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ABSTRACT 9 

Higher genetic gains can be achieved through genomic selection (GS) by shortening time of 10 

progeny testing in tree breeding programs. Genotyping-by-sequencing (GBS), combined with 11 

two imputation methods, allowed us to perform the current genomic prediction study in Scots 12 

pine (Pinus sylvestris L.). 694 individuals representing 183 full-sib families were genotyped 13 

and phenotyped for growth and wood quality traits. 8719 SNPs were used to compare different 14 

genomic prediction models. In addition, the impact on the predictive ability (PA) and prediction 15 

accuracy to estimate genomic breeding values was evaluated by assigning different ratios of 16 

training and validation sets, as well as different subsets of SNP markers. Genomic Best Linear 17 

Unbiased Prediction (GBLUP) and Bayesian Ridge Regression (BRR) combined with 18 

expectation maximization (EM) imputation algorithm showed higher PAs and prediction 19 

accuracies than Bayesian LASSO (BL). A subset of approximately 4000 markers was sufficient 20 

to provide the same PAs and accuracies as the full set of 8719 markers. Furthermore, PAs were 21 

similar for both pedigree- and genomic-based estimations, whereas accuracies and heritabilities 22 

were slightly higher for pedigree-based estimations. However, prediction accuracies of 23 

genomic models were sufficient to achieve a higher selection efficiency per year, varying 24 

between 50-87% compared to the traditional pedigree-based selection.  25 
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INTRODUCTION 26 

Scots pine (Pinus sylvestris L.) is the most widely distributed pine in the world (Houston 27 

Durrant et al. 2016; Mátyás et al. 2004). It is a highly important commercial species in Europe, 28 

particularly in Northern countries (Krakau et al. 2013), being the second foremost species for 29 

wood production in Sweden (The Swedish National Forest Inventory, 2015). The actual Scots 30 

pine breeding program consists of a combination of several selection strategies, all of them 31 

based on conventional progeny testing and breeding value prediction based on reliable 32 

phenotypic assessments, at age of 10-15 years, and pedigree information, thus a breeding cycle 33 

usually takes roughly 21 to 36 years, depending on the testing strategy and mating success 34 

(Rosvall et al. 2011). 35 

 36 

Genomic selection (GS) could potentially reduce the breeding cycle, by shortening field test 37 

time through early selections based on GS predictions, and increasing selection intensities with 38 

greater genetic gains per unit of time (Crossa et al. 2017; Isik 2014; Grattapaglia et al. 2018). 39 

GS was firstly introduced by Meuwissen et al. (2001) and it consisted of using genome-wide 40 

marker information to calculate genomic estimated breeding values (GEBV). The major 41 

difference between GS and marker assisted selection (MAS) is that there is no need to detect 42 

quantitative trait loci (QTL) prior to selection. To perform GS, a training set (TS) of individuals 43 

that have been phenotyped and genotyped, generally through single nucleotide polymorphism 44 

markers (SNPs), are used to develop prediction models to estimate GEBV, that are validated 45 

through a validation set (VS) of individuals, or selection candidates, which are genetically 46 

related to the TS and only have marker data for predicting their own breeding values  47 

(Grattapaglia and Resende 2011).   48 
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 49 

Next generation sequencing technologies (NGS) have made it possible to discover thousands 50 

of SNPs across the genome and thus make GS a routine application in animal and plant breeding 51 

programs (Grattapaglia et al. 2018). SNP arrays had been shown as preferable for their 52 

reproducibility, manageability and storage logistics, as well as their cost efficiency 53 

(Grattapaglia et al. 2018). There are still challenges for forest tree species, such as Scots pine, 54 

to develop genome-wide SNP panels or exome probe panels because of their large complex 55 

genomes, and lack of a reference genome. Therefore, it is attractive to employ alternative 56 

genotyping methods such as genotyping-by-sequencing (GBS) (Chen et al. 2013; Elshire et al. 57 

2011; Dodds et al. 2015). GBS uses restriction enzymes to reduce sequencing of complex 58 

genomes and uses a barcoding system for multiplex sequencing, which increases its efficiency 59 

and reduces the genotyping costs (He et al. 2014; Pan et al. 2015). GBS can generate very large 60 

number of SNPs and produces large amount of missing data. The latter can be solved with the 61 

aid of different imputation methods, such as mean imputation (MI), expectation maximization 62 

