1	Mitochondrial	architecture	rearrangements	s produce

2 asymmetrical nonadaptive mutational pressures that subvert

3 the phylogenetic reconstruction in Isopoda

- 4 Running title: Nonadaptive evolution and Isopoda mitogenomes
- 5 Dong Zhang^{1,2#}, Hong Zou^{1#}, Cong-Jie Hua¹, Wen-Xiang Li¹, Shahid Mahboob^{3,4}, Khalid
- 6 Abdullah Al-Ghanim³, Fahad Al-Misned³, Ivan Jakovlić^{5,*}, Gui-Tang Wang^{1,*}
- 7 ¹ Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key
- 8 Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese
- 9 Academy of Sciences, Wuhan 430072, P. R. China
- 10 ² University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- ³ Department of Zoology, College of Science, King Saud University, P.O. Box 2455,
- 12 Riyadh-11451, Saudi Arabia.
- ⁴ Department of Zoology, GC University, Faisalabad, Pakistan
- ⁵ Bio-Transduction Lab, Wuhan 430075, P. R. China
- 15 # These authors contributed equally to this study.
- 16 *Authors for Correspondence:
- 17 Gui-Tang Wang, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and
- 18 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology,
- 19 Chinese Academy of Sciences, Wuhan, 430072, China; Tel: +86-027 68780611, Email:
- 20 gtwang@ihb.ac.cn

21 Ivan Jakovlić, Bio-Transduction Lab, Wuhan 430075, China; Tel: +86-15927373207, Email:

22 <u>ivanjakovlic@yahoo.com</u>

23

24 Abstract

25 The phylogeny of Isopoda, a speciose order of crustaceans, remains unresolved, with 26 different datasets often producing starkly incongruent phylogenetic hypotheses. We 27 hypothesised that extreme diversity in their life histories might be causing compositional 28 heterogeneity/heterotachy in their mitochondrial genomes, and compromising the 29 phylogenetic reconstruction. We tested the effects of different datasets (mitochondrial, 30 nuclear, nucleotides, amino acids, concatenated genes, individual genes, gene orders), 31 phylogenetic algorithms (assuming data homogeneity, heterogeneity, and heterotachy), and 32 partitioning; and found that almost all of them produced unique topologies. As we also found that mitogenomes of Asellota and two Cymothoida families (Cymothoidae and 33 34 Corallanidae) possess inversed base (GC) skew patterns in comparison to other isopods, we 35 concluded that inverted skews cause long-branch attraction phylogenetic artefacts between 36 these taxa. These asymmetrical skews are most likely driven by multiple independent 37 inversions of origin of replication (i.e., nonadaptive mutational pressures). Although the 38 PhyloBayes CAT-GTR algorithm managed to attenuate some of these artefacts (and 39 outperform partitioning), mitochondrial data have limited applicability for reconstructing the 40 phylogeny of Isopoda. Regardless of this, our analyses allowed us to propose solutions to 41 some unresolved phylogenetic debates, and support Asellota are the most likely candidate 42 for the basal isopod branch. As our findings show that architectural rearrangements can

43 produce major compositional biases even on short evolutionary timescales, the implications 44 are that proving the suitability of data via composition skew analyses should be a 45 prerequisite for every study that aims to use mitochondrial data for phylogenetic 46 reconstruction, even among closely related taxa.

47

48 Key words: base composition skew; GC skew; mitochondrial phylogenomics; Cymothoida;

49 replication origin inversion; compositional heterogeneity

50

51 Introduction

52 Significant taxonomic and phylogenetic uncertainty permeates the entire order of Isopoda. 53 The members of this highly speciose (>10,000) order of crustaceans (class Malacostraca) 54 exhibit a remarkable diversity in their life histories (comprising both free-living and parasitic 55 species) and occupy almost all habitats on the planet Earth (marine, freshwater and 56 terrestrial), from deep sea vents to the Antarctica. The traditional morphology-based 57 taxonomic classification and identification of isopods is further (aside from the speciosity) 58 hampered by great intraspecific morphological variation, sexual dimorphism, sequential 59 hermaphroditism, relatively flexible host preference, and global distribution of many species 60 (Joca, Leray, Zigler, & Brusca, 2015; L. S. F. Lins, Ho, Wilson, & Lo, 2012; Luana S.F. Lins, Ho, & 61 Lo, 2017; Rudy, Rendoš, Ľuptáčik, & Mock, 2018; Shen et al., 2017; Wetzer, 2002; George D.F. 62 Wilson, 2008). However, molecular data also appear to be an unreliable tool for the task, as

63	different datasets (mitochondrial genes, mitochondrial genomes, nuclear genes, combined
64	mitonuclear data) often produce very different topologies (Richard C. Brusca, 1981; Hata et
65	al., 2017; Kilpert, Held, & Podsiadlowski, 2012; Luana S.F. Lins et al., 2017; Martin, Bruce, &
66	Nowak, 2016; Poore & Bruce, 2012; Wetzer, 2002; G D F Wilson, 2009; Yu, An, Li, & Boyko,
67	2018; Zou et al., 2018). As a result, even the identity of the basal isopod clade (defined as the
68	sister-clade to all other isopod lineages (Krell & Cranston, 2004)) remains debated.
69	Traditionally (morphology and single gene-based studies), Phreatoicidea was regarded as the
70	basal clade (Kilpert et al., 2012; Wetzer, 2002; G D F Wilson, 2009), but some studies
71	resolved Phreatoicidea+Aselotta at the base (Shen et al., 2017; G D F Wilson, 2009; George
72	D.F. Wilson, 1999; Yu et al., 2018), one study found Limnoriidea (Luana S.F. Lins et al., 2017)
73	at the base, whereas a few studies even resolved parasitic Cymothoidae and Corallanidae
74	(suborder Cymothoida) at the base (Hua et al., 2018; L. S. F. Lins et al., 2012; Luana S.F. Lins
75	et al., 2017; G D F Wilson, 2009; Zou et al., 2018). As the Cymothoida was traditionally
76	regarded as the most derived isopod clade (Richard C. Brusca, 1981; Kilpert et al., 2012;
77	Wetzer, 2002; G D F Wilson, 2009), these alternative hypotheses cannot be described as
78	minor topological instability. The monophyly of suborder Cymothoida is generally supported
79	by the morphological data, but rejected by the molecular data (Brandt & Poore, 2003; Hua et
80	al., 2018; Kilpert et al., 2012; Luana S.F. Lins et al., 2017; Shen et al., 2017; G D F Wilson,
81	2009; Yu et al., 2018; Zou et al., 2018). Among a number of other unresolved phylogenetic
82	issues permeating this order are the monophyly of the suborder Oniscidea (supported by
83	morphology, sometimes rejected by molecular data) and the existence of several 'rogue'
84	species/taxa, such as <i>Ligia oceanica</i> (Ligiidae), <i>Eurydice pulchra</i> , and <i>Limnoria</i>

quadripunctata (Limnoriidae), whose positions in the isopod clade often vary among studies
(Kilpert et al., 2012; Luana S.F. Lins et al., 2017; Schmidt, 2008; Shen et al., 2017; Wetzer,
Pérez-Losada, & Bruce, 2013; G D F Wilson, 2009; Yu et al., 2018).

88 Historically, variation found within gene sequences was typically considered to 89 accumulate under a neutral equilibrium model, so commonly used phylogenetic 90 reconstruction algorithms assume homogeneity in mutational rates. As this paradigm began 91 to change during the last few decades (Wolff, Ladoukakis, Enríquez, & Dowling, 2014), this 92 was accompanied by a growing amount of evidence that compositional heterogeneity can 93 compromise phylogenetic reconstruction in some taxa and that evolutionary models 94 operating under that prerequisite may not be suitable for all phylogenetic studies (Cameron, 95 2014; Hassanin, 2006; Kolaczkowski & Thornton, 2004; Lartillot, Brinkmann, & Philippe, 2007; 96 Morgan et al., 2013; Phillips, McLenachan, Down, Gibb, & Penny, 2006; Sheffield, Song, 97 Cameron, & Whiting, 2009; Zhong et al., 2011). However, the feud about the most suitable 98 methodological approach to account for this heterogeneity remains unresolved, with most 99 prominent contenders currently being the CAT models (Feuda et al., 2017), and partitioning 100 schemes, i.e. different evolutionary models assigned to different character blocks, assuming 101 homogeneity within each block (Whelan & Halanych, 2017). Although these two approaches 102 account for rate heterogeneity across sites, they still assume that substitution rates for sites 103 are constant across all included lineages. From the evolutionary perspective this is not a 104 likely scenario, as substitution rates are likely to be both site- and lineage-specific (Crotty et 105 al., 2017). Indeed, heterotachy, variations in lineage-specific evolutionary rates over time

106 (Lopez, Casane, & Philippe, 2002), is widespread in eukaryotes (Baele, Raes, Van De Peer, &

107

Vansteelandt, 2006).

108	Mitochondrial genomes (mitogenomes) generally provide much higher phylogenetic
109	resolution than traditionally used morphological and single gene-based molecular markers
110	(Nie et al., 2018), so mitochondrial phylogenomics is increasingly used to tackle phylogenetic
111	controversies (Bourguignon et al., 2018; Cameron, 2014; Der Sarkissian et al., 2015; Lan et al.,
112	2017; Li et al., 2017). Although the resolution of this approach is still limited by a very small
113	number of available mitogenomes in isopods, overview of published studies shows that they
114	also failed to produce results congruent with other approaches, failed to resolve the rogue
115	taxa issues, and taken as a whole generated more questions than answers (Hua et al., 2018;
116	Kilpert et al., 2012; Luana S.F. Lins et al., 2017; Shen et al., 2017; Yu et al., 2018; Zou et al.,
117	2018).

118 The evolutionary history of Isopoda abounds in independent (major) life history 119 innovations, such as free-living to parasitic lifestyle (Hata et al., 2017; Jones, Miller, Grutter, 120 & Cribb, 2008; Ketmaier, Joyce, Horton, & Mariani, 2008; Poore & Bruce, 2012), and radical 121 habitat expansions (L. S. F. Lins et al., 2012), such as sea to freshwater, or even water to land 122 (Broly, Deville, & Maillet, 2013; Hata et al., 2017; George D.F. Wilson, 2008). It has been 123 proposed that the Cymothoida may have originated in deep seas, subsequently expanded to 124 shallow seas, and then to brackish and freshwater (likely on several independent occasions) 125 (Hata et al., 2017). Signals of adaptation to high altitude (Hassanin, Ropiquet, Couloux, & 126 Cruaud, 2009; Mishmar et al., 2003; Scott et al., 2011), deep-sea environment (Almeida, 127 Maldonado, Vasconcelos, & Antunes, 2015), and shifts in physiological demands

128 (Botero-Castro et al., 2018; Hassanin, 2006) have been identified in mitogenomes of a range 129 of animals. It is therefore highly likely that radical adaptations to life in different 130 environments, from the anoxic environment of deep sea-inhabiting isopod species (L. S. F. 131 Lins et al., 2012) to terrestrial species, would produce strikingly different evolutionary 132 pressures on genomes of species, and result in disparate evolutionary rates of mitochondrial 133 genes, which are central to energy production via the oxidative phosphorylation (Gawryluk 134 et al., 2016). In agreement with this hypothesis are uneven evolutionary rates (dN/dS) 135 observed among isopod mitogenomes (Shen et al., 2017) and different mutational rates of 136 protein-coding genes (PCGs) encoded on the majority (or plus) strand among different 137 lineages of isopods (Lloyd et al., 2015). Conflicting phylogenetic signals among different 138 mitochondrial regions have been reported in a number of metazoan groups, which indicates 139 that different mitochondrial regions can accumulate substitutions in ways that are difficult to 140 model, which can result in biased estimates of phylogeny (Meiklejohn et al., 2014). There is 141 evidence that this compositional heterogeneity may be comparatively highly pronounced in 142 mitogenomes of some arthropod taxa (Cameron, 2014; Hassanin, 2006; Liu, Li, Jakovlić, & 143 Yuan, 2017). We therefore hypothesised that the aforementioned extreme life history 144 diversity of isopods might cause pronounced compositional heterogeneity/heterotachy in 145 their mitogenomes, and interfere with the reconstruction of the Isopoda phylogeny. 146 Although limitations of mitochondrial (and molecular in general) data for inferring 147 phylogenies have been widely discussed (Ballard & Whitlock, 2004; Edwards, Potter, Schmitt, 148 Bragg, & Moritz, 2016; Grechko, 2013; Hassanin, Léger, & Deutsch, 2005; Rubinoff, Holland, 149 & Savolainen, 2005; Talavera et al., 2011; Willis, 2017), a review of the existing literature

150	reveals that most previous studies of evolutionary history of Isopoda ignored those
151	limitations, or attempted to ameliorate them by using such strategies combined datasets
152	(mtDNA, nuclear DNA, morphology) (Luana S.F. Lins et al., 2017; G D F Wilson, 2009), amino
153	acid sequences (Kilpert et al., 2012; Luana S.F. Lins et al., 2017), or applying different models
154	to each codon position (Hata et al., 2017). However, none of those studies attempted to use
155	algorithms designed specifically to account for compositional heterogeneity/tachy, nor
156	studied this problem directly. To test the hypothesis that compositional heterogeneity
157	interferes with phylogenetic reconstruction in Isopoda, we used a number of different
158	datasets: mitochondrial DNA (single genes, genomes, nucleotides, amino acids, gene orders)
159	and nuclear DNA (185); and methodological approaches: dataset partitioning, maximum
160	likelihood (ML), Bayesian inference (BI), parsimony, PhyloBayes (PB) CAT-GTR model
161	(heterogeneous), and GHOST (heterotachous).

