveland, OH). 

 

PET Analysis  

MIM is a commercial, FDA-cleared software package designed to help researchers and 

clinicians quantitatively and qualitatively process multi-modal imaging data. Through a graphical 

user interface (GUI), MIM allows the user to design customized, automated workflows for 

processing cases without need for advanced computational skills. Workflows were developed that 

could use segmentation data from FS or NR as inputs for ROI definition on the PET data sets.  

For BLAzER, we selected the segmented brain dataset, brain PET, and volumetric brain MRI 
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images for analysis, then ran a user-defined and customizable workflow that registered the 

images, defined ROIs within the original volumetric MR and PET based on the segmentation, and 

delivered the quantification in an array of potential outputs while allowing for visual inspection. 

Workflows were generated and customized to an individual segmentation method and PET 

radiotracer through a GUI interface where steps in the protocol were simply selected from a drop-

down list similar to Porcupine [40], such that users were not limited by their computational skillset 

to analyze large, multi-modal image datasets. Once the original protocol had been generated, 

anatomical tags for brain regions from another segmentation method or radiotracer were 

incorporated by replacing with the new identifiers with minimal user input, allowing clinicians and 

researchers alike to implement their customized analyses through BLAzER with minimal training. 

  In summary, in the BLAzER workflow, we 1) segmented the MRI to generate a 3D brain 

mask using either FS or NR; 2) transferred the segmentation to MIM and selected corresponding 

volumetric MRI and PET to analyze; 3) automatically co-registered segmented brain mask to 

volumetric MRI; 4) utilized the segmented brain to delineate the various brain regions based on 

the pixel intensities for each region defined by FS or NR; 5) performed quality control through 

visualization and corrected registration, if necessary; and 6) fused PET scan to MRI/brain mask 

template to extract, visualize, and quantify data (Fig. 1). The workflow suspended the automated 

process before transferring the contours to allow the user to verify accurate image registration. 

The original MPRAGE was used as a quality control measure to assure that the rigid registration 

method used to align the images had been performed properly and the ROIs are correct. If 

needed, the user could manually correct the registration and/or ROIs at this step. This review step 

was employed for all cases but is optional and could be omitted to provide a more automated 

process. 

 

Anatomical Definitions of Brain Regions   

In BLAzER, all SUVRs extracted are automatically weighted by the volumes of the 

individual subregions comprising each ROI. Amyloid-PET ROIs were normalized to the entire 
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cerebellum to extract SUVRs for all regions that comprised the cerebral cortex: frontal lobe, 

temporal lobe, parietal lobe, and cingulate (BLAzER-FS, as defined by ADNI) or frontal, temporal, 

parietal, and occipital lobes (BLAzER-NR, as defined by Neuroreader). BLAzER-FS matched 

ADNI-defined cortical regions exactly while BLAzER-NR included the entire cortex. For head-to-

head comparisons between BLAzER and ADNI, BLAzER-FS delineation was based on ADNI-

defined brain subregions. However, for comparisons between BLAzER-FS and BLAzER-NR, 

BLAzER-FS anatomical regions were modified to match the NR-based regions of entire cortex. 

We denote this distinction as BLAzER-FS*. Specific FreeSurfer subregions are detailed below as 

well as listed in Supplementary Table 1. 

Specifically, BLAzER-FS subregions were defined as follows: caudal middle frontal, lateral 

orbitofrontal, medial orbitofrontal, pars opercularis, pars orbitalis, pars triangularis, rostral middle 

frontal, superior frontal, and frontal pole (frontal); caudal anterior cingulate, isthmus cingulate, 

posterior cingulate, and rostral anterior cingulate (cingulate); inferior parietal, precuneus, superior 

parietal, and supramarginal (parietal); middle temporal and superior temporal (temporal). In 

contrast, BLAzER-FS* regions were defined as follows: caudal middle frontal, lateral orbitofrontal, 

medial orbitofrontal, pars opercularis, pars orbitalis, pars triangularis, rostral middle frontal, 

superior frontal, frontal pole, paracentral gyrus, precentral gyrus, caudal anterior cingulate, 

posterior cingulate, and rostral anterior cingulate, and insula (frontal); inferior parietal, precuneus, 

superior parietal, supramarginal, postcentral gyrus, and isthmus cingulate (parietal); bankssts, 

entorhinal, fusiform, inferior temporal, middle temporal, parahippocampal, superior temporal, 

temporal pole, and transverse temporal (temporal); cuneus, lateral occipital, lingual, and 

pericalcarine (occipital). 

Tau-PET SUVRs were calculated similarly to the amyloid-PET defined ROIs with two main 

differences. Tau-PET was normalized to the cerebellar gray matter instead of the entire 

cerebellum [37] and ADNI-defined ROIs for BLAzER-FS workflow followed the pathologic Braak 

staging regions [41]: entorhinal cortex (Braak 1); hippocampus (Braak 2); parahippocampal, 

fusiform, lingual, and amygdala (Braak 3); middle temporal, caudal anterior cingulate, rostral 
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anterior cingulate, posterior cingulate, isthmus cingulate, insula, inferior temporal, and temporal 

pole (Braak 4); superior frontal, lateral orbitofrontal, medial orbitofrontal, frontal pole, caudal 

middle frontal, rostral middle frontal, pars opercularis, pars orbitalis, pars triangularis, caudate, 

putamen, lateral occipital, parietal supramarginal, inferior parietal, superior temporal, pallidum, 

superior parietal, precuneus, superior temporal sulcus, nucleus accumbens, and transverse 

temporal (Braak 5); pericalcarine, postcentral, cuneus, precentral, and paracentral (Braak 6). As 

NR’s anatomical atlas only includes major cortical and subcortical regions, we defined BLAzER-

NR and BLAzER-FS* tau-PET regions the same as for amyloid-PET: frontal, temporal, parietal, 

and occipital cortices.  

