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Abstract (242/250 words) 

Background: Schizophrenia (SZ) and bipolar disorders (BD) share substantial 

neurodevelopmental components affecting brain maturation and architecture. This 

necessitates a dynamic lifespan perspective in which brain aberrations are inferred from 

deviations from expected lifespan trajectories. We applied machine learning to diffusion 

tensor imaging (DTI) indices of white matter structure and organization to estimate and 

compare brain age between patients with SZ, BD and healthy controls. 

Methods: We obtained DTI data from patients with SZ (n=648), BD (n=185) and healthy 

controls (n=990) across 10 clinical cohorts. We trained six cross-validated models using 

different combinations of DTI data from 927 controls, and applied the models to estimate 

individual brain ages in the test sets. We assessed group differences using linear models, 

accounting for age, sex and scanner.  

Results: 10-fold cross-validation revealed high accuracy for all models. Compared to controls, 

the model including all feature sets significantly over-estimated the age of patients with SZ 

(d=.29) and BD (d=.15), with similar effects for the other models. Meta-analysis converged 

on the same findings. Fractional anisotropy (FA) based models were more sensitive than 

models based on other metrics. Using a reduced set of global features instead of regional 

features revealed converging results.  

Conclusions: Brain age prediction based on DTI provides informative and robust proxies for 

brain white matter integrity and health. Our results further suggest that white matter 

aberrations in SZ and BD primarily consist of anatomically distributed deviations from 

expected lifespan trajectories that generalize across cohorts and scanners.  

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2019. ; https://doi.org/10.1101/607754doi: bioRxiv preprint 

https://doi.org/10.1101/607754
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4 

Introduction 

Schizophrenia (SZ) and bipolar (BD) spectrum disorders are severe mental disorders with 

partly overlapping clinical characteristics and pathophysiology. Both are highly heritable (1) 

with a substantial neurodevelopmental aetiology (2, 3). Along with evidence of accelerated 

age-related brain changes in adult patients with SZ (4-6) the neurodevelopmental origin 

supports a dynamic lifespan perspective in which genetic and biological factors interact with 

age-related environmental and physiological processes.  

Aberrant myelination and brain wiring during adolescence has been included among 

the neurobiological features of severe mental disorders, and white matter (WM) aberrations 

have been documented before disease onset (7-11). Brain imaging has shown that normative 

WM development follows a characteristic non-linear trajectory with peak maturation around 

the third or fourth decade (12-14). Compared to healthy controls, adult patients with SZ or 

BD exhibit anatomically distributed group-level differences in various diffusion-based indices 

of WM structure (15, 16).  

Supporting a neurodevelopmental origin, it has been demonstrated that patients with 

adolescent-onset SZ show WM aberrations (17), and that their developmental trajectory is 

altered and delayed (18) compared to age-matched normal developing peers. Further, children 

and adolescents with increased symptom burden, albeit presumably at subclinical levels, were 

found to exhibit altered diffusion based WM properties compared to peers with low or no 

symptoms of mental distress (19), highlighting a critical role of WM development in mental 

health in youths. To which degree group differences observed between adult patients and 

healthy controls accelerate during the course of the adult lifespan is unclear. The 

neurodegenerative account of schizophrenia and severe mental illness is debated (20) and 

lacks unequivocal support from imaging studies (16, 21), but some studies have suggested 

stronger age-related deterioration of the brain in patients compared to controls (22, 23). 
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 Despite converging evidence of case-control differences both preceding and following 

disease onset, recent brain imaging studies have documented substantial heterogeneity within 

patient groups (24, 25). In contrast to conventional group level analyses, brain age prediction 

using machine learning on imaging features allows for brain-based phenotyping at the 

individual level, and enables an efficient dimensionality reduction of the neuroimaging data 

into one or more biologically informative summary measures (26, 27). The discrepancy 

between an individual’s chronological age and predicted brain age, sometimes referred to as 

the brain age gap (BAG), has been found to be higher in patients with SZ (5, 28, 29) and 

several other brain disorders (29). However, these previous studies have exclusively used 

brain grey matter features for brain age prediction. Thus, given the well-documented role of 

WM aberrations in patients with mental illness (15, 30-32), brain age prediction based on 

diffusion imaging is clearly warranted. 