162 Materials and Methods

PhyloSuite (Zhang et al., 2018) was used to batch-download all selected mitogenomes from the GenBank, extract genomic features, translate genes into amino acid sequences, semi-automatically re-annotate ambiguously annotated tRNA genes with the help of the ARWEN (Laslett & Canbäck, 2008) output, automatically replace the GenBank taxonomy with the WoRMS database taxonomy, as the latter tends to be more up to date (Costello et al., 2013), generate comparative genome statistics tables, and conduct phylogenetic analyses (Flowchart mode) using a number of incorporated plug-in programs. Nucleotide and amino

170 acid sequences of protein-coding genes (PCGs) were aligned in batches (using codon and 171 normal-alignment modes respectively) with '--auto' strategy, whereas rRNA genes (including 172 the nuclear 18S) were aligned using Q-INS-i algorithm, which takes secondary structure 173 information into account, all implemented in MAFFT (Katoh & Standley, 2013; Katoh & Toh, 174 2008). Gblocks (Castresana, 2000; Talavera & Castresana, 2007) was used to remove ambiguously aligned regions from the concatenated alignments with default parameter 175 176 settings. PhyloSuite was used to concatenate the alignments (all provided in the File S4). 177 Data partitioning schemes were inferred using PartitionFinder2 (Lanfear, Calcott, Ho, & 178 Guindon, 2012), and selection of the most appropriate evolutionary models for each 179 partition was computed according to the Bayesian information criterion scores and weights 180 using ModelFinder (Kalyaanamoorthy, Minh, Wong, Von Haeseler, & Jermiin, 2017). 181 Chi-square (χ^2) test for the homogeneity of character composition of aligned sequences was 182 performed using IQ-TREE 1.6.8 (Trifinopoulos, Nguyen, von Haeseler, & Minh, 2016). 183 Standard (homogeneous models) phylogenetic analyses were conducted using two programs 184 integrated into PhyloSuite: MrBayes 3.2.6 (Bayesian inference, BI) (Ronguist et al., 2012) and 185 IQ-TREE (Maximum Likelihood, ML). PAUP* 4.0 was used to conduct Parsimony analyses via 186 heuristic searching (TBR branch swapping) and 500 random addition sequence replicates, 187 and bootstrap branch support was calculated via heuristic searches on 1000 pseudo-replicate 188 datasets (Swofford, 2002). The heterogeneous CAT-GTR model is implemented in 189 PhyloBayes-MPI 1.7a (PB) (Lartillot et al., 2007), and the heterotachous GHOST model is 190 implemented in IQ-TREE (Crotty et al., 2017). PhyloBayes was run on the beta version of the 191 Cipres server (https://cushion3.sdsc.edu/portal2/tools.action) (Miller, Pfeiffer, & Schwartz,

192	2010), with default parameters (burnin = 500, invariable sites automatically removed from
193	the alignment, two MCMC chains), and the analysis was stopped when the conditions
194	considered to indicate a good run (PhyloBayes manual) were reached (maxdiff < 0.1 and
195	minimum effective size > 300). The phylogenetic tree inferred from the gene-order (GO)
196	dataset was reconstructed using MLGO (Hu, Lin, & Tang, 2014), with 1000 bootstrap
197	replicates, and an input file generated by PhyloSuite. Phylograms and gene orders were
198	visualized in iTOL (Letunic & Bork, 2007), and annotated using files generated by PhyloSuite.
199	Skews were calculated and plotted using PhyloSuite and GraphDNA (Thomas, Horspool,
200	Brown, Tcherepanov, & Upton, 2007).

201 **Results**

202 Mitochondrial datasets

203 As a majority of available isopod mitogenomes are incomplete, we were faced with the 204 trade-off between the amount of data used in the analysis and the number of species used: 205 after removing six (some incomplete and duplicates) of the 27 available isopod mitogenomes 206 (Oct. 2018), the dataset comprised 8 complete and 13 partial sequences (Table 1). To 207 attempt to resolve the debated issue of the basal Isopod clade with maximum resolution, we 208 used a relatively large number of outgroups for phylogenetic analyses: a basal arthropod, 209 Limulus polyphemus (Lavrov, Boore, & Brown, 2000), and a number of closely related 210 non-isopod malacostracan taxa: three Decapoda, two Stomatopoda, two Amphipoda, one 211 Mysida and one Euphausiacea species (Kilpert & Podsiadlowski, 2006; G D F Wilson, 2009). We conducted phylogenetic analyses using a number of different datasets: NUC - nucleotides 212

of concatenated 13 PCGs and two rRNA genes (*rrnL* and *rrnS*); AAs – concatenated amino acid sequences of 13 PCGs; 15 single-gene datasets (13 PCGs + 2 rRNAs); gene families (nad+atp and cox+cytb); and gene orders. We also tested the performance of data partitioning, by conducting the same analyses on both non-partitioned and partitioned datasets. The best partitioning scheme divided the NUC dataset by individual genes, with only *cox2/cox3*, *atp6/nad3*, and *rrnS/L* placed together in a same partition. Further details available in Supporting Information (File S1).

220 Compositional heterogeneity tests

221 Best-fit model for the non-partitioned NUC dataset was GTR+F+R6. In the partitioned dataset, 222 three nad family genes (nad1+2+4) and atp8 were assigned the TVM+I+G model, and nad6 223 the HKY+I+G model, whereas all nine remaining genes were assigned the GTR+I+G model 224 (File S1). In the χ^2 compositional homogeneity test of the non-partitioned NUC dataset, 225 where a sequence was denoted 'failed' if its nucleotide composition significantly deviated 226 from the average composition of the alignment, only an outgroup species *Penaeus vannamei* 227 passed the test (30 sequences failed). However, only 11 species failed the test in the AAs 228 dataset, indicating that the use of amino acids can attenuate compositional heterogeneity.

229 Methodological approaches to infer phylogeny

We tested the performance of two phylogenetic methods relying on standard homogenous models, maximum likelihood (ML) and Bayesian inference (BI), on non-partitioned and partitioned data, and non-standard heterogeneous (CAT-GTR) and heterotachous (GHOST) models on our datasets. The latter two models require the input data to be non-partitioned.

234	The CAT-GTR site mixture model implemented in Phylobayes-MPI 1.7a (Lartillot et al., 2007)
235	allows for site-specific rates of mutation, which is considered to be a more realistic model of
236	amino acid evolution, especially for large multi-gene alignments (Maddock et al., 2016).
237	GHOST model is an edge-unlinked mixture model consisting of several site classes with
238	separate sets of model parameters and edge lengths on the same tree topology, thus
239	naturally accounting for heterotachous evolution (Crotty et al., 2017).

240 NUC dataset

241 GHOST, BI and ML analyses (both partitioned and non-partitioned) of the NUC dataset 242 produced highly congruent topologies (referred to as the 'NUC-consensus' topology 243 henceforth). Statistical support values were very high in BI (Fig. 1; all inferred topologies 244 available in the Supporting information: File S2), relatively high in GHOST, and intermediate 245 in ML analyses (low to high). Decapoda were rendered paraphyletic by the Euphausiacea 246 nested within the clade (not in the ML-partitioned tree), and Mysida+Amphipoda were 247 resolved as the sister-clade to Isopoda. In the isopod clade, Cymothoidae+Corallanidae 248 families (Cymothoida) formed the basal clade, followed by Asellota and Phreatoicidea 249 branches. The remaining isopods were divided into two sister-clades: Oniscidea and a 250 'catch-all' clade comprising Limnoriidea, Valvifera, Sphaeromatidea, L. oceanica (a 'rogue' 251 Oniscidea species), and the remaining three Cymothoida species (Gyge ovalis, Bathynomus 252 sp. and Eurydice pulchra), which did not cluster together (Fig. 1). Parsimony analysis 253 produced a slightly rearranged topology, but crucial features were identical: 254 Mysida+Amphipoda were the sister-clade to Isopoda, and Cymothoidae+Corallanidae were 255 basal isopods. Notable differences were: Asellota forming a sister-clade with G. ovalis + L.

256 quadripunctata, and Phreatoicidea at the base of the catch-all clade. The PB analysis
257 produced a notably different overall topology, with all non-isopod lineages forming a
258 sister-clade to the isopods (monophyletic Decapoda), but the topology of the isopod clade
259 was relatively similar to the NUC-consensus, apart from the rogue *Gyge ovalis* (Fig. 2).

260 Single-gene and concatenated gene family datasets

261 As we hypothesised that the topological instability may be driven by conflicting signals 262 produced by different genes (Meiklejohn et al., 2014), we conducted ML phylogenetic 263 analyses on 15 single-gene datasets (13 PCGs + 2 rRNAs). Surprisingly, all these produced 264 unique topologies (File S2). Atp6 resolved Asellota+Cymothoidae+Corallanidae as the basal 265 isopod clade; *atp8* (a very small gene) produced an almost nonsensical topology (defined as: 266 in stark disagreement with any reasonable phylogenetic hypothesis); nad1 resolved Asellota 267 at the base; nad2 produced a slightly rearranged NUC-consensus topology; nad3 (also small, 268 \approx 350bp) a nonsensical topology; *nad4* produced a rearranged topology (compared to 269 NUC-consensus), but Cymothoidae+Corralanidae were the basal isopod clade; nad4L (small 270 gene) produced a highly rearranged isopod clade; despite its large size (≈ 1700 bp); nad5 271 produced a non-canonical isopod topology; *nad6* produced a nonsensical topology 272 (paraphyletic Isopoda, rogue G. ovalis); cox1 produced a highly rearranged topology, 273 including both the non-isopod malacostraca and isopod clades, with 274 Phreatoicidea+Cymothoidae+Corralanidae as the basal isopod clade, and non-canonical 275 Valvifera position; cox2 produced a slightly rearranged NUC-consensus topology; cox3 276 produced a highly rearranged topology, with a unique Asellota+Corallanidae clade at the 277 isopod base and L. quadripunctata nested within the Oniscidea; cytb produced basal Phreatoicidea, and the remaining taxa divided into Oniscidea and 'catch all' sister-clades, where the rogue Cymothoidae+Corallanidae (along with Asellota) were on a long branch in the derived part of the clade; *rrnS* (or *12S*) topology was in some aspects similar to *cytb*, but with Phreatoicidea+Limnoriidea as the basal isopod clade; *rrnL* (or *16S*) produced an almost nonsensical topology, with paraphyletic Isopoda and rogue *G. ovalis*.

283 As some of the previous studies (see Introduction) used datasets combined of several 284 genes, and as some of our optimal partitioning strategy analyses indicated that different 285 gene families might evolve at somewhat congruent rates, we divided the PCG dataset into 286 two concatenated gene families: nad atp (nad1-6 and atp6-8) and cox cytb (cox1-3 and 287 cytb). ML analyses of both datasets also produced unique topologies. In comparison to 288 NUC-consensus tree, nad atp dataset resolved Mysida as the sister-group to all other 289 Malacostraca, and rearranged Phreatoicidea, Limnoriidea and G. ovalis. Cox cytb dataset 290 produced somewhat rearranged non-isopod Malacostraca, a minor discrepancy in the 291 position of E. pulchra, and slightly rearranged Oniscidea. Notably, none of the single-gene 292 topologies corresponded to the two family topologies.