(EM), family-based k-nearest neighbor (kNN-Fam) or singular value decomposition (SVD) 63 

(Troyanskaya et al. 2001; Dempster et al. 1977). EM algorithm was especially designed for 64 

GBS data (Endelman 2011; Poland et al. 2012). Genomic predictions based on GBS marker 65 

information have been successfully studied in animal (Gorjanc et al. 2015), crop- (Poland et al. 66 

2012; Crossa et al. 2013; Jarquin et al. 2014) and tree breeding (El-Dien et al. 2015; El-Dien 67 

et al. 2018; Ratcliffe et al. 2015). 68 

 69 

Accuracy of GS predictions can vary depending on the model selected. Currently different 70 

statistical methods are available to estimate GEBV. Genomic best linear unbiased prediction 71 

(GBLUP) consists of using the realized relationship matrix (G matrix), based on the marker 72 
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realized kinship relationship, replacing the traditional pedigree numerator relationship matrix 73 

(A matrix) which is based on coancestry and the infinitesimal model in quantitative genetics, 74 

assuming that QTL allelic effects are normally distributed and all have a similar contribution 75 

to the genetic variance (Isik et al. 2017).  On the contrary, most of the Bayesian approaches 76 

presume a prior gamma or exponential distribution of QTL allelic effects, thus the variance at 77 

each locus can vary (Meuwissen et al. 2001). For instance, Bayesian LASSO (BL) assumes that 78 

variance follows a Laplace (or double exponential) distribution (Park and Casella 2008). 79 

Nevertheless, Bayesian ridge regression (BRR) assigns QTL effects to a multivariate normal 80 

prior distribution with a common variance, which is modelled hierarchically through a scaled 81 

inverted chi-squared distribution (Perez et al. 2010; de los Campos et al. 2013; Isik et al. 2017).  82 

 83 

Although Bayesian approaches may seem more appropriate as they can accommodate different 84 

distributions of the allelic effects, the literature on GS in forest trees shows similar results for 85 

all models. For instance, Chen et al. (2018a) observed similar prediction accuracies when 86 

comparing four genomic prediction models (GBLUP, BRR, BL and reproducing kernel hilbert 87 

space (RKHS)) in Norway spruce (Picea abies (L.). Isik et al. (2016) detected similar predictive 88 

abilities in maritime pine (Pinus pinaster Ait.) comparing GBLUP, BRR and BL prediction 89 

models. Although GBLUP and ridge regression BLUP (rrBLUP) were recommended by Tan 90 

et al. (2017) for their computational advantages, similar predictive abilities were observed  for 91 

GBLUP, rrBLUP, BL and RKHS, in a Eucalyptus urophylla and E. grandis hybrid study. In an 92 

interior spruce (Picea engelmannii  glauca) study, Ratcliffe et al. (2015) observed similar 93 

accuracies for rrBLUP and BayesC, which in turn performed better than the generalized ridge 94 

regression (GRR), whereas Thistlethwaite et al. (2017) observed almost identical predictions 95 

with rrBLUP and GRR in Douglas-fir (Pseudotsuga menziensii Mirb. (Franco)). On the 96 
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contrary, Resende et al. (2012b) observed better PA for disease resistance in a loblolly pine 97 

(Pinus taeda L.) study with Bayesian methods when compared with BLUP-based methods. 98 

Despite these similar results from different studies carried out so far, it is still important to test 99 

the prediction abilities and accuracies of the different genomic prediction models in different 100 

species and traits, due to the possible differences in the genetic architecture of the traits.  101 

 102 

Among the objective traits of the Scots pine breeding program are: the traditionally existing 103 

growth traits, and the recently incorporated wood quality traits (Rosvall and Mullin 2013). The 104 

goal of this investigation was to study the prediction power of SNP markers for growth and 105 

wood quality traits in Scots pine. The specific objectives were to 1) estimate the predictive 106 

ability and prediction accuracy of genomic estimated breeding values (GEBV), 2) compare the 107 

efficiency of three different genomic prediction models (GBLUP, BL and BRR) in the 108 

estimation of GEBV, 3) study the effect of two different imputation algorithms in the predictive 109 

ability and prediction accuracy of GEBV and 4) compare the effect of different numbers of 110 

SNPs obtained through GBS in the predictive ability and prediction accuracy of the genomic 111 

predictions.   112 
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MATERIALS AND METHODS 113 