 The published ADNI data was used as the reference standard. The reported values in the 

ADNI data set were based on brain segmentations performed using FS v5.3.0. SUV and SUVR 

data was extracted using SPM5 (version) after co-registeristration of PET and MR data. Key 

differences between BLAzER and the ADNI method are summarized in Table 2.  

 

Statistical Analysis 

  Statistical analyses were performed using MedCalc v17.7.2 (MedCalc Software, 

Mariakerke, Belgium) and Matlab vR2016b (MathWorks, Natick, MA) to compare the BLAzER 

method with the reference standard from ADNI. SUVRs and volumes were reported as mean ± 

SD. Statistical significance was defined as p<0.002 to account for multiple comparisons. 

Univariate regression was used to validate measurements between the two methods using 

Pearson’s correlation coefficient (poor agreement=0; slight=0.01-0.20; fair=0.21-0.40; 

moderate=0.41-0.60; good=0.61-0.80, and excellent=0.81-1.00 agreement). Similar comparisons 

were conducted using Bland Altman to determine limits of agreement and percent differences 

between the two analysis tools. Intra- and inter-observer variability and agreement were evaluated 

for global cortical SUVR using the intraclass correlation coefficient (ICC) in a two-way random 

model (ICC<0.40 = poor; ICC≥0.40 to 0.75 = fair to good; ICC>0.75 = excellent agreement). 

Finally, amyloid-PET cases were dichotomized into positive or negative to determine the ability of 
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BLAzER to properly classify cases based on SUVR cutoffs. Dichotomization was performed by 

1) directly applying ADNI’s autopsy-derived 1.11 cutoff [34, 42] and 2) deriving BLAzER-specific 

cutoff by using a linear regression to convert “ADNI units” to BLAzER units based on the slope 

and y-intercept. 

 

RESULTS 

Efficiency, quality control, and reproducibility 

  The BLAzER workflow enabled rapid image analysis. The most time-consuming step 

was segmentation. NR was considerably faster than FS on a per-case basis (10–20 min/case vs. 

8–12 hours/case, respectively), yet slower than FS for total processing time for the 182 subject 

cohort (45.5 hours vs. 12 hours, respectively) due to the ability to run FS cases in parallel on a 

supercomputer environment.  After segmentation, FS cases required ~2 min for manual DICOM 

conversion whereas NR cases were returned in DICOM format.  Once the segementation was 

obtained, the remainder of BLAzER processing took about 5 min per case. Thus, a case could be 

fully processed, from completion of image acquisition to full regional quantification, in as little as 

20 min (when using NR segmentation).  

Although the workflow could operate with full automation, the ability to visualize 

registration provided for quality control and avoiding registration errors. We routinely ran MIM’s 

“Run Rigid Assisted Alignment” tool serially to fix minor errors until it provided no further 

adjustment, which took only a few seconds (Fig. 1). Only 1 of the 182 scans required manual 

correction of registration, which was a case with severe brain atrophy. This highlights the 

usefulness of the visualization step, however, as the incorrect registration would have been 

missed in a fully automated workflow. We also examined inter-rater reliability by having two 

independent operators process each scan. Global florbetapir- and regional flortaucipir-PET 

measurements showed excellent reproducibility between two users across all brain regions (ICC 

> 0.97, Table 3). 
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MRI Volumetric Measurements 

As BLAzER’s regional PET extraction depends on accurate MRI-based anatomic 

segmentation and registration, we first compared BLAzER measurements of regional MRI 

volumes to the ADNI reference standard. Global cortical volume measured by the BLAzER 

workflow was highly correlated to that measured by ADNI (r = 0.9749, p < 0.001, Fig. 2A) with 

small systematic difference (1.61%) and tight 95% confidence interval (CI) (Fig. 2B). Regional 

comparisons across the frontal, cingulate, parietal, and temporal lobes for CN, MCI, and AD 

subjects showed similar results (r > 0.92, p < 0.0001, Supplementary Table 2). 

 

Amyloid-PET SUVR and Dichotomization  

BLAzER showed strong agreement with the ADNI reference standard when measuring 

diffuse cortical binding of amyloid-PET. Global SUVRs were similar between BLAzER and ADNI 

(r = 0.9922, p < 0.0001, Fig. 3A). Additionally, the slope of linear regression and y-intercept (y = 

1.0012x + 0.01816, R2 = 0.9844, Table 4) showed a near one-to-one correspondence between 

BLAzER and ADNI. There was a slight systematic difference in global SUVR, which was on 

average 1.6% higher with BLAzER than in the ADNI dataset (Fig. 3B).  This may be to do a 

systematic reduction in the reference region mean, which was observed in the cerebellum. 

Regional comparisons across the frontal, cingulate, parietal, and temporal lobes for CN, MCI, and 

AD subjects showed similar results (r > 0.94, p < 0.0001, Supplementary Table 3). 