293 AAs dataset: amino acids of 13 PCGs

294 Amino acids produced topologies that differed from the NUC-consensus one, with instable 295 topology of the non-isopod Malacostraca, including paraphyletic Eucarida 296 (Decapoda+Euphausiacea) in five (BI/ML, non-partitioned/partitioned, and GHOST; Fig. 3) 297 out of six (PB; Fig. 4) analyses. Sister-clade to Isopoda also varied: Mysida+Amphipoda in 298 Parsimony and both BI analyses, and Mysida in the remaining four analyses. In the isopod 299 clade, partitioning had a major effect on the BI analysis: non-partitioned dataset resolved

300	Cymothoidae+Corallanidae at the base, followed by Phreatoicidea+Asellota. Parsimony
301	analysis produced a similar topology, but Phreatoicidea and G. ovalis + L. quadripunctata
302	clades switched places. The partitioned BI dataset, as well the remaining five analyses, all
303	resolved Phreatoicidea as the basal clade. In these, the sister-group to the remaining isopods
304	(minus Phreatoicidea) was Asellota+Cymothoidae+Corallanidae in four analyses, and Asellota
305	in PB. Five analyses (minus PB) produced a topology of the remainder of the isopod clade
306	that was partially congruent with the NUC-consensus topology, but instead of it being
307	divided into Oniscidea + all other taxa, here <i>G. ovalis+L. quadripunctata</i> were at the base
308	(except in Parsimony: Phreatoicidea). Oniscidea (rendered paraphyletic by <i>L. oceanica</i>) clade
309	topology was stable in all six, but the topology of the catch-all clade exhibited a number of
310	permutations, none of which were identical to the NUC-consensus topology.

PB produced the only topology (Fig. 4) with monophyletic Oniscidea, with the rogue *L. oceanica* at the base of the clade. Also importantly, Cymothoidae+Corallanidae clade was placed on a long branch within the catch-all clade, together with *Eurydice pulchra* (all Cymothoida). The suborder was still rendered paraphyletic by the positions of *Bathynomus* sp. and rogue (polytomy) *G. ovalis*.

316 Gene order

As gene orders are unlikely to exhibit homoplasy, it has been hypothesised that they may be able to resolve difficult (deep) phylogenies in some cases (Boore, 2006), so we tested this approach. As many tRNA genes were missing or we suspected that they may be misannotated, to test for the presence of false signals, we used two datasets: one excluding all tRNAs (PCGs+rRNAs) and one (PCGs+rRNAs+tRNAs) excluding only the missing and

322	ambiguously annotated tRNAs (such as tRNAL1 and 2). The two datasets produced
323	incongruent topologies; different runs of the PCGs+rRNAs+tRNAs dataset produced identical
324	topologies (Fig. 5), whereas different runs of PCGs+rRNAs did not (File S2:
325	GO_PCGs+rRNAs_1 and 2). Both dataset produced a number of paraphyletic major clades
326	and largely nonsensical topologies and largely low support values; for example, the more
327	stable, PCGs+rRNAs+tRNAs, dataset produced paraphyletic Decapoda, Stomatopoda,
328	Isopoda, Oniscidea and Cymothoida.

Nuclear marker-based phylogeny (185) 329

330 To view the evolutionary history of Isopoda from a non-mitochondrial perspective, we used 331 the nuclear 18S gene. This approach can also help us test whether the underlying reason for 332 the conflicting phylogenetic signals between different studies might be mitochondrial 333 introgression, which, recent evidence shows, is more widespread than previously thought 334 (Edwards et al., 2016; Jakovlić, Wu, Treer, Šprem, & Gui, 2013; Mallet, Besansky, & Hahn, 335 2016). Some of the species used for mitogenomic analyses were not available, but we made 336 sure to include representatives of all major taxa in the mitogenomic dataset (File S3). To 337 obtain a more comparable dataset, we sequenced the 185 gene of three parasitic 338 Cymothoidae/Corallanidae species from the mtDNA dataset: Cymothoa indica (Cymothoidae; 339 GenBank accession number MK079664), Ichthyoxenos japonensis (Cymothoidae; MK542857), 340 and Tachaea chinensis (Corallanidae; MK542858); and an additional Cymothoidae species, 341 Asotana magnifica (MK542856). We conducted a phylogenetic analysis using 55 342 malacostracan orthologues, with SYM+R4 selected as the best-fit model. Only one sequence 343 (non-isopod: Gammarus troglophilus) failed the χ^2 compositional homogeneity test. Results

344 produced by this dataset were unstable, i.e. different runs and datasets (addition and 345 removal of some taxa) would usually produce different topologies. However, some important 346 features were rather constant among most analyses: Asellota at the base (Limnoriidea in 347 Parsimony, but with very low support); highly derived Cymothoida, rendered paraphyletic by 348 the nested Limnoriidea (monophyletic in Parsimony); and Oniscidea rendered paraphyletic 349 by the rogue Ligiidae clade (Ligia sp. and Ligidium sp.). ML and BI analyses produced 350 relatively congruent topologies, with Isopoda rendered paraphyletic by the Amphipoda clade 351 nested within the large Cymothoida clade (File S2). As PB and Parsimony analyses produced 352 monophyletic Isopoda, with Amphipoda as the sister-clade (Fig. 6), we can confidently reject 353 this as a compositional heterogeneity artefact. Phreatoicidea largely clustered with the rogue 354 Ligiidae clade, but this was not supported by the PB analysis. Cymothoida were 355 monophyletic only in the Parsimony analysis, and divided into two clades in all topologies: a 356 stable monophyletic clade comprising Dajidae and Bopyridae; and a large instable (exhibiting 357 pervasive paraphyly) clade comprising Cirolanidae, Corallanidae and Cymothoidae families, 358 and aforementioned 'intruders' (Limnoriidea and Amphipoda). Corallanidae and Cirolanidae 359 were mostly paraphyletic (somewhat erratic behaviour of Eurydice pulchra), whereas 360 Cymothoidae (monophyletic) were highly derived and exhibited disproportionately long 361 branches.

362 **Discussion**

363 Most phylogenetic reconstruction algorithms assume homogeneity in nucleotide base 364 compositions, but mitochondrial genomes of some groups of Arthropoda exhibit

365 non-constant equilibrium nucleotide frequencies across different lineages, or compositional 366 heterogeneity, which can produce artificial clustering in phylogenetic analysis (Hassanin, 367 2006; Lartillot et al., 2007; Morgan et al., 2013; Talavera et al., 2011). Having observed 368 pervasive topological instability among previous attempts to resolve the phylogeny of 369 Isopoda, we hypothesised that their remarkably different life histories may have produced 370 asymmetrical adaptive evolutionary pressures on their (mito)genomes, which in turn 371 resulted in compositional heterogeneity and heterotachy that interfere with the 372 reconstruction of their evolutionary history.

373 We tested the performance of several methodologies commonly used to account for 374 these compositional imbalances: the use of amino acid sequences (instead of nucleotide 375 sequences), data partitioning, and phylogenetic algorithms designed for non-homogeneous 376 data (heterogeneous CAT-GTR and heterotachous IQ-GHOST). We also tested commonly 377 used algorithms (ML, BI and Parsimony), and a large number of different datasets. Apart 378 from the heterotachous GHOST model, which tended to produce results identical to the 379 common ML analysis, all other variables produced notable impacts on the topology, with 380 unique topologies by far outnumbering identical topologies.

As regards the major unresolved issue of the isopod phylogeny, the sister-clade to all other isopods (basal clade) and the monophyly of Cymothoida, mitochondrial nucleotides (NUC) quite consistently produced Cymothoidae and Corallanidae as the basal clade, first followed by Asellota, then by Phreatoicidea, whereas other Cymothoida tended to be scattered throughout the central 'catch-all' clade. AAs, however, largely resolved Phreatoicidea as the basal isopod clade, with the remaining isopods split into two

387	sister-clades: 1) Asellota + Cymothoidae/Corallanidae and 2) all remaining taxa. The
388	Parsimony method produced Cymothoidae+Corallanidae at the base, followed by Asellota +
389	(G. ovalis + L. quadripunctata) using both datasets. PB analysis of AAs dataset produced a
390	remarkably different topology, with Phreatoicidea at the base, followed by Asellota, but
391	Cymothoidae+Corallanidae were relatively derived, and Cymothoida not so deeply
392	paraphyletic. Nuclear (185 gene) topology was also strongly affected by the methodology,
393	but consistently resolved Asellota as the basal isopod clade (Limnoriidea in Parsimony), and
394	Cymothoida as paraphyletic (nested Limnoriidea, not in Parsimony), but highly derived. Even
395	though it appears that we did not manage to reach a conclusion, as we failed to infer a stable
396	topology, we did manage to identify another feature of isopod mitogenomes that may help
397	us in this quest.

398 Strand compositional bias: AT and GC skews

399 Organellar genomes often exhibit a phenomenon known as strand asymmetry, or strand 400 compositional bias, where positive AT skew values indicate more A than T on the strand, 401 positive GC skews indicate more G than C, and vice versa (Reyes, Gissi, Pesole, & Saccone, 402 1998; Wei et al., 2010). A likely cause for this is hydrolytic deamination of bases on the 403 leading strand when it is single stranded, i.e. during replication and transcription (Bernt, 404 Braband, Schierwater, & Stadler, 2013; Fonseca, Harris, & Posada, 2014; Reyes et al., 1998). 405 Whereas other crustacean taxa usually exhibit positive overall AT skews for genes located on 406 the plus strand (or majority strand) and negative GC skews for genes on the minus strand 407 (minority strand) (Hassanin, 2006; Wei et al., 2010), isopod mitogenomes usually exhibit 408 negative overall AT skews and positive GC skews of the majority strand (Kilpert et al., 2012;

409	Kilpert & Podsiadlowski, 2006; Yu et al., 2018). This is believed to be a consequence of an
410	inversion of the replication origin (RO), where the changed replication order of two
411	mitochondrial DNA strands consequently resulted in an inversed strand asymmetry (Bernt et
412	al., 2013; Hassanin et al., 2005; Kilpert et al., 2012; Kilpert & Podsiadlowski, 2006; Wei et al.,
413	2010).

414 It is known from before that Asellus aquaticus (Asellota) possesses an inversed skew in 415 comparison to other isopod taxa (Kilpert & Podsiadlowski, 2006), but we found that the 416 three available Cymothoidae and Corallanidae species (C. indica, T. chinensis and I. 417 japonensis) also exhibit inversed skew patterns (Fig. 7, Table 1). As regards other studied 418 non-isopod Malacostraca, they exhibit GC skews very similar to the isopod outliers, from 419 -0.014 in Metacrangonyx repens to -0.332 in Typhlatya miravetensis, and mixed AT skews 420 (negative in Mysida and Amphipoda, and mixed positive and negative in Stomatopoda and 421 Decapoda). As intra-genomic and inter-specific variations in base composition have a strong 422 power to bias phylogenetic analyses (Romiguier & Roux, 2017), and skew-driven LBA 423 phylogenetic artefacts have been reported in arthropods (Hassanin, 2006; Hassanin et al., 424 2005) and other metazoans (Sun, Li, Kong, & Yu, 2018), we suspect that inversed skews in 425 some isopods may produce such artefacts among the branches exhibiting similar skews.

426 **Collation of evolutionary hypotheses**

The inversed skew in *Asellus aquaticus* led Kilpert and Podsiadlowski (Kilpert & Podsiadlowski, 2006) to speculate that this clearly suggests that this taxon branched off first in the isopod phylogeny, but a few years later Kilpert et al. (Kilpert et al., 2012) noticed that the basal position of Phreatoicidea causes a conflict in explaining the inversed isopod GC skew

431 (present in *Eophreatoicus* sp.; Fig. 4 – red stars). Our NUC dataset would mostly support a 432 modified version of the first scenario, the replication origin inversion occurred in isopods 433 after Cymothoidae+Corallanidae and Asellota branched off from the main isopod lineage 434 (Figs. 1 and 2 – red star signs), whereas our AAs analyses would mostly support a scenario 435 RO where the inversion occurred only in the common ancestor of 436 Asellota+(Cymothoidae+Corallanidae) clade (Fig. 3). However, there is no support for either 437 of these scenarios from nuclear (18S) or morphological (G D F Wilson, 2009) data, which 438 relatively consistently indicate that Asellota (185) or Asellota+Phreatoicidea (morphology) 439 are the basal clade. Parsimony analyses also complicate these scenarios by Asellota forming 440 a sister-clade with G. ovalis and L. quadripunctata. Importantly, our PB (heterogeneous 441 algorithm) analysis of the AAs dataset produced an mtDNA topology that exhibited notable 442 similarity to the 18S and morphology-based topologies, where Cymothoidae+Corallanidae 443 clustered with *E. pulchra* (Cirolanidae) in the relatively derived part of the isopod clade. From 444 that, we can conclude that a combination of AAs dataset (which is expected to be less 445 affected by skews than nucleotides) and a heterogeneous CAT-GTR model was most 446 successful in attenuating the phylogenetic artefacts caused by compositional biases. We can 447 therefore reject the above scenarios, and conclude that inversed skews of Asellota and 448 Cymothoidae+Corallanidae are non-synapomorphic. The inversed skew of highly derived 449 Cymothoidae+Corallanidae produces an LBA artefact of them clustering at the base of the 450 isopod clade, phylogenetically close to other taxa with similar (homoplastic) skew patterns 451 (Asellota and non-isopod Malacostraca).