Plant material 114 

In this study a Scots pine full-sib progeny trial (F261, Grundtjärn), belonging to the Swedish 115 

tree improvement program at Skogforsk (the Forestry Research Institute of Sweden) was used. 116 

The trial consists of 184 full-sib families and 7240 trees (F1-generation), generated from a 117 

partial diallel mating design of 40 plus trees (F0-generation) and established in 1971 by 118 

Skogforsk as a randomized single tree plot design, divided into 14 post-blocks (Ericsson 1997). 119 

A more detailed information on the trial can be found in (Fries 2012). 694 progeny trees (F1) 120 

from 183 families were selected for this study, such that the number of trees per family varied 121 

from one to seven with an average of four individuals per family.   122 

 123 

Phenotypic data and adjustments 124 

Height (Ht) was measured when the trees were 10 (Ht1) and 30 (Ht2) years old. Diameter at 125 

breast height (DBH) was also measured two times, at ages 30 (DBH1) and 36 (DBH2). In 2011, 126 

increment cores at breast height were obtained from 694 trees, and processed by Silviscan 127 

(Innventia AB, Stockholm, Sweden). From the Silviscan analysis, three traits were used in this 128 

study: microfibril angle (MFA), static modulus of elasticity (MOEs) and wood mean density 129 

(DEN). In addition, dynamic modulus of elasticity (MOEd) predicted by Hitman ST300 (Fiber-130 

gen, Christchurch, New Zealand) was as well used in the current study.  All traits were further 131 

described in Hong et al. (2014).   132 

The following linear mixed model was applied to reduce the impact of environmental effects 133 

for each trait:  134 
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𝐘 = 𝐗𝜷 + 𝐙𝒖 + 𝐖𝐛 + 𝒆 , 135 

where Y is the vector of individual tree observations of a single trait,  is the vector of fixed 136 

effects (intercept), u is the vector of random effects (post-block and trial design parameters), b 137 

is a vector of random additive genetic effect of individuals with a normal distribution, b ~ N(0, 138 

A𝜎𝑏
2), A is a matrix of additive genetic effects among individuals, 𝜎𝑏

2 is the additive genetic 139 

variance and and 𝒆 is the vector of residuals. X, Z and W are the incidence matrices for , u 140 

and b, respectively.  141 

Adjusted values were obtained for MFA, MOEs, DEN and MOEd, by removing the variation 142 

of the experimental design features and post-block effects. For  growth traits (Ht1, Ht2 and 143 

DBH1 and DBH2), spatial adjustments were performed using the row and column coordinates 144 

in the trial. For modeling the residual structure, a model was fitted with only the experimental 145 

design elements as factors (Dutkowski et al. 2006). If the spatial distribution of residuals were 146 

non-random for any trait, a second model was fitted, such that the full residual component was 147 

structured as  148 

𝐑 = 𝜎𝜉
2[𝐀𝐑𝟏(𝜌𝑐𝑜𝑙)⨂𝐀𝐑𝟏(𝜌𝑟𝑜𝑤)] + 𝜎𝜂

2𝐈, 149 

where 𝜎𝜉
2 and 𝜎𝜂

2 are spatially dependent and independent residual variances, respectively, ⨂ 150 

is the Kronecker product of two matrices, and 𝐴𝑅1(𝜌𝑐𝑜𝑙) and 𝐴𝑅1(𝜌𝑟𝑜𝑤) represent the first-151 

order autoregressive correlation matrix in the column and row directions, and I denotes the 152 

identity matrix (Dutkowski et al. 2002; Ivkovic et al. 2015; Chen et al. 2018b). The adjusted 153 

phenotypic data (predicted values of each tree) were used for genomic predictions. 154 

 155 
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Genotyping 156 

DNA extraction 157 

The commercial NucleoSpin Plant II kit (Machery-Nagel, Düren, Germany) was used to 158 

extract genomic DNA from vegetative buds or needles from the 694 progeny trees and 46 159 

parents. DNA concentration was determined with Qubit 2.0 fluorometer (Invitrogen,  160 

Carlsbad, CA, USA). 161 

Genotyping-By-Sequencing (GBS) library preparation 162 

Using 827 samples (replicates included) and PstI high fidelity restriction enzyme (New England 163 