We also the examined the dichotomous classification of individuals as amyloid-positive 

vs. –negative based on SUVR cutoffs. Because BLAzER SUVRs were slightly higher than ADNI 

on average, a few more of the 127 subjects were classified as amyloid-positive when BLAzER 

SUVRs were dichotomized using the ADNI cutoff of 1.11 with all 4 of these cases lying near the 

cutoff (BLAzER vs. ADNI range: [1.113 to 1.125] vs. [1.060 to 1.098], respectively, Table 4). 

However, translating 1.11 “ADNI units” into 1.13 “BLAzER units” by linear regression (Equations 

1 and 2) fixed the dichotomization of these 4 cases but 2 different cases were discrepant out of 
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the 127 total at this cutoff. These 2 cases had SURVs of 1.113 vs. 1.125 and 1.113 vs. 1.115 for 

BLAzER-FS vs. ADNI, respectively. 

1. 𝑆𝑈𝑉𝑅 =
𝑆𝑈𝑉𝑡𝑎𝑟𝑔𝑒𝑡 𝑟𝑒𝑔𝑖𝑜𝑛

𝑆𝑈𝑉𝑤ℎ𝑜𝑙𝑒 𝑐𝑒𝑟𝑒𝑏𝑒𝑙𝑙𝑢𝑚
 

2. 𝑆𝑈𝑉𝑅𝐵𝐿𝐴𝑧𝐸𝑅 =  𝑆𝑈𝑉𝑅𝐴𝐷𝑁𝐼 ∗ 𝑠𝑙𝑜𝑝𝑒𝐵𝐿𝐴𝑧𝐸𝑅 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝐵𝐿𝐴𝑧𝐸𝑅 

 

Regional brain tau-PET comparison 

BLAzER showed strong agreement with the ADNI reference standard when looking at 

regional binding of tau-PET with flortaucipir. Despite slightly lower correlation coefficients and 

wider 95% confidence intervals than with amyloid-PET (as expected because of the smaller 

regions defined for analysis), BLAzER correlated strongly with the ADNI reference standard 

across all six Braak stage regions (r > 0.97, p < 0.0001, Fig. 4). Further demonstrating regional 

accuracy, BLAzER showed tight 95% CI (<10%) and small differences (–1.5 to 3.6%) across all 

regions, (Fig. 5), and all cognitive statuses (r > 0.91, p < 0.0001, Supplementary Table 3).  

 

Amyloid and tau PET quantitation based on NR segmentation 

Next we compared the performance of a different segmentation platform, comparing 

BLAzER-FS with BLAzER-NR. To enable apples-to-apples comparison, we first adjusted FS’s 

anatomical subregions to match NR’s composite regions (FS*, see methods). BLAzER-NR highly 

correlated with BLAzER-FS* at a global level for amyloid-PET (r = 0.9841, p < 0.001, Fig. 6A). 

However, BLAzER-NR values had higher SUVR than BLAzER-FS* as shown by the systematic 

difference (4.0%) and shifted 95% CI (–0.7% to 8.7%, Fig. 6B). This is likely due to BLAzER-NR 

segmentation including more PET signal from white matter, which has high florbetapir binding, 

due to a slightly thicker definition of cortical regions with NR compared to FS. Dichotomization 

results paralleled these findings (Table 5). Directly applying ADNI’s cutoff of 1.11 classified led to 

12 out of 127 cases being discrepant between BLAzER-NR and BLAzER-FS* (range of SUVRs: 

[1.092 to 1.180] vs. [1.049 to 1.111], respectively). After applying regression analysis for both 

BLAzER-NR to ADNI (y = 0.9845x + 0.0.05658, R2 = 0.9587) and BLAzER-FS to ADNI (y = 
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0.8947x + 0.1158, R2 = 0.9482), the new SUVR cutoff obtained was 1.15 for BLAzER-NR while 

BLAzER-FS* remained unchanged. The adjusted cutoff reduced the number of discrepant cases 

to 7 out of 127 (NR vs. FS range: [1.0923 to 1.180] vs. [1.088 to 1.120], respectively). This 

discrepancy reflects the differences between the segmentation provided by NR and FS which in 

turn affects SUVRs. 

Regional analysis for both amyloid- and tau-PET across different cognitive statuses and 

brain regions revealed excellent correlations between BLAzER-NR and BLAzER-FS* (r > 0.85, p 

< 0.0001, Supplementary Table 4) although not as high as the correlations between BLAzER-FS 

and the ANDI reference values, again reflecting differences in the segmentation between the NR 

and FS platforms. 

 

DISCUSSION 

Measurement of the regional brain distribution of PET tracers is a cornerstone of data 

analysis in molecular neuroimaging and is growing in importance for clinical applications, 

particularly in the evaluation of patients with cognitive impairment. A number of imaging 

processing workflows exist that perform quantification of regional brain PET data [8, 19, 32-35]. 

However, there are few if any analysis tools that perform well for both clinical and research 

applications, utilize FDA-cleared components, define ROIs and extract regional PET data 

automatically, provide both quantitative and real-time visual assessment, and work quickly and 

efficiently without need for advanced coding skills. Our evaluation of BLAzER with validation 

through comparison to the ADNI database and head-to-head comparison of two segmentation 

methods demonstrates an approach that addresses this unmet need.  