452	Having established this, now we can use these results to infer the most parsimonious
453	hypothesis for the course of events in the evolutionary history of Isopoda. First, we can
454	reject with confidence the basal position of Cymothoidae+Corallanidae as an artefact. This
455	indicates that the basal isopod taxon is either Asellota (G D F Wilson, 2009), Phreatoicidea (R.
456	C. Brusca & Wilson, 1991), or Asellota+Phreatoicidea sister-clade (Dreyer & Wägele, 2001;
457	Kilpert et al., 2012; George D.F. Wilson, 1999). The latter two scenarios are less parsimonious,
458	as they would require at least three independent RO inversions in the evolutionary history of
459	Isopoda (in the ancestral isopod, in Asellota, and in Cymothoidae+Corallanidae), whereas the
460	first scenario is more parsimonious, as it requires only two (in the ancestral isopod after the
461	split of Asellota and in Cymothoidae+Corallanidae; Fig. 6 – red stars). Additionally, the 185
462	dataset relatively consistently resolved Asellota as the basal branch (disregarding
463	paraphyletic Isopoda and Parsimony analysis). Therefore, we can tentatively conclude that
464	multiple evidence supports the original hypothesis of Kilpert and Podsiadlowski (Kilpert &
465	Podsiadlowski, 2006): Asellota is the oldest isopod branch and RO inversion in isopods
466	occurred after the Asellota branched off. This scenario implies either a homoplastic nature of
467	the inverted skews in Asellota and Cymothoidae+Corallanidae, or an introgression event
468	from Asellota. Although the latter scenario would directly explain the phylogenetic affinity
469	between the two taxa, the fact that PB (and especially PB+AAs) analyses managed to
470	attenuate this artefact is a strong indication that we can reject this hypothesis, and conclude
471	that homoplastic skews in these taxa are driven by architectural rearrangements.
472	Although this resolves the issue of the deep paraphyly of Cymothoida, i.e., places the

473 rogue Cymothoidae+Corallanidae clade back within the remaining Cymothoida, 185 data still

474	resolve the Cymothoida as divided into two clades (Dajidae+Bopyridae and
475	Cirolanidae+Corallanidae+Cymothoidae), and rendered paraphyletic by the nested
476	Limnoriidea. However, as Limnoriidea were resolved as the basal isopod taxon in the 185
477	Parsimony analysis, we suspect that this is an LBA between two 'rogue' taxa exhibiting
478	elevated evolutionary rates, and thus erratic phylogenetic behaviour:
479	Corallanidae+Cymothoidae and Limnoriidea. The monophyly of Corallanidae is unsupported
480	by our 18S analyses, so it will be needed to sequence further mitogenomic (to identify skews)
481	and nuclear molecular data for these three families. This combination of skews and nuclear
482	data would enable us to identify the exact point in evolutionary history where the RO
483	inversion occurred in these taxa, and infer the most parsimonious topology and/or taxonomy,
484	i.e., the one that supports a single RO inversion (or introgression event), as opposed to those
485	that would require multiple events.

486 As regards other unresolved issues in the phylogeny of Isopoda, our analyses further 487 corroborate the existence of several rogue taxa that exhibit somewhat erratic topological 488 behaviour. The position of Ligia oceanica (nominally Oniscidea: Ligiidae), a recognized rogue 489 taxon (Luana S.F. Lins et al., 2017; Shen et al., 2017; G D F Wilson, 2009; Yu et al., 2018), was 490 mostly resolved at the base of the 'catch-all' clade in mtDNA analyses, but in the (putatively) 491 most reliable mitochondrial topology AAs+PB, it was resolved as the basal Oniscidea species. 492 Although this is in perfect agreement with morphological data, which resolve Ligiidae as the 493 most primitive Oniscidea clade (Schmidt, 2008), we cannot claim that this issue is fully 494 resolved, because the entire Ligiidae family exhibited rogue behaviour in the 18S dataset as 495 well. Three Cymothoida taxa in the mtDNA dataset that exhibit standard isopod skews,

496	Bathynomus sp., E. pulchra (both Cirolanidae) and G. ovalis (Bopyridae), also exhibited rather
497	instable topological behaviour, and we did not find support for their monophyly using the
498	mtDNA data. Although the Cirolanidae are believed to be ancient (Wetzer, 2002) and highly
499	plesiomorphic within this suborder (Brandt & Poore, 2003), this is not supported by the 185
500	dataset. A putatively relevant observation is that all three species exhibit unique, highly
501	rearranged, gene orders (Fig. 8). As another rogue species, L. quadripunctata (Limnoriidea)
502	(Luana S.F. Lins et al., 2017; G D F Wilson, 2009; Zou et al., 2018), also exhibits a highly
503	rearranged gene order (Lloyd et al., 2015), and as there is evidence of a close positive
504	correlation between the mitogenomic architectural instability and the mutation rate
505	(Hassanin, 2006; Shao, Dowton, Murrell, & Barker, 2003; Xu, Jameson, Tang, & Higgs, 2006),
506	we hypothesise that frequent genome rearrangements may have resulted in an accelerated
507	mutational rate in these species. In agreement with this hypothesis, E. pulchra and L.
508	quadripunctata exhibited the highest evolutionary rates of all studied isopod (and decapod)
509	mitogenomes (Shen et al., 2017). However, as L. quadripunctata was resolved as the basal
510	isopod clade in one study (mitogenomic AAs dataset + BI analysis;
511	Cymothoidae+Corallanidae unavailable at the time) (Luana S.F. Lins et al., 2017), and
512	Limnoriidea exhibited rather erratic behaviour in our 185 dataset, we can safely argue that
513	mitogenomic rearrangements are unsatisfactory explanation for some of the observed
514	phenomena. Accelerated rates of substitution in some Arthropoda were previously explained
515	by three main factors: genomic rearrangements, including duplication of the control region
516	and gene translocation, parasitic lifestyle, and small body size (Hassanin, 2006). We therefore
517	hypothesise that a proportion of these phylogenetic artefacts are driven by adaptive

518	evolution, which also produces compositional biases that are interfering with phylogenetic
519	reconstruction by producing disproportionately long branches. Furthermore, inverted
520	mitogenomic skews also do not explain the disproportionately long branch of Cymothoidae
521	in the 185 dataset. We hypothesise that frequent life-history innovations in Cymothoida
522	(Hata et al., 2017; Luana S.F. Lins et al., 2017) may be producing accelerated substitution
523	rates in some of these taxa. Therefore, we can tentatively conclude that mitochondrial
524	evolution in isopods is a result of interplay between adaptive and nonadaptive evolutionary
525	pressures, where non-adaptive outweigh the adaptive in some taxa, such as Cymothoidae
526	and Corallanidae.
527	The topology of non-isopod Malacostraca was rather instable as well, with PB producing
528	notably different topologies from other analyses. As non-isopod Malacostraca also exhibit
529	notable variability in skews (Table 1), we conclude that compositional heterogeneity also
530	interfered with phylogenetic reconstruction. The most relevant question for this study is that
531	of the sister-group to Isopoda: Mysida+Amphipoda in most of our mtNUC analyses (except
532	PB, a unique topology), BI+AAs, and all Parsimony topologies; Mysida in most AAs analyses
533	(ML+GHOST+PB); and Amphipoda in the PB <i>18S</i> analysis (Amphipoda were nested within the
534	Isopoda in ML and BI 185 topologies). As Amphipoda are considered to be the most
535	prominent contender for this position (G D F Wilson, 2009), this again indicates that a much
536	smaller marker in combination with the CAT-GTR model may be producing more reliable
537	results than complete mitogenomes.

25

538 Methodological implications

539	Our findings indicate that phylogenetic reconstruction using mitochondrial data in Isopoda is
540	severely hampered by compositional biases. This corroborates an earlier observation that in
541	isopods mitochondrial sequence data are prone to producing artefactual LBA relationships,
542	and thus a poor tool for phylogenetic reconstruction in this taxon (Wetzer, 2002). Intriguingly,
543	these did not affect only the nucleotide dataset, but also the amino acid dataset. Amino acid
544	datasets should be less affected by nonadaptive compositional biases, as nonsynonymous
545	mutations are likely to be affected by the purifying selection (as opposed to synonymous
546	mutations). However, it has been shown that mitochondrial strand asymmetry (skews) can
547	have very large effects on the composition of the encoded proteins (Botero-Castro et al.,
548	2018; Min & Hickey, 2007). Some groups of residues share similar physico-chemical
549	properties and can be conservatively exchanged without significant functional impacts
550	(Botero-Castro et al., 2018), and some parts of protein chains may evolve under lesser
551	functional constraints, so many non-synonymous mutations may not affect the protein
552	functionally. Finally, as argued above, adaptive evolutionary pressures are also likely to affect
553	the composition of proteins in isopods.

All individual genes produced unique topologies, which has important implications for the interpretation of previous results inferred using single-gene datasets. This phenomenon has been observed in isopods before on a much smaller scale (Wetzer, 2002), and it is in agreement with the proposed mosaic nature of (mitochondrial) genomes, where different loci often produce conflicting phylogenetic signals (Degnan & Rosenberg, 2009; Pollard, Iyer, Moses, & Eisen, 2006; Romiguier & Roux, 2017). It should be noted that some genes

560 produced less pronounced phylogenetic artefacts, notably cytb and 125 (File S2), which 561 indicates that these two genes might be evolving under a very strong purifying selection. The 562 latter gene (12S) produced a topology that exhibited remarkable congruence with the 563 nuclear 18S topology, especially in placing Cymothoidae+Corallanidae in the derived part of 564 the clade. Although this corroborates the observation that some genes produce less biased 565 phylogenies than others (Romiguier, Ranwez, Delsuc, Galtier, & Douzery, 2013), the artefact 566 of Asellota clustering within the derived Cymothoida clade shows that compositional biases 567 affected this dataset as well, and that we can safely conclude that single-gene mitochondrial 568 markers are not a suitable tool for this task. Similarly, gene orders produced topological 569 instability, very low support, and almost nonsensical topologies, with paraphyletic Isopoda. 570 As highly rearranged gene orders were at the base of the isopod clade, we hypothesise that 571 the discontinuous evolution of mitogenomic architecture evolution (Zou et al., 2017) 572 produces phylogenetic artefacts, such as LBA. This corroborates the hypothesis that gene 573 orders are not a useful phylogenetic marker in lineages exhibiting destabilised mitogenomic 574 architecture (Zhang et al., 2017; Zou et al., 2017).

All of the tested standard models (BI, ML and Parsimony) were very sensitive to compositional biases, and produced highly misleading artefacts. We also tested the performance of a new (experimental) GHOST heterotachous model (Crotty et al., 2017), but we found that it produces results almost identical to the common ML algorithm, so we conclude that on this dataset the model appears to be largely useless. Importantly, as regards the aforementioned unresolved feud about the most suitable methodological approach to account for compositional heterogeneity (Feuda et al., 2017; Whelan &

582	Halanych, 2017), our results indicate that (in isopods) the CAT-GTR model by far outperforms
583	the partitioning (assigning different evolutionary models to different partitions). Although
584	we discourage the use of mitochondrial data as a tool for phylogenetic reconstruction in
585	isopods, there are other available methodological approaches designed to account for this
586	problem (Hassanin, 2006; Richards, Brown, Barley, Chong, & Thomson, 2018; Sheffield et al.,
587	2009; Yang, Li, Dang, & Bu, 2018), so future studies may attempt to test their performance.
588	

589 Conclusions

590 With respect to our working hypothesis, we can accept the first part of it: asymmetrical 591 mutational pressures generate compositional heterogeneity in isopod mitogenomes and 592 interfere with phylogenetic reconstruction. However, we were mistaken in assuming that 593 these mutational pressures are primarily adaptive, i.e., caused by their radically diverse life 594 histories. Our results imply that mitochondrial evolution in isopods is a result of interplay 595 between adaptive and non-adaptive evolutionary pressures, where non-adaptive outweigh 596 the adaptive in some taxa (Cymothoidae and Corallanidae). This is in agreement with a 597 recent observation that mitogenomes in isopods mutate at a rate independent of life history 598 traits (Saclier et al., 2018), and contributes to our understanding of the interplay of adaptive 599 and nonadaptive processes in shaping the mitochondrial genomes of Metazoa (Bernt et al., 600 2013; Smith, 2016). We can conclude that mitogenomic architectural instability (comprising 601 RO inversions) generates strong compositional biases that render mitogenomic sequence 602 data a very poor tool for phylogenetic reconstruction in Isopoda. The deeply contrasting

603 phylogenetic signals that we identified, not only between nuclear and mitochondrial 604 datasets, but also among different mitogenomic datasets, have important implications both 605 for the interpretation of past studies and for scientists who plan to study the phylogeny of 606 these taxa in the future. Regardless of this, simply by rejecting the previous contradictory 607 hypotheses inferred using mitochondrial data, we managed to at least partially resolve 608 several contentious issues in the phylogeny of Isopoda. As regards the methodological 609 approaches used here to account for compositional heterogeneity, we can conclude that 610 none of the tools managed to fully revolve these biases, but CAT-GTR algorithm 611 outperformed partitioning, and best results were achieved by combining it with the amino 612 acids dataset. Although we discourage the use of mitochondrial data for this purpose, any 613 future study that would aim to rely (even if partially) on mitogenomic data would have to 614 first unambiguously prove that they used tools that successfully account for it. As mtDNA 615 data have played a major role in our current understanding of the evolutionary history of life 616 on Earth (Rubinoff et al., 2005), implications of this study are much broader than its original 617 scope. As our findings show that architectural rearrangements can produce major 618 compositional biases even on short evolutionary timescales, the implications of this study 619 are that proving the suitability of data via GC and AT skew analyses should be a prerequisite 620 for every study that aims to use mitochondrial data for phylogenetic reconstruction, even 621 among closely related taxa. These findings should not discourage scientists from sequencing 622 further isopod mitogenomes, as their architectural hypervariability still makes them a useful 623 tool for unravelling the conundrums of evolution of mitochondrial architecture, and as

- 624 mitochondrial skews can be used as an additional phylogenetic tool to infer the most
- 625 parsimonious phylogenetic hypotheses.