Biolabs, MA, USA), three genomic libraries for GBS were prepared following the procedure 164 

described in Pan et al. (2015). The libraries were sequenced on an Illumina HiSeq 2000 165 

platform at SciLifeLab, Sweden. 166 

SNP calling and filtering  167 

Paired-end raw reads of each GBS library were cleaned and demultiplexed by the 168 

process_radtags module of Stacks v.1.40 (Catchen et al. 2011) on the basis of 300 barcodes 169 

with 4–8  bp. Cleaned reads of each sample were aligned to the Pinus taeda v1.0 (Wegrzyn et 170 

al. 2014) reference genome, using BWA mem v0.7.15 (Li and Durbin 2010)  with default 171 

parameters. Alignments were coordinate-sorted and indexed using Samtools v1.5 (Li et al. 172 

2009). SNP markers were called using the mpileup command of Samtools over all the samples 173 

simultaneously, with default parameters, and converted into VCF matrix using BCFtools 174 

v0.1.19 (Narasimhan et al. 2016). Furthermore, these variants were sorted to keep only high-175 

quality SNPs. Using vcfutils in BCFtools with default parameters, the SNPs within 3bp around 176 

an indel or with mapping quality < 20 were filtered out; using Vcftools v.0.1.12b (Danecek et 177 
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al. 2011), only SNPs with coverage ≥ 5x, genotype quality (GQ) ≥ 30, genotype calling rate > 178 

20% were kept; using the custom Perl program (ReplicateErrfilter.pl), discordant genotypes of 179 

66 replicated samples were detected and the SNP sites with ≥ 3 replicate errors were filtered 180 

out.  After this step, 24,152 informative SNP markers were retained. 181 

Imputation of missing genotypic data 182 

Missing genotypic data were imputed with TASSEL 5 (Bradbury et al. 2007) using LD K-183 

nearest neighbor (Money et al. 2015) as a baseline method. After this imputation, two extra 184 

imputations were performed to compare their prediction accuracies; random (RND) imputation 185 

with the codeGeno function in synbreed package (Wimmer et al. 2012) in R (R Core Team 186 

2016) and imputation with the expectation maximization (EM) algorithm by the A.mat function 187 

implemented in rrBLUP package (Endelman 2011) in R. A total of 15,537 and 15,433 SNPs 188 

with minor allele frequency (MAF) lower than 1% and with a missing data threshold lower than 189 

10% were removed using RND and EM imputation methods, respectively.  190 

 191 

Statistical analysis for genomic predictions 192 

Among all the available approaches to perform genomic predictions we selected genomic best 193 

linear unbiased prediction (GBLUP), Bayesian ridge regression (BRR) and Bayesian LASSO 194 

(BL) regression, to estimate genomic breeding values (GEBV) and to evaluate the ability to 195 

predict them. ABLUP and GBLUP calculations were performed in ASReml 4.1. (Gilmour et 196 

al. 2015) whereas BRR and BL were implemented using the BGLR function from the BGLR 197 

package in R (Perez and de los Campos 2014).  198 
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ABLUP and GBLUP 199 

Estimated breeding values (EBV) and GEBV were predicted using the following model 200 

𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐞                                                                                                              (1)                                                                    201 

where y is the vector of the adjusted phenotypic data for each trait, b is the vector of fixed 202 

effects (mean), a is the vector of random effects and e is the vector of residual effects, which is 203 

assumed to follow a normal distribution as var(e)~N(0, I𝜎𝑒
2 ), where 𝜎𝑒

2 is the residual variance 204 

and I is the identity matrix. X and Z are the incident matrices of b and a.   205 

ABLUP is the method traditionally used to predict EBV, based on pedigree relationships 206 

between individuals. In ABLUP, the vector a (additive genetic effects) from Eq.1 is assumed 207 

to follow a normal distribution with expectations of ~N(0, A𝜎𝑎
2 ), where 𝜎𝑎

2 is the additive 208 

genetic variance and A is the additive numerator relationship matrix.  209 

GBLUP was performed using Eq.1. This method is derived from ABLUP but differs in that the 210 

A matrix in now substituted by a genomic relationship matrix, known as realized relationship 211 

matrix (G matrix), estimated according to VanRaden (2008).  212 

G =  
(𝐌−𝐏)(𝐌−𝐏)′

𝟐 ∑ 𝒑𝒋(𝟏−𝒑𝒋)
𝒒
𝒋=𝟏

,                                                                                                              (2) 213 

where M is the matrix of genotyped samples, P is the matrix of allele frequencies with the jth 214 

column given by 2(𝑝𝑗 − 0.5), where 𝑝𝑗 is the observed allele frequencies of the genotyped 215 

samples. The elements of M were coded as 0, 1 and 2 (i.e., the number of minor alleles) for the 216 

estimation of the G matrix with function kin from the synbreed package in R in the case of 217 