In order to fill this current gap in the literature, we here compared individual BAGs 

between patients diagnosed with SZ, BD, and HC using four conventional metrics (fractional 

anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD)) 

obtained from diffusion tensor imaging (DTI). We used an independent training set 

comprising healthy individuals (n=927, aged 18.00-94.96 years) and applied the resulting 

model in our test sample including patients with SZ (n=648), BD (n=185) and HC (n=990) 

from 10 independent cohorts. In order to specifically assess the robustness and quantify the 

heterogeneity of effects across cohorts we adopted a meta-analytic statistical framework.  

Since the different DTI-based metrics carry partly independent biological information 

(33-35), we trained six different models based on various combinations of the DTI metrics, 

which allowed us to compare prediction accuracy and subsequent group differences between 

the metrics. Based on converging evidence of widespread WM aberrations in patients with 

severe mental disorders (15), we hypothesized higher BAG in patients with SZ and BD 
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compared to HC, with stronger effects in SZ compared to BD. To test the relevance of the 

varying spatial resolution of the feature sets, which is important to inform the discussion 

regarding the anatomical specificity of brain WM aberrations, we compared models including 

various atlas-based tracts of interest (TOIs) with models including only global features. Based 

on previous studies comparing the prediction accuracy and sensitivity between metrics (16, 

27), we hypothesized that FA would enable both high age prediction accuracy and sensitivity 

to group differences, but remained agnostic concerning the additional value of the remaining 

features.  

 

Materials and methods 

We combined diffusion MRI data from 2750 individuals from 11 sites/studies across 10 

different scanners. Figure 1A, Supplementary Figure S1-S2, and Supplementary Table S1-S2 

summarise key demographics per cohort. Supplemental Table S3 summarizes the MRI 

systems and diffusion acquisition protocols.  

The dataset was split into a training set and a test set. Supplemental Figure S2 shows 

the age distribution within each cohort in the training set. Briefly, the training set consisted of 

927 HC covering the full adult lifespan (mean age=53.81, s.d.=18.38, range 18.00-94.96 

years). The test set comprised 990 HC (mean age=34.70 s.d.=11.24, range=17.52-68.97), 185 

patients with BD (mean age=33.12, s.d.=10.53, range=18.40-64.48) and 648 patients with SZ 

(mean age: 34.49, s.d.=11.40, range=18.00-66.00).  
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Figure 1. A) Raincloud plot depicting the age distribution for each diagnostic group in the 
test sets. Density plots are shown on top with data points and boxplot underneath. B) 
Chronological age plotted as function of estimated brain age using the all features model, the 
fitted line represents the best linear fit across all subjects using linear regression C) Violin 
plots showing the distribution of residualized brain age gaps (BAGR) in each group. 
 

 

MRI acquisition and processing  

A summary of MRI acquisition protocol for each cohort is presented in Supplementary Table 

S3. Imaging analyses were performed using the Oxford Center for Functional Magnetic 

Resonance Imaging of the Brain (FMRIB) Software Library (FSL) (36-38). To correct for 

geometrical distortions and eddy currents all cohorts were processed using eddy 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy) (39, 40). The two cohorts (TOP1 and TOP2) which 

had collected blip-up/blip-down sequences were additionally processed using topup 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup) (36, 41) prior to eddy. Using an integrated 
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framework along with correction for susceptibility induced distortions, eddy currents and 

motion eddy detects and replaces slices affected by signal loss due to bulk motion during 

diffusion encoding (40).  

Fitting of the diffusion tensor was done using dtifit in FSL, yielding conventional DTI 

metrics, including fractional anisotropy (FA), and mean (MD), radial (RD) and axial (AD) 

diffusivity. FA, MD, RD and AD maps were further processed using tract-based spatial 

statistics (TBSS) (42). FA volumes were skull-stripped and aligned to the FMRIB58_FA 

template supplied by FSL using nonlinear registration (FNIRT) (43). Next, mean FA were 

derived and thinned to create a mean FA skeleton, representing the center of all tracts 

common across subjects. We thresholded and binarized the mean FA skeleton at FA>0.2. The 

procedure was repeated for MD, AD and RD. For each individual, we calculated the mean 

skeleton FA, MD, AD and RD, as well as mean values within 23 regions of interest (ROIs, 

Supplemental Table S4) based on two probabilistic white matter atlases provided with FSL, 

(i.e. the CBM-DTI-81 white-matter labels atlas and the JHU white-matter tractography atlas 

(44-46)). In total, we derived 96 DTI features per individual including the mean skeleton 

values.  