626

627

628 Acknowledgements

629	This work was supported by the Earmarked Fund for China Agriculture Research System
630	(CARS-45-15); the National Natural Science Foundation of China (31872604, 31572658); and
631	the Deanship of Scientific Research at King Saud University (RGP 1435-012). The funders had
632	no role in the design of the study, collection, analysis and interpretation of data, and in
633	writing the manuscript. The authors declare that they have no conflict of interest. The
634	authors would like to express their sincere appreciation to Chen Rong (Bio-Transduction Lab)
635	for helping us to conduct some of the wet lab experiments, and the Deanship of Scientific
636	Research at King Saud University for funding this research.

References 637

638 Almeida, D., Maldonado, E., Vasconcelos, V., & Antunes, A. (2015). Adaptation of the mitochondrial genome in cephalopods: Enhancing proton translocation channels and 639 640 the subunit interactions. PLoS ONE, 10(8), 1–29. doi: 10.1371/journal.pone.0135405 641 Baele, G., Raes, J., Van De Peer, Y., & Vansteelandt, S. (2006). An improved statistical method for detecting heterotachy in nucleotide sequences. Molecular Biology and Evolution, 642 643 23(7), 1397-1405. doi: 10.1093/molbev/msl006 644 Ballard, J. W. O., & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13(4), 729-744. doi: 10.1046/j.1365-294X.2003.02063.x 645 646 Bernt, M., Braband, A., Schierwater, B., & Stadler, P. F. (2013). Genetic aspects of

647 mitochondrial genome evolution. Molecular Phylogenetics and Evolution, 69(2), 328-338. doi: 10.1016/j.ympev.2012.10.020 648

649	Boore, J. L. (2006). The use of genome-level characters for phylogenetic reconstruction.
650	<i>Trends in Ecology and Evolution</i> , <i>21</i> (8), 439–446. doi: 10.1016/j.tree.2006.05.009
651	Botero-Castro, F., Tilak, MK., Justy, F., Catzeflis, F., Delsuc, F., & Douzery, E. J. P. (2018). In
652	cold blood: compositional bias and positive selection drive the high evolutionary rate
653	of vampire bats mitochondrial genomes. <i>Genome Biology and Evolution</i> . doi:
654	10.1093/gbe/evy120
655	Bourguignon, T., Tang, Q., Ho, S. Y. W., Juna, F., Wang, Z., Arab, D. A., Lo, N. (2018).
656	Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions:
657	Evidence from Mitochondrial Phylogenomics. <i>Molecular Biology and Evolution, 35</i> (4),
658	970–983.
659	Brandt, A., & Poore, G. C. B. (2003). Higher classification of the flabelliferan and related
660	Isopoda based on a reappraisal of relationships. Invertebrate Systematics, 17(6),
661	893–923. doi: 10.1071/IS02032
662	Broly, P., Deville, P., & Maillet, S. (2013). The origin of terrestrial isopods (Crustacea: Isopoda:
663	Oniscidea). Evolutionary Ecology, 27(3), 461–476.
664	Brusca, R. C., & Wilson, G. D. F. (1991). A phylogenetic analysis of the Isopoda with some
665	classificatory recommendations. Memoirs of the Queensland Museum, 31, 143–204.
666	Retrieved from http://www.vliz.be/en/imis?module=ref&refid=140503
667	Brusca, Richard C. (1981). A monograph on the Isopoda Cymothoidae (Crustacea) of the
668	eastern Pacific. Zoological Journal of the Linnean Society, 73(2), 117–199. doi:
669	10.1111/j.1096-3642.1981.tb01592.x
670	Cameron, S. L. (2014). Insect mitochondrial genomics: implications for evolution and
671	phylogeny. Annu Rev Entomol, 59, 95–117. doi:
672	10.1146/annurev-ento-011613-162007
673	Castresana, J. (2000). Selection of Conserved Blocks from Multiple Alignments for Their Use
674	in Phylogenetic Analysis. <i>Molecular Biology and Evolution, 17</i> (4), 540–552. doi:
675	10.1093/oxfordjournals.molbev.a026334
676	Costello, M. J., Bouchet, P., Boxshall, G., Fauchald, K., Gordon, D., Hoeksema, B. W.,
677	Appeltans, W. (2013). Global Coordination and Standardisation in Marine
678	Biodiversity through the World Register of Marine Species (WoRMS) and Related
679	Databases. <i>PLOS ONE, 8</i> (1), e51629. doi: 10.1371/journal.pone.0051629
680	Crotty, S. M., Minh, B. Q., Bean, N. G., Holland, B. R., Tuke, J., Jermiin, L. S., & Haeseler, A. von.
681	(2017). GHOST: Recovering Historical Signal from Heterotachously-evolved Sequence
682	Alignments. <i>BioRxiv</i> . doi: 10.1101/174789
683	Degnan, J. H., & Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and
684	the multispecies coalescent. <i>Trends in Ecology & Evolution, 24</i> (6), 332—340. doi:
685	10.1016/j.tree.2009.01.009
686	Der Sarkissian, C., Vilstrup, J. T., Schubert, M., Seguin-Orlando, A., Eme, D., Weinstock, J.,
687	Orlando, L. (2015). Mitochondrial genomes reveal the extinct Hippidion as an
688	outgroup to all living equids. <i>Biology Letters</i> , 11(3), 20141058. doi:
689	10.1098/rsbl.2014.1058

Dreyer, H., & Wägele, J.-W. (2001). Parasites of crustaceans (Isopoda: Bopyridae) evolved

690

from fish parasites: Molecular and morphological evidence. Zoology, 103(January 691 2001), 157-178. doi: 0944-2006/01/103/03-04-157 692 693 Edwards, S. V., Potter, S., Schmitt, C. J., Bragg, J. G., & Moritz, C. (2016). Reticulation, 694 divergence, and the phylogeography-phylogenetics continuum. Proceedings of the 695 National Academy of Sciences, 113(29), 8025-8032. doi: 10.1073/pnas.1601066113 696 Feuda, R., Dohrmann, M., Pett, W., Philippe, H., Rota-Stabelli, O., Lartillot, N., ... Pisani, D. (2017). Improved Modeling of Compositional Heterogeneity Supports Sponges as 697 698 Sister to All Other Animals. Current Biology, 27(24), p3864-3870.e4. doi: 699 10.1016/j.cub.2017.11.008 700 Fonseca, M. M., Harris, D. J., & Posada, D. (2014). The Inversion of the Control Region in Three Mitogenomes Provides Further Evidence for an Asymmetric Model of 701 702 Vertebrate mtDNA Replication. PLOS ONE, 9(9), e106654. doi: 703 10.1371/journal.pone.0106654 704 Gawryluk, R. M. R., Kamikawa, R., Stairs, C. W., Silberman, J. D., Brown, M. W., & Roger, A. J. 705 (2016). The Earliest Stages of Mitochondrial Adaptation to Low Oxygen Revealed in a 706 Novel Rhizarian. Current Biology, 26(20), 2729-2738. doi: 10.1016/J.CUB.2016.08.025 707 708 Grechko, V. V. (2013). The problems of molecular phylogenetics with the example of 709 squamate reptiles: Mitochondrial DNA markers. Molecular Biology, 47(1), 55–74. doi: 710 10.1134/S0026893313010056 711 Hassanin, A. (2006). Phylogeny of Arthropoda inferred from mitochondrial sequences: 712 Strategies for limiting the misleading effects of multiple changes in pattern and rates 713 of substitution. Molecular Phylogenetics and Evolution, 38(1), 100-116. doi: 714 10.1016/j.ympev.2005.09.012 Hassanin, A., Léger, N., & Deutsch, J. (2005). Evidence for multiple reversals of asymmetric 715 716 mutational constraints during the evolution of the mitochondrial genome of metazoa, 717 and consequences for phylogenetic inferences. Systematic Biology, 54(2), 277-298. 718 doi: 10.1080/10635150590947843 719 Hassanin, A., Ropiquet, A., Couloux, A., & Cruaud, C. (2009). Evolution of the mitochondrial 720 genome in mammals living at high altitude: New insights from a study of the tribe 721 Caprini (Bovidae, Antilopinae). Journal of Molecular Evolution, 68(4), 293-310. doi: 10.1007/s00239-009-9208-7 722 723 Hata, H., Sogabe, A., Tada, S., Nishimoto, R., Nakano, R., Kohya, N., ... Kawanishi, R. (2017). Molecular phylogeny of obligate fish parasites of the family Cymothoidae (Isopoda, 724 Crustacea): evolution of the attachment mode to host fish and the habitat shift from 725 726 saline water to freshwater. Marine Biology, 164(5). doi: 10.1007/s00227-017-3138-5 727 Hu, F., Lin, Y., & Tang, J. (2014). MLGO: phylogeny reconstruction and ancestral inference 728 from gene-order data. вмс Bioinformatics, 15(1),354. doi: 729 10.1186/s12859-014-0354-6 730 Hua, C. J., Li, W. X., Zhang, D., Zou, H., Li, M., Jakovlić, I., ... Wang, G. T. (2018). Basal position 731 of two new complete mitochondrial genomes of parasitic Cymothoida (Crustacea:

722	lacureda) shallowers the worsenhulu of the subouter and whilesens, of the suting
732	Isopoda) challenges the monophyly of the suborder and phylogeny of the entire
733	order. <i>Parasites & Vectors, 11</i> (1), 628. doi: 10.1186/s13071-018-3162-4
734	Jakovlić, I., Wu, QJ., Treer, T., Šprem, N., & Gui, JF. (2013). Introgression evidence and
735	phylogenetic relationships among three (Para)Misgurnus species as revealed by
736	mitochondrial and nuclear DNA markers. Archives of Biological Sciences, 65(4),
737	1463–1467. doi: 10.2298/ABS1304463J
738	Joca, L. K., Leray, V. L., Zigler, K. S., & Brusca, R. C. (2015). A new host and reproduction at a
739	small size for the "snapper-choking isopod" Cymothoa excisa (Isopoda:
740	Cymothoidae). Journal of Crustacean Biology, 35(2), 292–294. doi:
741	10.1163/1937240X-00002312
742	Jones, C. M., Miller, T. L., Grutter, A. S., & Cribb, T. H. (2008). Natatory-stage cymothoid
743	isopods: Description, molecular identification and evolution of attachment.
744	International Journal for Parasitology, 38(3–4), 477–491. doi:
745	10.1016/j.ijpara.2007.07.013
746	Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A., & Jermiin, L. S. (2017).
747	ModelFinder: Fast model selection for accurate phylogenetic estimates. <i>Nature</i>
748	Methods, 14(6), 587–589. doi: 10.1038/nmeth.4285
749	Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7:
750	Improvements in performance and usability. <i>Molecular Biology and Evolution, 30</i> (4),
751	772–780. doi: 10.1093/molbev/mst010
752	Katoh, K., & Toh, H. (2008). Improved accuracy of multiple ncRNA alignment by incorporating
753	structural information into a MAFFT-based framework. BMC Bioinformatics, 9(1),
754	212. doi: 10.1186/1471-2105-9-212
755	Ketmaier, V., Joyce, D. A., Horton, T., & Mariani, S. (2008). A molecular phylogenetic
756	framework for the evolution of parasitic strategies in cymothoid isopods (Crustacea).
757	Journal of Zoological Systematics and Evolutionary Research, 46(1), 19–23. doi:
758	10.1111/j.1439-0469.2007.00423.x
759	Kilpert, F., Held, C., & Podsiadlowski, L. (2012). Multiple rearrangements in mitochondrial
760	genomes of Isopoda and phylogenetic implications. Molecular Phylogenetics and
761	<i>Evolution, 64</i> (1), 106–117. doi: 10.1016/j.ympev.2012.03.013
762	Kilpert, F., & Podsiadlowski, L. (2006). The complete mitochondrial genome of the common
763	sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual
764	control region features. <i>BMC Genomics, 7,</i> 241. doi: 10.1186/1471-2164-7-241
765	Kolaczkowski, B., & Thornton, J. W. (2004). Performance of maximum parsimony and
766	likelihood phylogenetics when evolution is heterogeneous. <i>Nature, 431,</i> 980.
767	Krell, FT., & Cranston, P. S. (2004). Which side of the tree is more basal? <i>Systematic</i>
768	Entomology, 29, 279–281. doi: 10.1111/j.0307-6970.2004.00262.x
769	Lan, T., Gill, S., Bellemain, E., Bischof, R., Nawaz, M. A., & Lindqvist, C. (2017). Evolutionary
770	history of enigmatic bears in the Tibetan Plateau-Himalaya region and the identity of
771	the yeti. Proceedings of the Royal Society B: Biological Sciences, 284(1868),
772	20171804. doi: 10.1098/rspb.2017.1804

Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined
 Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses.
 Molecular Biology and Evolution, 29(6), 1695–1701. doi: 10.1093/molbev/mss020

Lartillot, N., Brinkmann, H., & Philippe, H. (2007). Suppression of long-branch attraction
 artefacts in the animal phylogeny using a site-heterogeneous model. *BMC Evolutionary Biology*, 7(Suppl 1), S4. doi: 10.1186/1471-2148-7-S1-S4

Laslett, D., & Canbäck, B. (2008). ARWEN: A program to detect tRNA genes in metazoan
mitochondrial nucleotide sequences. *Bioinformatics*, 24(2), 172–175. doi:
10.1093/bioinformatics/btm573

Lavrov, D. V, Boore, J. L., & Brown, W. M. (2000). The complete mitochondrial DNA sequence
of the horseshoe crab Limulus polyphemus. *Molecular Biology and Evolution*, 17(5),
813–824.

Letunic, I., & Bork, P. (2007). Interactive Tree Of Life (iTOL): An online tool for phylogenetic
tree display and annotation. *Bioinformatics*, 23(1), 127–128. doi:
10.1093/bioinformatics/btl529

- Li, H., Leavengood, J. M., Chapman, E. G., Burkhardt, D., Song, F., Jiang, P., ... Cai, W. (2017).
 Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the
 diversification of true bugs. *Proceedings of the Royal Society B: Biological Sciences*,
 284(1862). doi: 10.1098/rspb.2017.1223
- Lins, L. S. F., Ho, S. Y. W., Wilson, G. D. F., & Lo, N. (2012). Evidence for Permo-Triassic
 colonization of the deep sea by isopods. *Biology Letters*, 8(6), 979–982. doi:
 10.1098/rsbl.2012.0774
- Lins, Luana S.F., Ho, S. Y. W., & Lo, N. (2017). An evolutionary timescale for terrestrial isopods
 and a lack of molecular support for the monophyly of Oniscidea (Crustacea: Isopoda).
 Organisms Diversity and Evolution, 17(4), 813–820. doi: 10.1007/s13127-017-0346-2

Liu, F.-F., Li, Y.-P., Jakovlić, I., & Yuan, X.-Q. (2017). Tandem duplication of two tRNA genes in
the mitochondrial genome of Tagiades vajuna (Lepidoptera: Hesperiidae). *European Journal of Entomology*, *114*(1), 407–415. doi: 10.14411/eje.2017.052

Lloyd, R. E., Streeter, S., Foster, P. G., Littlewood, D. T. J., Huntley, J., Beckham, G. T., ... Cragg,
S. M. (2015). The complete mitochondrial genome of Limnoria quadripunctata
Holthuis (Isopoda Limnoriidae). *Mitochondrial DNA*, 26(6), 825–826.

Lopez, P., Casane, D., & Philippe, H. (2002). Heterotachy, an important process of protein
evolution. *Molecular Biology and Evolution*, 19(1), 1–7. doi:
10.1093/oxfordjournals.molbev.a003973

Maddock, S. T., Briscoe, A. G., Wilkinson, M., Waeschenbach, A., San Mauro, D., Day, J. J., ...
Gower, D. J. (2016). Next-generation mitogenomics: A comparison of approaches
applied to caecilian amphibian phylogeny. *PLoS ONE*, *11*(6), e0156757. doi:
10.1371/journal.pone.0156757

Mallet, J., Besansky, N., & Hahn, M. W. (2016). How reticulated are species? *BioEssays*, *38*(2),
 140–149. doi: 10.1002/bies.201500149

<sup>Martin, M. B., Bruce, N. L., & Nowak, B. F. (2016). Review of the fish-parasitic genus
Cymothoa Fabricius, 1793 (Crustacea: Isopoda: Cymothoidae) from Australia.</sup> *Zootaxa*, 4119(1), 1–72. doi: 10.11646/zootaxa.4119.1.1

816 Meiklejohn, K. A., Danielson, M. J., Faircloth, B. C., Glenn, T. C., Braun, E. L., & Kimball, R. T. 817 (2014). Incongruence among different mitochondrial regions: a case study using complete mitogenomes. Molecular Phylogenetics and Evolution, 78, 314-323. doi: 818 819 10.1016/j.ympev.2014.06.003 820 Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for 821 inference of large phylogenetic trees. 2010 Gateway Computing Environments 822 Workshop, GCE 2010. doi: 10.1109/GCE.2010.5676129 823 Min, X. J., & Hickey, D. A. (2007). DNA asymmetric strand bias affects the amino acid 824 composition of mitochondrial proteins. DNA Research 2: An International Journal for 825 Rapid Publication of Reports on Genes and Genomes, 14(5), 201-206. doi: 826 10.1093/dnares/dsm019 827 Mishmar, D., Ruiz-Pesini, E., Golik, P., Macaulay, V., Clark, A. G., Hosseini, S., ... Wallace, D. C. 828 (2003). Natural selection shaped regional mtDNA variation in humans. Proceedings 829 the National Academy of of Sciences, 100(1),171-176. doi: 830 10.1073/pnas.0136972100 831 Morgan, C. C., Foster, P. G., Webb, A. E., Pisani, D., McInerney, J. O., & O'Connell, M. J. (2013). 832 Heterogeneous models place the root of the placental mammal phylogeny. 833 Molecular Biology and Evolution, 30(9), 2145-2156. doi: 10.1093/molbev/mst117 834 Nie, R. E., Breeschoten, T., Timmermans, M. J. T. N., Nadein, K., Xue, H. J., Bai, M., ... Vogler, A. 835 P. (2018). The phylogeny of Galerucinae (Coleoptera: Chrysomelidae) and the 836 performance of mitochondrial genomes in phylogenetic inference compared to 837 nuclear rRNA genes. Cladistics, 34(2), 113-130. doi: 10.1111/cla.12196 838 Phillips, M., McLenachan, P., Down, C., Gibb, G., & Penny, D. (2006). Combined mitochondrial 839 and nuclear DNA sequences resolve the interrelations of the major Australasian 840 marsupial radiations. Systematic Biology, 55(1), 122-137. doi: 10.1080/10635150500481614 841 842 Pollard, D. A., Iyer, V. N., Moses, A. M., & Eisen, M. B. (2006). Widespread discordance of 843 gene trees with species tree in Drosophila: evidence for incomplete lineage sorting. 844 PLoS Genetics, 2(10), e173. doi: 10.1371/journal.pgen.0020173 845 Poore, G. C. B., & Bruce, N. L. (2012). Global Diversity of Marine Isopods (Except Asellota and 846 Crustacean Symbionts). PLoS ONE, 7(8), e43529. doi: 10.1371/journal.pone.0043529 847 Reyes, A., Gissi, C., Pesole, G., & Saccone, C. (1998). Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Molecular Biology and Evolution, 848 849 15(8), 957-966. doi: 10.1093/oxfordjournals.molbev.a026011 Richards, E. J., Brown, J. M., Barley, A. J., Chong, R. A., & Thomson, R. C. (2018). Variation 850 across mitochondrial gene trees provides evidence for systematic error: How much 851 852 gene tree variation is biological? Systematic Biology. doi: 10.1093/sysbio/syy013 853 Romiguier, J., Ranwez, V., Delsuc, F., Galtier, N., & Douzery, E. J. P. (2013). Less Is More in 854 Mammalian Phylogenomics: AT-Rich Genes Minimize Tree Conflicts and Unravel the 855 Root of Placental Mammals. Molecular Biology and Evolution, 30(9), 2134-2144. doi: 856 10.1093/molbev/mst116 857 Romiguier, J., & Roux, C. (2017). Analytical Biases Associated with GC-Content in Molecular 858 Evolution. Frontiers in Genetics, 8. doi: 10.3389/fgene.2017.00016

859 Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., ... Huelsenbeck, J. P. (2012). Mrbayes 3.2: Efficient bayesian phylogenetic inference and 860 861 model choice across a large model space. Systematic Biology, 61(3), 539-542. doi: 862 10.1093/sysbio/sys029 863 Rubinoff, D., Holland, B. S., & Savolainen, V. (2005). Between Two Extremes: Mitochondrial 864 DNA is neither the Panacea nor the Nemesis of Phylogenetic and Taxonomic 865 Inference. Systematic Biology, 54(6), 952-961. doi: 10.1080/10635150500234674 Rudy, J., Rendoš, M., Ľuptáčik, P., & Mock, A. (2018). Terrestrial isopods associated with 866 867 shallow underground of forested scree slopes in the Western Carpathians (Slovakia). 868 ZooKeys, 801, 323-335. doi: 10.3897/zookeys.801.24113 869 Saclier, N., François, C. M., Konecny-Dupré, L., Lartillot, N., Guéguen, L., Duret, L., ... Lefébure, 870 T. (2018). Life history traits impact the nuclear rate of substitution but not the 871 mitochondrial rate in isopods. Molecular Biology and Evolution, msy184-msy184. 872 Schmidt, C. (2008). Phylogeny of the terrestrial Isopoda (Oniscidea): a review. Arthropod 873 Systematics & Phylogeny, 66(2), 191–226. 874 Scott, G. R., Schulte, P. M., Egginton, S., Scott, A. L. M., Richards, J. G., & Milsom, W. K. (2011). 875 Molecular Evolution of Cytochrome c Oxidase Underlies High-Altitude Adaptation in the Bar-Headed Goose. Molecular Biology and Evolution, 28(1), 351-363. doi: 876 877 10.1093/molbev/msq205 878 Shao, R., Dowton, M., Murrell, A., & Barker, S. C. (2003). Rates of Gene Rearrangement and 879 Nucleotide Substitution Are Correlated in the Mitochondrial Genomes of Insects. Molecular Biology and Evolution, 20(10), 1612–1619. doi: 10.1093/molbev/msg176 880 881 Sheffield, N. C., Song, H., Cameron, S. L., & Whiting, M. F. (2009). Nonstationary evolution 882 and compositional heterogeneity in beetle mitochondrial phylogenomics. Systematic 883 Biology, 58(4), 381-394. doi: 10.1093/sysbio/syp037 Shen, Y., Kou, Q., Zhong, Z., Li, X., He, L., He, S., & Gan, X. (2017). The first complete 884 885 mitogenome of the South China deep-sea giant isopod Bathynomus sp. (Crustacea: 886 Isopoda: Cirolanidae) allows insights into the early mitogenomic evolution of isopods. 887 Ecology and Evolution, 7(6), 1869-1881. doi: 10.1002/ece3.2737 Smith, D. R. (2016). The mutational hazard hypothesis of organelle genome evolution: 10 888 889 years on. Molecular Ecology, 25, 3769-3755. doi: 10.1111/mec.13742 890 Sun, S., Li, Q., Kong, L., & Yu, H. (2018). Multiple reversals of strand asymmetry in molluscs 891 mitochondrial genomes, and consequences for phylogenetic inferences. Molecular 892 Phylogenetics and Evolution, 118, 222-231. doi: 10.1016/J.YMPEV.2017.10.009 893 Swofford, D. L. (2002). PAUP. Phylogenetic analysis using parsimony (and other methods) 894 (Version 4.0). Sunderland, MA, USA: Sinauer Associates. 895 Talavera, G., & Castresana, J. (2007). Improvement of phylogenies after removing divergent 896 and ambiguously aligned blocks from protein sequence alignments. Systematic 897 Biology, 56(4), 564-577. doi: 10.1080/10635150701472164 898 Talavera, G., Vila, R., Igea, J., Castresana, J., Nakano, H., Poustka, A., ... Manuel, M. (2011). 899 What is the phylogenetic signal limit from mitogenomes? The reconciliation between 900 mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evolutionary 901 Biology, 11(1), 315. doi: 10.1186/1471-2148-11-315