RND imputed data and with the function A.mat from the rrBLUP package in R, for the EM  218 

imputed data. The a effects from Eq.1, were assumed to follow a normal distribution with 219 
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expectations of ~ N(0,G𝜎𝑔
2 ), where 𝜎𝑔

2 is the genetic variance explained by the markers effect 220 

and G is the realized relationship matrix, in GBLUP (Isik et al. 2017). 221 

Bayesian Ridge Regression (BRR) 222 

In BRR, vector a from Eq.1 is assigned a multivariate normal prior distribution with a common 223 

variance to all marker effects, that is 𝒂~𝑁(0, 𝐼𝑝𝜎𝑚
2 ), where p is the number of markers, 𝜎𝑚

2  is 224 

the unknown genetic variance which is contributed by each marker and assigned as 225 

𝜎𝑚
2 ~𝜒−2(𝑑𝑓𝑚 , 𝑆𝑚), where 𝑑𝑓𝑚 is degrees of freedom and 𝑆𝑚 is the scale parameter. Residual 226 

variance is assigned as 𝜎𝑒
2~𝜒−2(𝑑𝑓𝑒, 𝑆𝑒), with 𝑑𝑓𝑒 degrees of freedom and scale parameter for 227 

residual variance 𝑆𝑒 (Perez et al. 2010). 228 

Bayesian LASSO (BL) regression 229 

BL method assumes that vector a from Eq.1 follows a hierarchical prior distribution with 230 

𝒂~𝑁(0, 𝑇𝜎𝑚
2 ), where 𝐓 = diag(𝜏1

2, … , 𝜏𝑝
2). 𝜏𝑗

2 is assigned as 𝜏𝑗
2~𝐸𝑥𝑝(𝜆2), 𝑗 = 1, … , 𝑝. 𝜆2 is 231 

assigned as 𝜆2~𝐺𝑎𝑚𝑚𝑎(𝑟, 𝛿). Finally, the residual variance is assigned as 𝜎𝑒
2~𝜒−2(𝑑𝑓𝑒, 𝑆𝑒), 232 

where 𝑑𝑓𝑒 is degrees of freedom and 𝑆𝑒 is the scale parameter for residual variance (Park and 233 

Casella 2008). 234 

Model convergence and prior sensitivity analysis 235 

Bayesian algorithms were extended using Gibbs sampling for estimation of variance 236 

components. The Gibbs sampler was run for 20,000 iterations with a burn-in of 1,000 iterations 237 

and a thinning interval of 100. The convergence of the posterior distribution was verified using 238 

trace plots. Flat priors were given to all models.  239 
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Cross validation, prediction accuracy and predictive ability of the models 240 

We performed 10-fold cross-validation, i.e., 90% of individuals in the training set (TS) and 241 

10% in the validation set (VS), for all traits and models (ABLUP, GBLUP, BRR and BL), 242 

except to test the different sizes of TS and VS. In addition, for each of the genomic prediction 243 

models, two different imputation methods (EM and RND) were evaluated.  244 

For the Bayesian methods, GEBV in the validation set (VS) were estimated as, 245 

𝑔𝑖 = ∑ 𝑍′𝑖𝑗 �̂�𝑗
𝑛
𝑗=1 , 246 

where 𝑍′𝑖𝑗  is the indicator covariate (-1, 0, 1) for the ith tree at the jth locus and �̂�𝑗 is the estimated 247 

effect at the jth locus. 248 

Models were evaluated based on their predictive ability (PA) and prediction accuracy 249 

(Accuracy). In our study, PA was defined as the Pearson product-moment correlation between 250 

the cross-validated GEBVs and the adjusted phenotypes (y) from Eq. 1, i.e., 𝑟(𝐺𝐸𝐵𝑉, 𝐲) and 251 

Accuracy was defined as the Pearson product-moment correlation between the cross-validated 252 

GEBVs and the EBVs estimated from ABLUP using all adjusted phenotypes, i.e., 253 

𝑟(𝐺𝐸𝐵𝑉, 𝐸𝐵𝑉). 254 

Effect of the relative size on training and validation sets 255 

The effect on the PA and prediction accuracy, of five different size ratio of TS and VS, was 256 

evaluated. The relative size of TS and VS were established dividing the 694 individuals in five 257 

different proportions of TS/VS. That is 90%, 80%, 70%, 60% and 50% for TS and the rest as 258 