 

Quality assessment 

Subjects with poor image quality due to subject motion or other visible image artefacts (e.g. 

due to metal) were removed. Additionally, we employed a multistep quality assessment (QA) 

procedure (16) that included maximum voxel intensity outlier count (MAXVOX) and tSNR 

(47) prior to statistical analyses. In short, manual inspection of the flagged datasets after QA 

suggested adequate quality. Thus, we present results on the full dataset with supplemental 

results from a stringent QA (see (16) for additional information).  

 

Brain age prediction 
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We trained six models for age prediction. Our main model included all 96 features across all 

DTI metrics. To assess metric specificity, we trained four additional models based on all 

ROIs for each DTI metric (FA, RD, MD or AD). To test the value of including regionally 

specific information we trained an additional model with only the global mean skeleton 

feature from all four metrics included.  

The following pipeline for brain age prediction was identical for all six models. We 

used the xgboost framework in R (48) to build the prediction model. The number of rounds 

(nround), maximum depth (max_depth) and subsample were tuned and optimised using a 5-

fold cross validation of the training data, with early stopping if the prediction errors did not 

improve for 20 rounds. The learning rate (eta) was pre-set to eta=0.01. Besides the default 

setting, the following parameters were used in the model: nround=1400, max_depth=14.  

Prior to implementing the model, we regressed out the main effect of scanner in the 

entire dataset while accounting for age, age2, and sex using linear models in R (49). To 

estimate the reliability of our age prediction model, we used a 10-fold cross-validation 

procedure within the training sample and repeated the cross-validation step 100 times to 

provide a robust estimate of model predictive accuracy. Within the same procedure, we tested 

the performance of our trained model by predicting age in unseen subjects in the test sample. 

By applying the model to the test sample 100 times we obtain both a mean estimate and an 

estimate of uncertainty. We then calculated the correlation between the predicted (mean 

across 100 iterations) and the chronological age as a measure of model performance, in 

addition to the mean absolute error (MAE, in years) and root mean square error (RSME). For 

each individual, we calculated the discrepancy between estimated and chronological age, i.e. 

the BAG. Based on recent recommendation (50) we regressed out the main effect of age on 

BAG using linear models in R, yielding a residualized BAG (BAGR) used to calculate MAE 

and RMSE, and for group comparisons across cohorts.  
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Statistical analyses 

Statistical analyses were performed using R (version 3.3.3 (2017-03-06)(49)). We tested for 

main effects of diagnosis using linear models with BAGR as dependent variable and group, 

sex and site as independent variables, and performed pairwise group comparisons as 

appropriate. Using the metafor package (51) in R we adopted a meta-analytic framework in 

order to assess the heterogeneity and generalizability of the results. A random-effects model 

was used to weigh the primary studies prior to aggregating the effect size. Effect sizes were 

aggregated using the estimated marginal means of BAG from each group contrast (HC/SZ, 

HC/BD and BD/SZ) accounting for age, age^2 and sex. For effect size estimates we used 

Hedges’ g. Cochran’s heterogeneity statistic Q was used to test the homogeneity of effect 

sizes. A χ2 test with k-1 degrees of freedom was used to examine the significance of 

Cochran’s Q. The heterogeneity was quantified using the I2 statistic, which is sensitive to the 

degree of inconsistency in results between cohorts.    

 

Results 

Brain age predictions 

Age prediction in the training set using 10-fold cross validation revealed high correlations 

between chronological and predicted age for the main model including all features (r=.855, 

95% CI: .845-.865, MAE=7.28, RMSE=9.37). 

Figure 1B shows predicted age plotted as a function of chronological age for the test 

set when using the full feature set, and Table 1 summarizes prediction accuracy for all six 

models. Age prediction accuracy for the full model was high in HC (r=.593, MAE=7.98, 

RMSE=10.1), and in patients with BD (r=.576, MAE=8.89, RMSE=11.4), and SZ (r=.553, 

MAE=9.47, RMSE=12.00). While all models performed relatively well, prediction accuracy 
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was highest for the full model, and the global mean skeleton model outperformed the ROI 

based single-metrics models.  