902 Thomas, J. M., Horspool, D., Brown, G., Tcherepanov, V., & Upton, C. (2007). GraphDNA: a 903 Java program for graphical display of DNA composition analyses. BMC Bioinformatics, 904 8, 21. doi: 10.1186/1471-2105-8-21 905 Trifinopoulos, J., Nguyen, L. T., von Haeseler, A., & Minh, B. Q. (2016). W-IQ-TREE: a fast 906 online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 907 44(W1), W232-W235. doi: 10.1093/nar/gkw256 908 Wei, S. J., Shi, M., Chen, X. X., Sharkey, M. J., van Achterberg, C., Ye, G. Y., & He, J. H. (2010). 909 New views on strand asymmetry in insect mitochondrial genomes. PLoS ONE, 5(9), 910 1-10. doi: 10.1371/journal.pone.0012708 Wetzer, R. (2002). Mitochondrial genes and isopod phylogeny (Peracarida: Isopoda). Journal 911 912 of Crustacean Biology, 22(1), 1–14. doi: 10.2307/1549602 913 Wetzer, R., Pérez-Losada, M., & Bruce, N. (2013). Phylogenetic relationships of the family 914 Sphaeromatidae Latreille, 1825 (Crustacea: Peracarida: lsopoda) within 915 Sphaeromatidea based on 18S-rDNA molecular data. Zootaxa, 3599(2), 161–177. 916 Whelan, N. V., & Halanych, K. M. (2017). Who let the CAT out of the bag? Accurately dealing 917 with substitutional heterogeneity in phylogenomic analyses. Systematic Biology, 66(2), 232-255. doi: 10.1093/sysbio/syw084 918 919 Willis, S. C. (2017). One species or four? Yes!...and, no. Or, arbitrary assignment of lineages to 920 species obscures the diversification processes of Neotropical fishes. PLoS ONE, 12(2), 921 e0172349. doi: 10.1371/journal.pone.0172349 Wilson, G D F. (2009). The phylogenetic position of the Isopoda in the Peracarida (Crustacea: 922 923 Malacostraca). Arthropod Systematics & Phylogeny, 67(2), 159–198. 924 Wilson, George D.F. (1999). Some of the deep-sea fauna is ancient. Crustaceana, 72(8), 925 1019-1030. doi: 10.1163/156854099503915 926 Wilson, George D.F. (2008). Global diversity of Isopod crustaceans (Crustacea; Isopoda) in freshwater. Hydrobiologia, Vol. 595, pp. 231–240. doi: 10.1007/s10750-007-9019-z 927 928 Wolff, J. N., Ladoukakis, E. D., Enríquez, J. A., & Dowling, D. K. (2014). Mitonuclear 929 interactions: evolutionary consequences over multiple biological scales. 930 Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1646). Xu, W., Jameson, D., Tang, B., & Higgs, P. G. (2006). The relationship between the rate of 931 932 molecular evolution and the rate of genome rearrangement in animal mitochondrial 933 Molecular 63(3), 375-392. doi: genomes. Journal of Evolution. 934 10.1007/s00239-005-0246-5 Yang, H., Li, T., Dang, K., & Bu, W. (2018). Compositional and mutational rate heterogeneity in 935 mitochondrial genomes and its effect on the phylogenetic inferences of 936 937 Cimicomorpha (Hemiptera: Heteroptera). BMC Genomics, 19(1), 264. doi: 938 10.1186/s12864-018-4650-9 939 Yu, J., An, J., Li, Y., & Boyko, C. B. (2018). The first complete mitochondrial genome of a 940 parasitic isopod supports Epicaridea Latreille, 1825 as a suborder and reveals the less 941 conservative genome of isopods. Systematic Parasitology. doi: 942 10.1007/s11230-018-9792-2 943 Zhang, D., Gao, F., Li, W. X., Jakovlić, I., Zou, H., Zhang, J., & Wang, G. T. (2018). PhyloSuite: an 944 integrated and scalable desktop platform for streamlined molecular sequence data

bioRxiv preprint doi: https://doi.org/10.1101/607960; this version posted April 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

945	management and evolutionary phylogenetics studies. <i>BioRxiv</i> , 489088. doi:
946	10.1101/489088
947	Zhang, D., Zou, H., Wu, S. G., Li, M., Jakovlić, I., Zhang, J., Li, W. X. (2017). Sequencing of the
948	complete mitochondrial genome of a fish-parasitic flatworm Paratetraonchoides
949	inermis (Platyhelminthes: Monogenea): tRNA gene arrangement reshuffling and
950	implications for phylogeny. <i>Parasites</i> & Vectors, 10(1), 462. doi:
951	10.1186/s13071-017-2404-1
952	Zhong, B., Deusch, O., Goremykin, V. V, Penny, D., Biggs, P. J., Atherton, R. A., Lockhart, P. J.
953	(2011). Systematic Error in Seed Plant Phylogenomics. Genome Biology and Evolution,
954	<i>3</i> , 1340–1348. doi: 10.1093/gbe/evr105
955	Zou, H., Jakovlić, I., Chen, R., Zhang, D., Zhang, J., Li, WX., & Wang, GT. (2017). The
956	complete mitochondrial genome of parasitic nematode Camallanus cotti: extreme
957	discontinuity in the rate of mitogenomic architecture evolution within the
958	Chromadorea class. <i>BMC Genomics, 18</i> (1), 840. doi: 10.1186/s12864-017-4237-x
959	Zou, H., Jakovlić, I., Zhang, D., Chen, R., Mahboob, S., Al-Ghanim, K. A., Wang, G. (2018).
960	The complete mitochondrial genome of Cymothoa indica has a highly rearranged
961	gene order and clusters at the very base of the Isopoda clade. PLOS ONE, 13(9),
962	e0203089. doi: 10.1371/journal.pone.0203089
963	

964 Data Accessibility

965 DNA sequences: Genbank accessions MK079664, MK542856, MK542857 and MK542858. The remaining data are included within the article and its 966 supplementary files

967 Author Contributions

IJ, DZ, HZ, and GTW designed research. DZ, HZ, CJH, WXL, KAAG, FAM, and SM performed research. DZ contributed analytical tools; IJ, DZ, HZ, CJH, WXL,
 KAAG, FAM, SM and GTW analyzed data. IJ and DZ wrote the paper, and all authors revised it critically for important intellectual content.

970

971 Figures

972 Figure 1. Mitochondrial phylogenomics of Isopoda (suborder information shown) reconstructed using partitioned nucleotide sequences of PCGs and rRNAs (NUC dataset) and BI algorithm. A set of nine non-isopod Malacostraca species and Limulus polyphemus were used as outgroups (order information shown). 973 974 The scale bar corresponds to the estimated number of substitutions per site. Bayesian posterior support values are shown next to corresponding nodes. 975 Star sign indicates a putative origin of replication inversion scenario implied by the topology (see Discussion). 976 Figure 2. A phylogram reconstructed using nonpartitioned NUC dataset and an algorithm designed to address compositional heterogeneity: CAT-GTR (PB). 977 978 Posterior Bayesian support values are shown. See Figure 1 for other details. 979 980 Figure 3. A phylogram reconstructed using amino acid dataset (AAs; 13 PCGs) in combination with data partitioning strategy and BI algorithm. See Figure 1 for other details. 981 982 Figure 4. A phylogram reconstructed using AAs dataset and CAT-GTR algorithm designed for heterogeneous datasets (PB). See Figure 1 for other details. 983 984

985	Figure 5. A phylogram reconstructed using mitochondrial gene orders (PCGs+rRNAs+tRNAs). Bootstrap support values are shown next to corresponding
986	nodes. See Figure 1 for other details.
987	
988	Figure 6. A phylogram inferred using the nuclear 185 gene and CAT-GTR algorithm (PB). See Figure 1 for other details.
989	
990	Figure 7. Cumulative GC skews of the majority strands of a selected subset of mitogenomes used for phylogenetic analyses.
991	
992	Figure 8. Gene orders in the mitogenomes of Isopoda (and selected Malacostraca).
993	
994	

996 Supporting Information

997

- 998 File S1: best partitioning scheme and model selection
- 9991000 File S2: Phylograms produced by all analyses.

1001

1002 File S3: The 18S dataset with taxonomy details.

1003

1004 File S4: Alignments used in this study.

1006 Tables

1007 Table 1. Taxonomy, length (bp), base composition (%) and skews of mitogenomes used in the analysis. P column indicates whether a species is parasitic. H indicates 1008 the habitat: F - freshwater, M - marine, T - terrestrial, and I - intertidal.

Species	Suborder	Family	Acc. no.	Length	A+T	Α	С	AT skew	GC skew	Ρ	н
lsopoda											
Asellus aquaticus	Asellota	Asellidae	GU130252	13639	61.9	31	21.3	0.002	-0.122		F
Cymothoa indica	Cymothoida	Cymothoidae	MH396438	14475	63.8	36	26.1	0.129	-0.442	٧	М
lchthyoxenos japonensis	Cymothoida	Cymothoidae	MF419233	15440	72.7	37	18.7	0.026	-0.375	٧	F
Tachaea chinensis	Cymothoida	Corallanidae	MF419232	14616	72.8	38	18.5	0.055	-0.354	٧	F
Eurydice pulchra	Cymothoida	Cirolanidae	GU130253	13055	55.9	27	17.7	-0.052	0.198		M, I
Bathynomus sp.	Cymothoida	Cirolanidae	KU057374	14965	58.7	27	17	-0.093	0.175		М
Gyge ovalis	Cymothoida	Bopyridae	NC_037467	14268	59.6	27	17.8	-0.093	0.118	٧	М
Eophreatoicus sp.	Phreatoicidea	Amphisopidae	NC_013976	14994	69.6	31	11.4	-0.104	0.25		F
Sphaeroma serratum	Sphaeromatidea	Sphaeromatidae	GU130256	13467	54.4	25	17.8	-0.069	0.219		М
Limnoria quadripunctata	Limnoriidea	Limnoriidae	NC_024054	16515	66.3	30	13.6	-0.104	0.188		М

ldotea balthica	Valvifera	Idoteidae	DQ442915	14247	61	28	16.3	-0.076	0.163	М
Glyptonotus antarcticus	Valvifera	Chaetiliidae	GU130254	13809	65.4	32	16.6	-0.033	0.038	М
Trachelipus rathkii	Oniscidea	Trachelipodidae	MF187612	14080	67.3	33	13.3	-0.029	0.184	т
Porcellio dilatatus	Oniscidea	Porcellionidae	KX289582	14103	65.6	31	13.4	-0.067	0.224	Т
Cylisticus convexus	Oniscidea	Cylisticidae	KR013002	14154	67.8	33	12.9	-0.035	0.194	Т
Porcellionides pruinosus	Oniscidea	Porcellionidae	KX289584	14078	60.5	28	14.9	-0.09	0.248	Т
Armadillidium album	Oniscidea	Armadillidiidae	KX289585	13812	69.7	33	12.5	-0.045	0.172	Т
Armadillidium nasatum	Oniscidea	Armadillidiidae	MF187611	13943	68.1	33	13.4	-0.043	0.16	Т
Armadillidium vulgare	Oniscidea	Armadillidiidae	MF187614	13932	71.5	34	11.8	-0.043	0.174	т
Armadillidium vulgare	Oniscidea	Armadillidiidae	MF187613	13955	71.3	34	11.8	-0.039	0.179	т
Ligia oceanica	Oniscidea	Ligiidae	NC_008412	15289	60.9	29	17	-0.041	0.134	M, I, T
Species	Order	Suborder	Acc. no.	Length	A+T	Α	С	AT skew	GC skew	
Non-isopod Malacostraca and L. polyphemus										
Atergatis floridus	Decapoda	Pleocyemata	NC_037201	16180	69.3	33	20.3	-0.036	-0.319	
Penaeus vannamei	Decapoda	Dendrobranchiata	NC_009626	15990	67.7	33	19.2	-0.026	-0.192	
Typhlatya miravetensis	Decapoda	Pleocyemata	NC_036335	15865	66.2	36	22.5	0.076	-0.332	