Quantitative brain PET data from BLAzER correlated very closely with the results in ADNI 

for florbetapir- and flortaucipir-PET analyzed using FreeSurfer-defined regional volumes. We also 

demonstrated that the regional brain volumes provided by FS and NR were in close agreement 

with ROIs defined through BLAzER with less than 2% error between the original volumes and 
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those output by BLAzER. BLAzER and ADNI produced nearly identical dichotomous classification 

of amyloid-PET participants as positive or negative, especially when using regression analysis to 

account for systematic differences. It is important to acknowledge that our analysis was completed 

before the most recent ADNI update, which includes a new partial volume corrected set of values 

based on modified reference regions. Thus, any partial volume effect (PVE), or inaccuracies that 

result from low PET spatial resolution [43], affected both BLAzER and our reference ADNI set 

similarly. In addition to PVE, off-target-binding in non-specific regions can be problematic for 

accurate PET quantification. Recent evidence has shown non-specific flortaucipir uptake in the 

basal ganglia [44, 45]. In the most recent ADNI updates, the caudate and putamen have been 

removed from the Braak 5 staging regions for flortaucipir. However, we kept our results consistent 

by comparing BLAzER to the original dataset that included the caudate and putamen. In future 

work, BLAzER-FS regions can be modified to account for PVE and off-target-binding if desired.   

We observed slightly larger systematic differences and CIs for flortaucipir-PET compared 

to florbetapir-PET. As pathological cortical tau distribution is more regionally localized and 

restricted than pathological cortical amyloid which tends to be diffuse throughout the cerebral 

cortex [28], differences in segmentation and image alignment are expected to have a greater 

effect on PET measures of regional brain tau compared to regional brain amyloid.  

Potential sources of the small differences between BLAzER and the ADNI data set include 

different FS versions, source volumetric MR images, and registration methods. For our study, FS 

v6.0.0 was used while v5.3.0 was used for the ADNI data set, which could affect anatomical 

volume measurements and brain segmentation which in turn would affect ROI definition for PET 

quantitation [46]. Additionally, the ADNI dataset used two volumetric MR scan input files for FS to 

produce the segmented brain while we chose to use only one volumetric brain MR to reflect our 

standard research and clinical workflows. Within ADNI, each subject undergoes two volumetric 

MR scans during a single scanning session with some subject datasets having slightly different 

imaging parameters. In order to align the PET and MR images, ADNI utilized SPM to register the 
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images automatically while we used MIM. BLAzER utilizes a rigid-registration algorithm that 

allows only translation and rotation. Additionally, we utilize a three-step system of registration 

where the segmentation is first registered with its original, template volumetric MR and then with 

the PET after the rigid-registration quality control-check. We believe that this visual assessment 

and option for manual correction minimizes sources of error that can arise from fully automated 

registration methods (Fig. 1) [2]. Additionally, we believe that our results are generalizable across 

the ADNI population due to our selection of individuals that represent the range of cognitive 

statuses and age cohorts from ADNI. 

Our implementation of BLAzER for research studies utilizes a high-throughput, 

supercomputing cluster for segmentation (by FS) along with a commercially available 

multimodality image viewing and analysis software program (MIM) with customized workflows to 

use and process the segmentation data. This workflow can be adapted to other segmentation 

algorithms by customizing the visualization software workflow with minimal change in the user 

experience. This workflow allows the user to register and process brain segmentation maps with 

brain PET and brain MRI in a single viewing environment for quality control, manual correction if 

needed, data extraction, and real-time visual assessment. Utilizing parallel computing strategies 

with FS allows segmentation of over 100 studies in approximately 12 hours which is suitable for 

use with clinical trials and large imaging datasets. We chose MIM due to its efficiency and relative 

ease of use compared to existing tools that are either dependent on relatively heavy 

computational skills [16, 17] or require significant image processing input [2, 15]. MIM’s GUI-

interface is most similar to Porcupine [40], enabling analysis of large, multi-modal image datasets 

by users without a sophisticated computational skillset. Similar to other existing workflows [2, 47-

49], BLAzER allows for automatic delineation of PET ROIs. However, an important advantage of 

BLAzER is that it can accept brain segmentation data sets from multiple sources, including FDA-

cleared algorithms such as NR. This potential integration of a completely FDA-cleared workflow 

helps overcome barriers between clinical and research applications of BLAzER. While the present 
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work focuses on the use of this workflow for amyloid- and tau-PET, it is just as applicable for the 

analysis of other brain PET imaging studies.  This flexibility combined with visualization software 

familiar to physicians and technologists facilitates implementation of quantitative PET 

neuroimaging in routine clinical practice with a wide range of segmentation algorithms and PET 

tracers. As BLAzER can accommodate any DICOM dataset, other neuroimaging modalities, such 

as SPECT for Parkinson’s disease or functional MRI and diffusion tensor imaging for 

schizophrenia, could be processed along with PET neuroimaging biomarkers of 

neuroinflammation [50-52] by adapting the BLAzER workflow. Although not used in this data 

study, the BLAzER workflow can be used for analysis of dynamic PET data sets. 