VS. For each trait and each of the 20 models, 10 replicates were performed.  259 
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Effect of marker number on accuracies 260 

Due to the better predictions obtained with the BRR-EM model from cross-validation results, 261 

BRR-EM model was selected to test the effect of the number of SNPs on the PA and prediction 262 

accuracy. From all available SNPs, we randomly selected 14 sets of SNPs.  263 

Heritability estimation 264 

Pedigree-based narrow sense-heritability (ℎ𝑎
2) and genomic narrow-sense heritability (ℎ𝑔

2) 265 

were estimated as 266 

ℎ𝑎
2 =

𝜎𝑎
2

𝜎𝑝𝑎
2   and ℎ𝑔

2 =
𝜎𝑔

2

𝜎𝑝𝑔
2   267 

where 𝜎𝑎
2 and 𝜎𝑔

2 are the pedigree- and genomic-based additive genetic variances and 𝜎𝑝𝑎
2  and 268 

𝜎𝑝𝑔
2  are phenotypic variances estimated using ABLUP and GBLUP, respectively. 269 

Relative selection efficiency of GS 270 

Assuming that selection response is inversely proportional to the length of the breeding cycle  271 

(Grattapaglia and Resende 2011), the relative efficiency (RE) of GS to the traditional pedigree-272 

based selection (TPS) can be estimated as 273 

 𝑅𝐸 =
𝑟(𝐺𝐸𝐵𝑉𝐺𝑆, 𝐸𝐵𝑉)

𝑟(𝐸𝐵𝑉𝑇𝑃𝑆, 𝐸𝐵𝑉)
 ,  274 

consequently the RE per year (RE/year) can be estimated as 275 

𝑅𝐸 𝑦𝑒𝑎𝑟⁄ =
𝑟(𝐺𝐸𝐵𝑉𝐺𝑆,𝐸𝐵𝑉)

𝑟(𝐸𝐵𝑉𝑇𝑃𝑆,𝐸𝐵𝑉)
×

𝐶𝐿𝑇𝑃𝑆

𝐶𝐿𝐺𝑆
 , 276 

where CLTPS and CLGS are the breeding cycle lengths of TPS and GS, respectively.  277 

In order to estimate RE, we assumed that with GS approaches the cycle could be reduced by 278 

50%. 279 
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 280 

Data availability 281 

The data sets used in this study are available as File S1 and File S2, in the supplementary 282 

material for Calleja-Rodriguez et al. 2019 (link figshare here). 283 
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RESULTS 284 

Prediction accuracy and predictive ability of the different models 285 

PAs and prediction accuracies from the 10-fold cross-validation were obtained for each 286 

model (ABLUP, GBLUP, BRR and BL) and imputation method (Table 1).  ABLUP 287 

performed best in terms of prediction accuracy. Among the genomic prediction models, 288 

different models produced higher accuracies for various traits. There was no single 289 

genomic prediction model that fit to all the traits best. In the case of PAs, ABLUP did not 290 

showed the highest PA for almost any of the traits. Depending on the trait, the superiority 291 

of the models varied for PAs. ABLUP showed higher PA for DEN (0.41); however, it was 292 

only slightly higher than PAs obtained with most other models (0.40 in all cases).  293 

In summary, although the best accuracies were observed with ABLUP for all traits, 294 

genomic prediction models produced higher PAs for all traits. Moreover, all the genomic 295 

prediction models showed similar PAs and prediction accuracies for all traits, being slightly 296 

higher when EM imputation method was combined with GBLUP, BRR or BL. 297 

Relative size effect of the training and validation sets 298 

To test the size effect of different ratios of TS and VS,  EM imputation method was used, 299 

in combination with ABLUP, GBLUP and BRR since it showed the best PAs and 300 

accuracies in our previous 10-fold cross validation.  301 

All three models showed a similar but increasing patterns of PA for different traits with the 302 

increase of TS percentages (Fig. 1A). GBLUP and ABLUP showed the highest PAs for 303 
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almost all traits, when 70% of the individuals were assigned to the TS; however, BRR 304 

needed a higher percentage of individuals assigned to the TS to reach the highest PA. 305 