Limulus polyphemus	Xiphosurida	NA	NC_003057	14985	67.6	38	22.7	0.111	-0.399
Euphausia pacifica	Euphausiacea	NA	NC_016184	16898	72	36	16	0.004	-0.145
Eulimnogammarus cyaneus	Amphipoda	Senticaudata	NC_033360	14370	67.6	33	20.3	-0.019	-0.251
Neomysis japonica	Mysida	NA	NC_027510	17652	74.5	37	13.8	-0.021	-0.085
Metacrangonyx repens	Amphipoda	Senticaudata	NC_019653	14355	76.9	38	11.7	-0.025	-0.014
Lysiosquillina maculata	Stomatopoda	Unipeltata	NC_007443	16325	63.9	33	21.4	0.026	-0.185
Squilla mantis	Stomatopoda	Unipeltata	NC_006081	15994	70.2	35	16.8	-0.001	-0.13

Limulus polyphemus Lysiosquillina maculata Atergatis floridus Typhlatya miravetensis Euphausia pacifica Penaeus vannamei Neomysis japonica Eulimnogammarus cyaneus Metacrangonyx repens Tachaea chinensis Cymothoa indica Ichthyoxenos japonensis Asellus aquaticus Eophreatoicus sp. 14 FK-2009 Limnoria quadripunctata Eurydice pulchra Bathynomus sp. Sphaeroma serratum Glyptonotus cf. antarcticus FK-2009 Cylisticus convexus Trachelipus rathkii Porcellio dilatatus dilatatus Porcellionides pruinosus Armadillidium album Armadillidium nasatum Armadillidium vulgare Armadillidium vulgare

Xiphosurida Stomatopoda

Decapoda Euphausiacea Decapoda Mysida Amphipoda

Cymothoida

Asellota Phreatoicidea Cymothoida Limnoriidea Oniscidea Cymothoida Sphaeromatidea Valvifera

Limulus polyphemus Metacrangonyx repens Eulimnogammarus cyaneus Lysiosquillina maculata Typhlatya miravetensis Ichthyoxenos japonensis Eophreatoicus sp. 14 FK-2009 Limnoria quadripunctata Glyptonotus cf. antarcticus FK-2009 Sphaeroma serratum Cylisticus convexus Porcellionides pruinosus Porcellio dilatatus dilatatus Armadillidium album Armadillidium nasatum Armadillidium vulgare Armadillidium vulgare

Xiphosurida Mysida Amphipoda Stomatopoda Euphausiacea Decapoda

Cymothoida

Asellota Phreatoicidea Limnoriidea **Oniscidea** Cymothoida

Valvifera Sphaeromatidea Cymothoida

Typhlatya miravetensis Lysiosquillina maculata Eulimnogammarus cyaneus Metacrangonyx repens Eophreatoicus sp. 14 FK-2009 Ichthyoxenos japonensis Limnoria quadripunctata Glyptonotus cf. antarcticus FK-2009 Porcellio dilatatus dilatatus Porcellionides pruinosus Armadillidium nasatum Armadillidium vulgare Armadillidium vulgare

Xiphosurida Decapoda **Euphausiacea Stomatopoda Mysida Amphipoda Phreatoicidea Asellota**

Cymothoida

Limnoriidea **Oniscidea** Valvifera **Sphaeromatidea** Cymothoida

Limulus polyphemus Metacrangonyx repens Eulimnogammarus cyaneus Typhlatya miravetensis Lysiosquillina maculata Eophreatoicus sp. 14 FK-2009 Limnoria quadripunctata Glyptonotus cf. antarcticus FK-2009 Sphaeroma serratum Ichthyoxenos japonensis Cylisticus convexus Porcellionides pruinosus Porcellio dilatatus dilatatus Armadillidium album Armadillidium nasatum Armadillidium vulgare

Xiphosurida Amphipoda

Decapoda **Euphausiacea Stomatopoda Mysida Phreatoicidea** Asellota Limnoriidea Cymothoida Valvifera

Sphaeromatidea

Cymothoida

Limulus polyphemus Typhlatya miravetensis Euphausia pacifica Lysiosquillina maculata Penaeus vannamei Squilla mantis Atergatis floridus Eulimnogammarus cyaneus Metacrangonyx repens Cylisticus convexus Neomysis japonica Limnoria quadripunctata Armadillidium vulgare Trachelipus rathkii Armadillidium nasatum Armadillidium vulgare Bathynomus sp. Porcellio dilatatus dilatatus Porcellionides pruinosus Eophreatoicus sp. 14 FK-2009 Armadillidium album Gyge ovalis Asellus aquaticus Eurydice pulchra Tachaea chinensis Ichthyoxenos japonensis Cymothoa indica Ligia oceanica Sphaeroma serratum Idotea baltica Glyptonotus cf. antarcticus FK-2009 Xiphosurida Decapoda Euphausiacea Stomatopoda Decapoda Stomatopoda Decapoda Decapoda Amphipoda Oniscidea Mysida Limnoriidea

Oniscidea

Cymothoida Oniscidea Phreatoicidea Oniscidea Cymothoida Asellota

Cymothoida

Oniscidea Sphaeromatidea Valvifera

Cymothoida

Limnoriidea

Cymothoida

Xiphosurida	Limulus polyphemus	cox1 · cox2 · K · D · atp8 · atp6 · cox3 · G · nad3 · A · R · N · S1 · E · -F · -nad5 · -H · -nad4 -nad4L · T · -P · nad6 · cytb · S2 · -nad1 · -L2 ·
	Metacrangonyx repens	cox1 12 cox2 K D atp8 atp6 cox3 nad3 A S1 N E R F nad5 H nad4 nad4L nad6 nad1 L rrnL V rrnS S2 -
Amphipoda	Eulimnogammarus cyaneus	cox1 12 cox2 K D atp8 atp6 cox3 nad3 A S1 N E R F nad5 H nad4 nad4L T P nad6 cytb S2 nad1 L
	Atergatis floridus	cox1 (L2) cox2 (K (D) atp8 atp6 cox3 G nad3 A (R (N (S1) E (H) -F) -nad5 -nad4 -nad4L T (P) nad6 cytb (S2) -nad1
Decapoda	Typhlatya miravetensis	cox1 (L2) cox2 (K (D) atp8 atp6 cox3 (G) nad3 (A (R (N (S1 (E) -F) - nad5 (-H) - nad4 - nad4L (T) -P) nad6 cytb (S2) - nad1
	Penaeus vannamei	cox1 (L2) cox2 (K (D) atp8 atp6 cox3 G nad3 A (R (N (S1 E -F) nad5 -H) nad4 nad4L T (P) nad6 cytb (S2 nad1
Euphausiacea	Euphausia pacifica	cox1 (L1) cox2 (K) D atp8 atp6 cox3 G nad3 A R N S1 E -F -nad5 -H -nad4 -nad4L T -P nad6 cytb S2 -nad1
Stomatopoda	Squilla mantis	cox1 ·L2· cox2 ·K · D · atp8 · atp6 · cox3 · G · nad3 · A · R · N ·S1 · E · -F · nad5 · -H · nad4 - nad4L · T · -P · nad6 · cytb · S2 · nad1 ·
Stomatopoua	Lysiosquillina maculata	cox1 ·L2· cox2 ·K · D · atp8 · atp6 · cox3 ·G · nad3 ·A · R · N ·S1 · E · -F · nad5 · -H · nad4 - nad4L · T · -P · nad6 · cytb · S2 · nad1 ·
Mysida	Neomysis japonica	cox1 cox2 K cox3 S1 N nad3 T nad6 cytb (-H -rrnS Q)-S2 nad2 R -F -rrnL -V A E -nad4L D G atp8 atp6 C
Phreatoicidea	<i>Eophreatoicus</i> sp.	-cox1 Y C -nad2 -M cox2 D atp8 atp6 cox3 G nad3 A R -nad1 N rrnS K E -I -W S1 -cytb -T nad5 F -H
Asellota	Asellus aquaticus	cox1 (L1 (L2) cox2 (K (D) atp8 atp6 cox3 G nad3 A R V -nad1 N rrnS -cytb (T) nad5 F -H -nad4 -nad4L P nad6
Limnoriidea	Limnoria quadripunctata	cox1 · cox2 · K · cox3 · V · A · -E · -R · rrnL · -W · -M · -atp6 · -atp8 · -D · nad3 · -T · nad6 · P · nad4L · nad4 · H · -F · nad5 · cytb · -S1 · N · -E
Cymothoida	Gyge ovalis	cox1 ·L2· cox2 ·K · D · atp8 · atp6 · cox3 · G · R · nad3 · A · nad1 ·-L1 · N ·rrnS · W · cytb · T · nad5 · F · H · nad4 - nad4L · P · nad6
Valvifera	Idotea baltica	cox1 ·L2· cox2 ·K · D · atp8 · atp6 · cox3 · R · G · nad3 · A · nad1 ·-L1·rrnS · -cytb · T · nad5 · F · H · nad4 · nad4L · P · nad6 ·S2 · rrn
	Glyptonotus antarcticus	cox1 ·L2· cox2 ·K · D · atp8 · atp6 · cox3 · R · G · nad3 · A · nad1 ·-L1 · N ·rrnS · cytb · T · nad5 · F · H · nad4 · nad4L · P · nad6 ·S2
Sphaeromatidea	Sphaeroma serratum	cox1 ·L2· cox2 · K · D · atp8 · atp6 · cox3 · G · nad3 · A · nad1 · N ·rrnS · -cytb · T · nad5 · F · H · nad4 - nad4L · P · nad6 · S2 -rrnL · ·
	Bathynomus sp.	cox1 · L · cox2 · K · D · atp8 · atp6 · cox3 · R · G · nad3 · E · W · N ·rrnS · nad1 · A · -cytb · T · nad5 · F · -nad4 -nad4L · P · nad6 · S
	Eurydice pulchra	cox1 · L2 · W · cox2 · K · D · atp8 · atp6 · cox3 · G · nad3 · A · V · nad1 · N · rrnS · -cytb · -T · nad5 · -H · nad4 · nad4L · P · nad6 · S2 · rrn
Cymothoida	Tachaea chinensis	cox1 cox2 K D atp8 atp6 cox3 R G nad3 A V -nad1 N rrnS I -E -L1 -W -L2 -cytb -T nad5 F -H -nad4 -nad4
	Ichthyoxenos japonensis	cox1 cox2 K D atp8 atp6 cox3 R G nad3 A V N rrnS -nad1 L1 -E -L2 S W -cytb -T nad5 F H -nad4 -nad4
	Cymothoa indica	cox1 cox2 K D atp8 atp6 cox3 R G nad3 A V N rrnS -nad1 L1 E L2 S1 W -cytb -T nad5 F -H -nad4 -nad4
	Ligia oceanica	cox1 L2 cox2 K D atp8 atp6 cox3 G nad3 A -nad1 L1 N rrnS W V I E S1 -cytb -T nad5 F H -nad4 -nad4
	Cylisticus convexus	cox1 L2 cox2 K D atp8 atp6 cox3 R nad3 A -nad1 N rrnS I W L2 -cytb T C nad5 H -nad4-nad4L P nad6
	Trachelipus rathkii	cox1 · L · cox2 · N · atp6 · cox3 · G · nad3 · S2 · V · -nad1 · N · rrnS · W · L2 · -cytb · C · -T · nad5 · -S · F · -H · -nad4 -nad4L · P · nad6 · -F
	Porcellionides pruinosus	cox1 (L1) cox2 (K (D) atp8 atp6 cox3 (R) nad3 (A) -nad1 (N) rrnS (1) (W) -cytb (-T) nad5 (F) -H) -nad4 -nad4L nad6 (-P) S2
Oniscidea	Porcellio dilatatus dilatatus	cox1 (L1) cox2 (K (D) atp8 atp6 cox3 (R) nad3 (V) -nad1 (N) rrnS (I (W) -cytb (-T) nad5 (F) -H) -nad4 -nad4L -P nad6 (S2
	Armadillidium album	cox1 K L cox2 K D atp8 atp6 cox3 G nad3 V -nad1 N rrnS -cytb -T nad5 F -nad4-nad4L P nad6 S2 Q M
	Armadillidium nasatum	cox1 (L) cox2 (D) atp6 cox3 (G) nad3 (V) -nad1 (rrnS(-D) (W) (S) (F) -cytb (-T) nad5 (L1 (F) -H) -nad4 -nad4L -P) nad6 (L) -V
	Armadillidium vulgare	cox1 L cox2 K atp6 N cox3 G nad3 V -nad1 rrnS W -cytb -T nad5 -H -nad4 -nad4L -P nad6 S2 -T -rrnL M nad2
	Armadillidium vulgare	cox1 K L cox2 K atp6 cox3 G nad3 V -nad1 N rrnS S1 W S -cytb P nad5 -H -nad4 -nad4L P nad6 S2 -rrnL