Another major strength of the BLAzER workflow is the ability to use any segmentation 

map in DICOM format for defining PET ROIs and extracting PET measurements. However, in 

contrast to our inter-workflow comparison between BLAzER-FS and ADNI, our intra-workflow 

comparison between BLAzER-FS* and BLAzER-NR demonstrated subtle differences between 

the segmentation methods, yet still showed excellent correlations for both global and regional 

comparisons. Our results showed that NR provides slightly higher SUVRs when compared to FS 

across large cortical structures, where dichotomous classification revealed 7 discrepant 

individuals out of 127 total cases even after regression adjustment. These findings, which contrast 

with the nearly identical dichotomization between BLAzER-FS and ADNI comparison, emphasize 

the effect that differences in segmentation can have on amyloid dichotomization. Despite our best 

efforts to match BLAzER-NR’s cortical anatomical boundaries with rearrangement of BLAzER-

FS* regions, BLAzER-NR and BLAzER-FS* have slightly different anatomical definitions of brain 

subregions across cortical structures not only from each other but also from ADNI (unlike 

BLAzER-FS), which noticeably affects correlation and dichotomization. Additionally, the methods 

utilize different segmentation algorithms in separating gray from white matter, leading to slightly 

thicker cortical ROIs with NR than with FS. As florbetapir binds non-specifically to white matter 

even in cognitively normal individuals [53], we believe that a greater contribution of PET signal 
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from white matter in BLAzER-NR contributes to the systematically larger SUVRs when compared 

to BLAzER-FS*. Users can choose segmentation software that best fits their clinical and/or 

research needs. Based on our observed results, the selection of the appropriate segmentation 

input depends on the application. For rapid analysis of large major cortical or subcortical 

structures in a clinical setting, NR and similar algorithms might be preferred. In contrast, FS 

provides more versatility for brain segmentation due its ability to provide smaller ROIs 

compromised of multiple subregions which may be more appropriate for research and analysis of 

PET tracers with spatially-restricted distributions.  

In conclusion, BLAzER is a streamlined image processing workflow for efficient 

registration, visualization, and extraction of brain PET data. We successfully validated the 

accuracy and reproducibility of BLAzER using ADNI as the reference standard for amyloid-PET 

and tau-PET analyses. We also showed how two different segmentation inputs, NR and FS, can 

be used with BLAzER and that the cortical ROIs extracted by BLAzER remain consistent with the 

original MR volumes. This versatile workflow can reduce barriers to quantitative brain PET and 

MR analysis for a wide range of research and clinical applications.  
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Figure Legends 

Figure 1. Schematic diagram of key steps in the semi-automated BLAzER workflow. The 3D 

volumetric MRI (1) is used to generate the Freesurfer (FS) segmentation (2) in DICOM format. 

Brain regions defined by FS are generated in MIM and applied to the original MRI (3). Quality 

control is performed (4) to ensure both registration and segmentation are correct. In an example 

from a different research subject, a cortical region in the anteromedial left temporal lobe is not 

included in the FS-defined segmentation (red circle showing left temporal cortex not outlined by 

blue line). Once any errors are corrected, the PET and MRI data are fused (5). The FS-defined 

regions are transferred to the PET data set (6) which are then used to extract static or dynamic 

regional PET data (7).  

Figure 2. Comparison of MRI cortical volumes determined by BLAzER-FS vs. ADNI.  Global 

cerebral cortical volumes are based on frontal, temporal, parietal, and cingulate cortices as 

defined in ADNI. A) Univariate Pearson correlation, with regression line (r = 0.97, solid black), 

identity line (dotted), and cases coded by group.  B) Bland-Altman plots with mean percent 

difference (0.98%, solid line) and 95% confidence intervals ([–5.43 to 7.38], dotted lines), coded 

by age cohort.  

Figure 3. Comparison of florbetapir-PET global cerebral cortical SUVR determined by BLAzER-

FS vs. ADNI.  A) Univariate Pearson correlation with regression line (r = 0.99, solid black), 

identity line (dotted), and cases coded by group.  B) Bland-Altman plots with mean percent 

difference (1.61%, solid line) and 95% confidence intervals ([–1.70% to 4.92%], dotted lines), 

coded by age cohort. 

Figure 4. Comparison of flortaucipir-PET measured by BLAzER-FS vs. ADNI across the regions 

representing the pathological Braak stages.  (A) through (F) represent the regions for Braak 

stages 1 thru 6, respectively. See Methods for details on which anatomic regions were included 
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in each stage. Univariate Pearson correlation with regression line (solid black), identity line 

(dotted), and cases coded by group. 

Figure 5. Comparison of flortaucipir-PET measured by BLAzER-FS vs. ADNI across the regions 

representing the pathological Braak stages.  (A) through (F) represent the regions for Braak 

stages 1 thru 6, respectively (see Methods for details on which anatomic regions were included 

in each stage), Bland Altman plots with mean percent difference (solid line) and 95% confidence 

intervals (dotted lines), coded by age cohort. 

Figure 6. Comparison of global amyloid PET SUVR for Neuroreader (BLAzER-NR) vs. FreeSurfer 

(BLAzER-FS*).  A) Univariate Pearson correlation with regression line (r = 0.98, solid black), 

identity line (dotted), and cases coded by group. B) Bland-Altman plots with mean percent 

difference (4.01%, solid line) and 95% confidence intervals ([–0.70% to 8.72%], dotted lines), 

coded by age cohort. 
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Tables and Figures 
 
Table 1 

 
Table 1. Cohort demographics. Subjects in each of the three groups, cognitively normal (CN), 

mild cognitive impairment (MCI), and Alzheimer’s disease (AD), were stratified into four age 

groups. Number of total subjects (N), broken down by sex with number of males (M). 

Apolipoprotein E-ε4 (ApoE4) carriers represented as either homozygotes (ε4/ε4) or 

heterozygotes (ε4/ε*). All other results are shown as mean ± standard deviation (SD). * 

indicates incomplete data in ADNI.  