Among the three methods, ABLUP had the best prediction accuracies for all eight traits 306 

under all TS ratios (Fig. 1B). BRR and GBLUP showed similar accuracies. To  reach the 307 

highest prediction accuracies, 80-90% of individuals in the TS were needed for all traits 308 

for BRR method, whereas GBLUP needed a subsample pf 70% or 80% individuals as TS 309 

for almost all traits. The computational time needed to perform the analysis as the subset 310 

of individuals increased, was substantially longer with Bayesian models. 311 

In brief, the sensitivity analysis suggested that using about 70-80% of individuals sampled 312 

from the studied population would produce similar PA and accuracy as the full sample size, 313 

for the growth and wood quality traits. 314 

Effect of increasing number of marker on accuracies 315 

The impact of the different subsets of SNPs was tested based on BRR-EM model that was 316 

the model with higher PA and accuracy from the previous 10-fold cross-validation. 317 

Accuracies and PAs increased for all traits as the number of SNPs increased (Fig. 2). 318 

However, for almost all traits, the greatest increase on prediction accuracy was attained 319 

when the subset of markers was 1000 SNPs. Accuracy continued slightly increasing, for 320 

all traits with subsets of SNPs higher than 1K, but the increase slowed after 3K – 4K SNPs, 321 

reaching the maximum accuracies at 3K for DBH1, 4K for Ht1 and MOEs, 7K for DEN 322 

and MOEd, and 8K for Ht2, DBH2 and MFA. 323 
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PA followed a similar pattern; however, it decreased at a subset of 2K SNPs for Ht1, Ht2 324 

and DBH1 to continue increasing until a subset of 3K SNPs where it stagnated until it 325 

reached the maximum of 8719 SNPs. For DBH2, PA decreased at a subset of 4K SNPs and 326 

kept constant for the following subset of SNPs. The PA of wood traits showed an increase 327 

trend as the number of SNPs rise up, until they reach a plateau at around a subset of SNPs 328 

that vary from 4K to 6K depending on the trait. In short, from the subset of 3K-4K SNPs 329 

we did not detect any considerable increase in the accuracies and PA of any of the traits 330 

except  MFA and MOEs  for which we detected an increase at the subset of 2K SNPs that 331 

kept more or less constant until the final subset of 8719 SNPs.   332 

Heritabilities 333 

Narrow sense heritabilities estimates based on ABLUP were higher than those based on 334 

GBLUP, except for DBH2 which was higher for GBLUP (Table 2). MOEs showed the 335 

same heritability both for ABLUP and GBLUP-EM. GBLUP heritability estimates 336 

calculated from the realized relationship matrix derived from EM imputation method were 337 

higher than those derived from the RND imputation method, for almost all traits, except 338 

Ht1 and MOEd. Standard errors were similar for growth traits regardless the BLUP method 339 

used but they were always lower when derived from GBLUP method. Based on GBLUP, 340 

we observed that  traits with heritability estimates equal or lower than 0.25, such as, Ht1, 341 

DBH1, DBH2 or MFA, showed estimates of PA below 0.30, while those with heritabilities 342 

of approximately 0.40 (Ht2, MOEs, DEN and MOEd) had PA estimations of about 0.40. 343 

Moreover, we detected positive linear correlation between PA and trait heritabilities 344 

(r=0.99, p<0.0001), but not between accuracies and heritabilities (r=0.22, p=0.6) (Fig. 3). 345 
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Relative selection efficiency of GS 346 

The relative genomic selection efficiency (RE) and relative genomic selection efficiency 347 

per year (RE/year) were estimated in the genomic selection models, using three models 348 

(GBLUP, BRR and BL) and the EM imputation. The Swedish Scots pine breeding cycle 349 

combines several selection strategies and we divided in two groups, according to their 350 

lengths (Rosvall et al. 2011). For the first group of strategies, which is basically seedling 351 

backward selection, the cycle length takes up to 36 years. For such strategies, flowering 352 

time needs to be included in the cycle length. In order to estimate RE, we assumed that 353 

with GS approaches the cycle could be reduced by 50% to 18 years, since 15 years is the 354 

starting age for female flowering in Scots pine (Mátyás et al. 2004). The cycle length for 355 

the second group of strategies (forward selection and open-pollinated backward selection) 356 

takes about 21 years and we assumed to shorten this breeding cycle, by 50% as well (11 357 

years) by reducing progeny testing. Both RE and RE/year for both groups of strategies, 358 

were estimated.  359 

The RE/year increased for all traits and models when reducing the breeding cycle by 50% 360 