 

Group differences in BAGR  

Figure 1C shows the distributions of BAGR within each group, and Table 1 and Supplemental 

Figure S3 summarize the results from the group comparisons. Briefly, all models revealed 

significant main effects of group, with higher BAGR in patients with SZ and BD compared to 

HC. The FA model yielded strongest effect size for the main group effect, although the full 

and mean skeleton models in addition to FA, MD and RD models revealed similar and 

converging patterns. All analyses revealed higher BAGR in BD and SZ compared to HC, with 

effect sizes ranging between d=0.1 and d=0.34. The model based on AD revealed less 

consistent results, and was the only model not showing significant group differences between 

SZ and HC. 
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Table	1	

Results	from	the	six	brain	age	models	

	 Correlation	

chronological	

age	and	

predicted	age	

(MAE/RMSE)	

BAGR	SZ	

Mean	±sd	

(95%CI)	

	

BAGR	BD	

Mean	±sd	

(95%CI)	

BAGR	HC	

Mean	±sd	

(95%CI)	

F	 p	 Pairwise	

comparison	

Cohens	d	

HC/SZ, 
BD/HC, 
BD/SZ	

Cohens	da	

Mean	

skeleton	

(HC/SZ,	

BD/HC,	

BD/SZ)	

All	features	

	

.63(8.6/10.9)	 -0.73	±8.79	(-
0.05/-1.40)	

-1.00±8.37 
	(0.22/-2.21)	

-3.29±7.89	
(-2.80-3.78)	

21.11	 <.001	 HC<SZ,	

HC<BD	

-.29/.15/-.04	 	

Meanskel	

	

.57(9.9/12.8)	 -0.48±10.06	
(0.30/-1.25)	

-1.94±8.86	
(-0.66/-3.23)	

-3.58±9.41	
(-2.99/-4.16)	

20.48	 <.001	 HC<SZ,	

HC<BD	

-.30/.10/-.08	 	

FA		 .52(10.5/13.0)	 0.82±9.97	
(1.59/0.05)	

0.57±9.37	
1.93/-0.78)	

-2.53±8.65	
(-1.99/-3.07)	

28.41	 <.001	 HC<SZ,	

HC<BD	

-.34/.17/-.04	 .36/-.17/.18	

RD		

	

.44(10.9/13.7)	 -0.57±9.84	
(0.19/-1.33)	

-0.52±8.70	
(0.74/-1.78)	

-3.37±8.51	
(-2.83/-3.90)	

21.71	 <.001	 HC<SZ,	

HC<BD	

-.28/.18/<-.01	 -.35/.20/-.14	

MD		

	

.50(10.6/13.1)	 -1.38±9.46	
(-0.65/-2.11)	

-0.80±8.46	
(0.43/-2.03)	

-3.42±8.44	
(-2.90/--3.95)	

14.48	 <.001	 HC<SZ,	

HC<BD	

-.22/-.16/.02	 -.24/.17/-.06	

AD		

	

.56(10.2/12.6)	 -2.86±8.54	

(-2.20/-3.52)	

-2.03±8.39	

(-0.81/-3.24)	

-3.65±8.33	

-3.13/-4.17)	

4.60	 .010	 HC>BD	 -.09/-12/.06	 <.00/.08/.09	

Note. Abbreviations: MAE: Mean estimate error, RMSE: Root mean square error, BAGR: residualised brain age gap, FA: fractional anisotropy, 
MD: mean diffusivity, RD: radial diffusivity and AD: axial diffusivity.  
aCohens d reported for the pairwise group comparisons for mean skeleton 
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Meta-analysis and heterogeneity in effects between cohorts 

Figure 2 shows a forest plot summarizing the results from the meta-analytical approach for 

the full model. Supplemental Figures S4-S8 show results from the other models. In short, the 

results revealed significantly higher brain age gap in SZ and BD compared HC with moderate 

effect sizes. The analysis did not support a group difference in brain age gap between BD and 

SZ. Whereas the effect sizes varied slightly between cohorts for the full model, the Q and I2 

statistics indicated low and non-significant heterogeneity. Figure S9 shows each cohort’s 

contribution to the heterogeneity and influence on the result from the meta-analysis. 

 

Figure 2. Forest plot summarizing the results from the meta-analytical approach for the all 
features model. Hedges estimate was used to calculate the effect size.  
 