 CN MCI AD 

Amyloid-PET with florbetapir    

N (Male, %) 37 (13M, 13%) 48 (21M, 43.8%) 42 (27M, 64.3%) 

ApoE4 carriers (homo, hetero, total %) 11 (0, 11, 31.6%) 30 (5, 25, 62.5%) 27 (10, 17, 65.9%) 

Age in years (mean ± SD) 76 (±8.8) 70.7 (±10.6) 71.9 (±9.9) 

MMSE (mean ± SD) 28.5 (±1.8) 23.8 (±6.1) 22.95 (±2.1) 

ADAS11 (mean ± SD) 5.9 (±4.1) 16.9 (±12.9) 18.9 (±6.5) 

ADAS13 (mean ± SD) 9.4 (±6.3) 25.1 (±16.9) 29.1 (±8.1) 

ADNI Global SUVR (mean ± SD) 1.14 (±0.13) 1.22 (±0.1) 1.3 (±0.2) 

Tau-PET with flortaucipir    

N (Male, %) 19 (7M, 36.8%) 19 (15M, 78.9%) 16 (10M, 62.5%) 

ApoE4 carriers (homo, hetero, total %) 4 (0, 4, 22.2%)* 7 (3, 4, 36.8%) 7 (3, 4, 50.0%)* 

Age in years (mean ± SD) 77.74  (±6.9) 77.89 (±6.1) 79.19 (±9.3) 

MMSE (mean ± SD) 29.47 (±0.6) 27.47 (±2.7) 21.25 (±4.4) 

ADAS11 (mean ± SD) 7.42 (±3.9) 11.74 (±5.5) 22.06 (±8.1) 

ADAS13 (mean ± SD) 10.63 (±5.8) 17.58 (±8.0) 32.31 (±11.2) 
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Table 2 

 

 

Table 2. Key differences in post-processing methods summarized between BLAzER and 

the ADNI reference standard. 

  

BLAzER-FS ADNI 

Segmentation using FS v6.0.0 Segmentation using FS v5.3.0 

One MPRAGE scan utilized for 
segmentation 

Two independent MPRAGE scans utilized 
for segmentation 

Registration performed by MIM Registration performed by SPM 

Visualization step for quality control to 
ensure adequate registration and 
manual/automated editing if necessary 

Registration fully automated 

Dichotomized data both using ADNI’s 1.11 
cutoff as well as performing regression to 
determine corresponding “BLAzER” units 

Derived cutoff autopsy studies of Clark et 
al. (34). Converted their 1.10 cutoff to 1.11 
“ADNI” units based on regression 
analysis 
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Table 3 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Inter-subject reproducibility of BLAzER. Interclass Coefficient (ICC) values show 

excellent reproducibility between two different operators. 

  

Region 
florbetapir-

PET 
Volumetric 

MR 

Frontal 0.9975 0.9914 

Parietal 0.9915 0.9961 

Temporal 0.997 0.9944 

Cingulate 0.9961 0.9713 

Global 0.9974 0.9986    

Region flortaucipir-PET 

Braak 1 0.9847 

Braak 2 0.9833 

Braak 3 0.9963 

Braak 4 0.9993 

Braak 5 0.9924 

Braak 6 0.9679 
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Table 4 

 

 

 

 

 

Table 4. Dichotomization results for amyloid-PET for BLAzER-FS vs. ADNI. Number 

discrepant represent the total number of individuals whose dichotomous classification differed 

between BLAzER-FS and ADNI out of 127 total cases. Dichotomization performed by (top row) 

applying ADNI’s unadjusted autopsy-derived cutoff of 1.11 and (bottom row) translating this 

cutoff by performing a regression against the ADNI data (y = mx + b).  

  

 
Number 

Discrepant 
Cutoff m(x) b 

BLAzER-FS using ADNI cutoff 4/127 1.11 - - 

BLAzER-FS using regression-
adjusted cutoff 

2/127 1.13 1.0012 0.01816 
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Table 5 

 

 

 

 

 

Table 5. Dichotomization results for Neuroreader (BLAzER-NR) vs. FreeSurfer (BLAzER-

FS*). Number discrepant represent the total number of individuals whose dichotomous 

classification differed between BLAzER-NR and BLAzER-FS* out of 127 total cases. 

Dichotomization performed by (top row) applying ADNI’s unadjusted autopsy-derived cutoff of 

1.11 and (bottom row) translating this cutoff by performing a regression against the ADNI data 

(y = mx + b). BLAzER-FS* indicates that the BLAzER workflow used FS segmentation with 

brain region ROIs matched as closely as possible to those defined by NR segmentation.  

  

 
BLAzER-NR BLAzER-FS* 

 
Number 

Discrepant 
Cutoff m(x) b Cutoff m(x) b 

Unadjusted  12/127  1.11 - - 1.11 - - 

Regression 
adjusted 

7/127 1.15 0.9845 0.05658 1.11 0.8947 0.1158 
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Figure 1 
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Figure 3 
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Figure 5 
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Figure 6 
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Supplementary Table 1 

 

Table S1. Anatomical Definitions of Brain Regions. Table of FreeSurfer (FS) subregions that comprised each of 

the cortices for amyloid-PET and each of the Braak staging regions for tau-PET. BLAzER-FS delineation was based 

on ADNI-defined brain subregions. However, for comparisons between BLAzER-FS and BLAzER-NR, BLAzER-FS 

anatomical regions were modified to match the NR-based regions of entire cortex. We denote this distinction as 

BLAzER-FS*. 

  

Region BLAzER-FS for Amyloid-PET 

Frontal caudal middle frontal, lateral orbitofrontal, medial orbitofrontal, pars opercularis, 
pars orbitalis, pars triangularis, rostral middle frontal, superior frontal, and frontal 
pole 

Parietal inferior parietal, precuneus, superior parietal, and supramarginal 

Temporal middle temporal and superior temporal 

Cingulate caudal anterior cingulate, isthmus cingulate, posterior cingulate, and rostral 
anterior cingulate  

Region BLAzER-FS*  for Amyloid-PET 

Frontal caudal middle frontal, lateral orbitofrontal, medial orbitofrontal, pars opercularis, 
pars orbitalis, pars triangularis, rostral middle frontal, superior frontal, frontal pole, 
paracentral gyrus, precentral gyrus, caudal anterior cingulate, posterior cingulate, 
and rostral anterior cingulate, and insula 

Parietal inferior parietal, precuneus, superior parietal, supramarginal, postcentral gyrus, 
and isthmus cingulate 

Temporal bankssts, entorhinal, fusiform, inferior temporal, middle temporal, 
parahippocampal, superior temporal, temporal pole, and transverse temporal 

Occipital cuneus, lateral occipital, lingual, and pericalcarine 
 

Region BLAzER-FS  for Tau-PET 

Braak 1 entorhinal cortex 

Braak 2 hippocampus 

Braak 3 parahippocampal, fusiform, lingual, and amygdala 

Braak 4 middle temporal, caudal anterior cingulate, rostral anterior cingulate, posterior 
cingulate, isthmus cingulate, insula, inferior temporal, and temporal pole 

Braak 5 superior frontal, lateral orbitofrontal, medial orbitofrontal, frontal pole, caudal 
middle frontal, rostral middle frontal, pars opercularis, pars orbitalis, pars 
triangularis, caudate, putamen, lateral occipital, parietal supramarginal, inferior 
parietal, superior temporal, pallidum, superior parietal, precuneus, superior 
temporal sulcus, nucleus accumbens, and transverse temporal 

Braak 6 pericalcarine, postcentral, cuneus, precentral, and paracentral 
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Supplementary Table 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2. ADNI vs. BLAzER: Volumetric Comparison. Regional comparison tables results for BLAzER vs. ADNI 

for volumetric MRI, showing SUVRs (mean ± standard deviation) with Pearson correlation coefficient across 

cognitively normal (CN), mild cognitively impaired (MCI), and Alzheimer’s dementia (AD) individuals across various 

brain regions. *** Denotes statistical significance of Pearson correlation p<0.0001. 

 

 

Volumetric MR 

Cognitive 
status 

Brain 
regions 

ADNI BLAzER r 

CN    
Frontal 119.9 ± 13.5 116.2 ± 12.8 0.9547*** 

Cingulate 17.2 ± 2.3 17.2 ± 2.5 0.9548*** 
Parietal 74.3 ± 9.3 76.9 ± 8.6 0.9205*** 

Temporal 38.6 ± 5.5 40.7 ± 5.8 0.9623*** 
Global 249.9 ± 29.0 251.0 ± 27.5 0.9641*** 

MCI    
Frontal 116.0 ± 17.0 112.9 ± 16.3 0.9761*** 

Cingulate 16.6 ± 2.8 16.4 ± 2.8 0.9570*** 
Parietal 71.6 ± 14.2 74.4 ± 14.2 0.9818*** 

Temporal 36.0 ± 7.0 38.2 ± 7.1 0.9702*** 
Global 240.2 ± 39.6 241.9 ± 38.6 0.9834*** 

AD    
Frontal 122.8 ± 14.5 120.3 ± 14.4 0.9619*** 

Cingulate 17.7 ± 2.5 17.5 ± 2.8 0.9444*** 
Parietal 75.3 ± 11.1 79.4 ± 11.9 0.9536*** 

Temporal 37.6 ± 5.1 40.2 ± 5.5 0.9673*** 
Global 253.4 ± 30.8 257.4 ± 31.6 0.9685*** 
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Supplementary Table 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S3. ADNI vs. BLAzER: SUVR Comparison. Regional comparison tables results for BLAzER vs. ADNI for 

amyloid-PET (top) and tau-PET (bottom), showing SUVRs (mean ± standard deviation) with Pearson correlation 

coefficient across cognitively normal (CN), mild cognitively impaired (MCI), and Alzheimer’s dementia (AD) individuals 

across various brain regions. *** Denotes statistical significance of Pearson correlation p<0.0001. 

Amyloid-PET 

Cognitive 
status 

Brain 
regions 

ADNI BLAzER r 

CN    
Frontal 1.11 ± 0.13 1.14 ± 0.13 0.9632*** 

Cingulate 1.24 ± 0.14 1.26 ± 0.15 0.9526*** 
Parietal 1.13 ± 0.14 1.16 ± 0.15 0.9643*** 

Temporal 1.04 ± 0.10 1.07 ± 0.11 0.9382*** 
Global 1.23 ± 0.19 1.16 ± 0.13 0.9894*** 

MCI    
Frontal 1.22 ± 0.17 1.24 ± 0.17 0.9886*** 

Cingulate 1.31 ± 0.15 1.33 ± 0.15 0.9891*** 
Parietal 1.21 ± 0.16 1.23 ± 0.16 0.9781*** 

Temporal 1.13 ± 0.13 1.15 ± 0.14 0.9793*** 
Global 1.23 ± 0.17 1.24 ± 0.15 0.9884*** 