 

Quality control 

Figure S10 summarises the results from multistep QA. Briefly, higher BAGR was observed in 

SZ and BD compared to HC across all levels of QA, with highly similar effect sizes.  
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RE Model for Subgroup (Hedges g = 0.09, p = 0.3732)
Test of heterogenity (Q = 0.43, df = 2, p = 0.80; I2 = 0.0%)
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Discussion  

The aetiology of severe mental disorders has a substantial neurodevelopmental component, 

which is amongst other characteristics reflected in altered brain maturational trajectories 

during the formative years of childhood and adolescence, and as group-level differences in 

adult patient populations. Along with evidence of genetic and clinical overlap with several 

aging-related conditions, including cardiovascular risk factors and increased mortality, the 

neurodevelopmental account supports the need for a dynamic lifespan perspective in the 

search for disease mechanisms. Here, in ten different cohorts comprising healthy controls and 

patients with SZ and BD, we used machine learning to estimate the brain age using DTI based 

indices of white matter structure and organization. This novel approach yielded five main 

results. First, in a large independent training set we found high accuracy of brain age 

prediction across the adult lifespan using DTI features, supporting the feasibility and 

sensitivity of the approach. Second, applying the model to an independent test set revealed 

significantly higher brain age gap in patients with SZ and BD compared to HC. Third, follow-

up meta-analysis and tests of heterogeneity suggested high consistency across independent 

cohorts and scanners. Fourth, brain age models based on FA showed higher sensitivity than 

models based on the other metrics, both alone and combined. Finally, the reduced set of 

global mean skeleton features compared to a number of regional atlas-based features revealed 

highly converging results. We next discuss the implications of these findings in more detail. 

 Brain age prediction provides an informative summary measure that may serve as a 

proxy for brain integrity and health across normative and clinical populations. Neuroimaging 

derived white and grey matter phenotypes carry distinct biological information of brain 

integrity, and tissue-specific brain age models may provide higher sensitivity and specificity 

to relevant biological processes compared to conventional models based on grey matter 

features alone (27). DTI has been broadly applied in clinical neuroscience research due to its 
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proposed sensitivity to microstructural properties of brain tissue. However, whereas previous 

studies have documented higher brain age in patients with severe mental disorders, these were 

based on grey matter models only (5, 28, 29). In order to test if previous findings suggesting 

clinical deviations from normative grey matter trajectories generalize to white matter, we 

performed brain age prediction using different combinations of DTI based metrics. In line 

with previous findings (27) we obtained high age prediction accuracy across most models. 

Supporting previous evidence suggesting that regional DTI based indices of brain aging 

reflect relatively low-dimensional and global processes (12, 52), we found similar age 

prediction accuracy for the reduced models comprising global mean skeleton values only 

compared to the model including the extended set of regional features. Although brain aging 

shows some regional heterogeneity, these findings demonstrate that the most relevant 

information required for brain age prediction is captured at the global level. This conjecture is 

also supported by a recent twin study demonstrating that a large proportion of the estimated 

heritability of specific tracts is accounted for by a global factor (53).  

Likewise, we found that the sensitivity to group differences was not strongly 

dependent on the inclusion of the full feature set. Indeed, the effect size obtained when 

comparing patients with SZ and HC were slightly higher for the global mean skeleton model 

compared to the full model. These findings are in line with recent evidence of anatomically 

widely distributed group differences between healthy controls and patients with SZ (15). 

Interestingly, the largest effect when comparing SZ and HC was obtained for the FA only 

model, supporting the sensitivity of FA to clinical differences in WM properties (15, 16). 

Higher predicted brain age in the patient groups compared to healthy controls may indicate 

accelerated brain aging in patients with severe mental disorders. However, our cross-sectional 

design does not permit us to make any inference about brain aging per se, and previous 

reports of relatively age-invariant group differences in brain volumetry (21) and DTI indices 
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(16) suggest that the reported group differences in brain age may in fact reflect differences 

accumulating already early in life. Unfortunately, due to the current study design with adults 

only we cannot address the maturational trajectories in the formative years. Although the 

application of diffusion MRI as the basis for age prediction is novel, higher gray matter brain 

age has been shown in several brain and mental disorders (29, 54). We extend these previous 

findings by documenting higher DTI based white matter brain age in both SZ and BD, and, 

although with moderate effect sizes, we show that the effects are relatively robust across 

cohorts and scanners, with only minor heterogeneity in effect sizes between cohorts.  

We found no significant difference in BAGR between BD and SZ, supporting 

previous evidence of partly overlapping clinical and biological characteristics between these 

two diagnostic categories (16, 55, 56). While the current results support the existence of a 

common set of mechanisms across disorders, future studies utilizing a broader range of 

imaging modalities in combination with specific genetic, clinical (symptoms, cognitive 

function etc) and biological phenotypes may allow for the identification of specific diagnostic 

signatures and sub-groups. However, inherent limitations associated with the classical case-

control design in mental health research have recently been emphasized using neuroimaging 

data (24, 25). In particular, the current lack of biologically informed diagnostic criteria should 

motivate future studies to consider alternative approaches to promote a novel clinical 

nosology based both on symptomatology and data-driven clustering (57) as well as brain-

based and biological phenotypes cutting across diagnostic boundaries.  

Our results document robust group level deviances in white matter structure 

manifesting as older-appearing brains in patients with severe mental disorders compared to 

their healthy peers. Whereas DTI based markers are sensitive to a range of different biological 

and anatomical characteristics, the current specificity does not allow for inference on the 

distinct neurobiological mechanisms involved. Myelin integrity and myelin packing density 
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are among the proposed candidate mechanisms for observed changes in DTI metrics (34, 58, 

59), but the specificity is low, and the current results probably reflect a combination of 

different neurobiological processes and macroanatomical differences. Previous evidence has 

implicated myelin-related abnormalities and neuroinflammation both in the pathophysiology 

of severe mental disorders and in brain aging (60-63). Future studies may benefit from the 

inclusion of advanced diffusion based models based on multi-shell diffusion MRI allowing 

for stronger inference on the microstructural milieu of the brain tissue, including 

microstructural indices based on different diffusion scalar metrics (e.g., Neurite Orientation 

Dispersion and Density Imaging (NODDI) (64, 65), diffusion kurtosis imaging (DKI) (66), 

white matter tract integrity (WMTI) (67) and restriction spectrum imaging (RSI) (68)). 

In line with previous findings of widely distributed effects in well-powered studies of 

brain aging (12) and schizophrenia (15), we found similar age prediction accuracy and 

subsequent group differences in brain age for the model including only global mean skeleton 

values and the model including a range of regional informative values extracted from various 

atlas-based tracts and regions of interest. Although specific symptoms and clinical traits may 

map preferentially onto specific neuroanatomical subsystems (see e.g. (19)), these novel 

results suggest that a large proportion of the relevant variance associated with age and 

corresponding deviations in the patients groups are captured by primarily global brain 

processes, with relevance for our understanding of the anatomical heterogeneity and 

dimensionality of brain aging and severe mental illness.  

In addition to the anatomical distribution of effects, the spatiotemporal dynamics of 

brain development and aging and their deviations in patients with mental disorders remain 

unclear. The individual level onset and rate of the group-level deviations from the normative 

white matter trajectory is unknown and can only be inferred using longitudinal designs 

covering sensitive periods of neurodevelopment. Previous studies have shown both delayed 
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neurodevelopment during adolescence (18) and accelerated aging in adulthood (5) in patients 

with severe mental disorders. Whereas these observations are not mutually exclusive, future 

studies should aim at disentangling the lifespan dynamics, e.g. by including individuals with a 

wider age-range and pursuing longitudinal designs in individuals across a wide range of 

functional levels and risk. The latter may be particularly pertinent to disentangle primary 

disease-related mechanisms and secondary factors related to the disease, including medication 

and life-style factors such as nutrition, physical activity, education etc. Unfortunately, 

although possible effects of psychotropic drugs on the brain is a topic of great interest and 

importance (69-71), in common with other studies employing a cross-sectional and non-

randomised design the current design does not allow us to make inference about the effects of 

medication and other clinical and lifestyle factors on brain age, which should be investigated 

by future and properly designed studies. Meanwhile, previous studies reporting associations 

with medication status in smaller samples need to be interpreted in light of the recent lack of 

significant associations in the largest DTI study to date (15).   

 In conclusion, in this multi-sample study including patients from 10 different cohorts 

we report higher brain age in patients with SZ and BD compared to HC using various DTI-

based indices of white matter structure and organization. Although the effect sizes were 

modest, our unique design allowed us to specifically quantify the heterogeneity and 

robustness of effects across cohorts and scanners, supporting that brain age prediction using 

diffusion MRI is a sensitive marker in the clinical neurosciences.  
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