AD    
Frontal 1.30 ± 0.20 1.32 ± 0.20 0.9956*** 

Cingulate 1.39 ± 0.19 1.40 ± 0.19 0.9945*** 
Parietal 1.31 ± 0.20 1.33 ± 0.190 0.9873*** 

Temporal 1.21 ± 0.18 1.23 ± 0.18 0.9870*** 
Global 1.20 ± 0.14 1.32 ± 0.19 0.9935*** 

Tau-PET 

Cognitive 
status 

Brain 
regions 

ADNI BLAzER r 

CN    
Braak 1 1.16 ± 0.16 1.30 ± 0.36 0.9705*** 
Braak 2 1.22 ± 0.11 1.32 ± 0.21 0.9676*** 
Braak 3 1.14 ± 0.10 1.28 ± 0.35 0.9894*** 
Braak 4 1.14 ± 0.10 1.30 ± 0.37 0.9802*** 
Braak 5 1.06 ± 0.08 1.21 ± 0.27 0.9822*** 
Braak 6 0.99 ± 0.08 1.06 ± 0.12 0.9782*** 

MCI    
Braak 1 1.21 ± 0.24 1.26 ± 0.21 0.9806*** 
Braak 2 1.34 ± 0.19 1.32 ± 0.19 0.9770*** 
Braak 3 1.19 ± 0.09 1.19 ± 0.09 0.9097*** 
Braak 4 1.19 ± 0.10 1.19 ± 0.11 0.9398*** 
Braak 5 1.11 ± 0.09 1.14 ± 0.11 0.9417*** 
Braak 6 1.02 ± 0.06 1.04 ± 0.09 0.9667*** 

AD    
Braak 1 1.44 ± 0.28 1.15 ± 0.18 0.9757*** 
Braak 2 1.36 ± 0.22 1.24 ± 0.14 0.9821*** 
Braak 3 1.38 ± 0.36 1.16 ± 0.12 0.9964*** 
Braak 4 1.41 ± 0.46 1.21 ± 0.13 0.9986*** 
Braak 5 1.22 ± 0.31 1.15 ± 0.10 0.9969*** 
Braak 6 1.04 ± 0.14 1.01 ± 0.09 0.9896*** 
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Table S4. BLAzER-NR vs. BLAzER-FS*: SUVR Comparison. Regional comparison tables results for Neuroreader 

(BLAzER-NR) vs. FreeSurfer (BLAzER-FS*) utilizing BLAzER workflow for amyloid-PET (top) and tau-PET (bottom), 

showing SUVRs (mean ± standard deviation) with Pearson correlation coefficient across cognitively normal (CN), mild 

cognitively impaired (MCI), and Alzheimer’s dementia (AD) individuals across frontal, occipital, parietal, and temporal 

cortices as well as weighted global cortical average across these 4 brain regions. *Denotes BLAzER-FS utilizing NR 

regions. ***Denotes statistical significance of Pearson correlation p<0.0001. 

 

Tau-PET 

Cognitive 
status 

Brain 
regions 

BLAzER-NR BLAzER-FS* r 

CN    
Frontal 1.09 ± 0.09 1.06 ± 0.09 0.9892*** 

Occipital 1.10 ± 0.08 1.08 ± 0.09 0.9594*** 
Parietal 1.09 ± 0.09 1.05 ± 0.08 0.9522*** 

Temporal 1.16 ± 0.10 1.15 ± 0.10 0.9901*** 

MCI    
Frontal 1.12 ± 0.06 1.08 ± 0.07 0.8715*** 

Occipital 1.13 ± 0.08 1.09 ± 0.08 0.9377*** 
Parietal 1.11 ± 0.07 1.07 ± 0.08 0.8533*** 

Temporal 1.20 ± 0.08 1.18 ± 0.08 0.9671*** 

AD    
Frontal 1.23 ± 0.26 1.19 ± 0.25 0.9568*** 

Occipital 1.27 ± 0.28 1.18 ± 0.25 0.9782*** 
Parietal 1.29 ± 0.31 1.25 ± 0.33 0.9685*** 

Temporal 1.47 ± 0.48 1.45 ± 0.49 0.9941*** 

Amyloid-PET 

Cognitive 
status 

Brain 
regions 

BLAzER-NR BLAzER-FS* r 

CN    
Frontal 1.34 ± 0.17 1.36 ± 0.15 0.9028*** 

Occipital 1.31 ± 0.17 1.34 ± 0.14 0.8485*** 
Parietal 1.33 ± 0.20 1.39 ± 0.17 0.8929*** 

Temporal 1.26 ± 0.16 1.28 ± 0.11 0.8697*** 
Global 1.31 ± 0.17 1.34 ± 0.14 0.8804*** 

MCI    
Frontal 1.39 ± 0.20 1.43 ± 0.18 0.9309*** 

Occipital 1.33 ± 0.17 1.39 ± 0.19 0.9052*** 
Parietal 1.35 ± 0.19 1.43 ± 0.19 0.9179*** 

Temporal 1.32 ± 0.17 1.34 ± 0.14 0.9197*** 
Global 1.36 ± 0.18 1.41 ± 0.17 0.9361*** 

AD    
Frontal 1.46 ± 0.22 1.51 ± 0.20 0.9158*** 

Occipital 1.42 ± 0.21 1.48 ± 0.21 0.9376*** 
Parietal 1.46 ± 0.23 1.56 ± 0.22 0.9259*** 

Temporal 1.40 ± 0.21 1.42 ± 0.18 0.9295*** 
Global 1.44 ± 0.21 1.50 ± 0.20 0.9207*** 
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