(Table 3).  Among the genomic prediction models, highest RE/year were obtained for 361 

GBLUP and BRR, which in addition, were slightly higher for the first group of selection 362 

strategies than for the second one. The first group of strategies showed RE/year that varied 363 

between 66-85% with GBLUP, 57-90% with BRR, and 59-83% with BL, depending on 364 

the trait. Within the second group of selection strategies we observed that the RE/year 365 

ranged between 59-77% for GBLUP, 50-81% for BRR and 52-75% for BL, again 366 
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depending on the trait. In summary, for all traits and genomic prediction models, RE/year 367 

exceeded 50% when the breeding cycle was reduced by 50%. 368 
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DISCUSSION 369 

After the genomic selection (GS) concept was proposed in 2001 (Meuwissen et al 2001), 370 

genomic prediction studies were initially implemented in dairy cattle. The technology was 371 

adopted in crop and tree breeding in the last decade. The execution of GS in animal and 372 

crop breeding programs, such as dairy cattle, oat, maize and wheat, increased  genetic gains 373 

(Meuwissen et al. 2016; Crossa et al. 2017). Implementation of GS in tree breeding is 374 

underway with recent publications in eucalypts (Tan et al 2017), white spruce (Beaulieu et 375 

al 2014), black spruce (Lenz et al 2017), interior spruce (Ratcliffe et al. 2015), Norway 376 

spruce (Chen et al 2018a), loblolly (Resende et al 2012a, 2012b) and maritime pine (Isik 377 

et al 2016).  However, genomic prediction studies and new genotyping platforms still need 378 

to be developed for many species (Grattapaglia et al. 2018). To our knowledge, this is the 379 

first genomic prediction study performed in Scots pine. 380 

Marker imputation for GBS data 381 

For species such as Scots pine, with large and complex genomes (Neale and Kremer 2011) 382 

but without a reference genome, and with no SNP chips or exome panels developed, 383 

genotyping-by-sequencing (GBS) method is considered as an attractive alternative to 384 

perform GS or GWAS studies. When using GBS data, large amounts of missing data are 385 

produced, thus filtering and imputation SNPs are critical steps (Dodds et al. 2015). In an 386 

interior spruce genomic prediction study with GBS data,  El-Dien et al. (2015) observed 387 

that the imputation method used had influence in the quality of predictions and concluded 388 

that EM and kNN-Fam imputation methods, provided the highest genomic prediction 389 
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accuracies. EM was as well the most accurate imputation method in a wheat breeding GS 390 

study (Poland et al. 2012) with GBS data. Our study support those findings, since among 391 

our genomic prediction models we observed more accurate predictions when EM 392 

imputation algorithm was used instead of RND imputation, regardless of the genomic 393 

prediction model used.  394 

Accuracy and predictive ability of GS prediction  395 

Traits of interest in tree breeding programs have different genetic architecture; thus, 396 

different genomic prediction models to evaluate PA and prediction accuracy must still be 397 

studied. Isik et al. (2016) observed similar PAs for GBLUP, BRR and BL for growth and 398 

stem straightness traits in a two generations genomic prediction study, in maritime pine; 399 

however, they found larger bias when BL was used. In a another study with three 400 

generations of maritime pine larger bias was detected for ABLUP than for GBLUP or BL 401 

(Bartholome et al. 2016). Several statistical methods, namely, GBLUP, BRR, BL and 402 

reproducing kernel Hilbert space (RKHS), were compared in a Norway spruce study (Chen 403 

et al. 2018a) where similar prediction accuracies were observed for all of them. rrBLUP, 404 

GRR and BayesC predictions were compared for interior spruce (Ratcliffe et al. 2015), 405 

concluding that all methods had similar accuracies although slightly lower for GRR. 406 

Congruent with those studies we observed that for wood and growth traits in Scots pine, 407 

largest accuracies were obtained with ABLUP for all traits, whereas GBLUP, BL and BRR 408 

had similar PAs and accuracies. For instance, accuracies reported in Douglas fir 409 

(Thistlethwaite et al. 2017), were very similar for height at early age (0.87-0.91) and 410 

mature age (0.80 – 0.89), as well as for density (0.94 – 0.96), regardless of the genomic 411 
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prediction model used, whereas in Eucalyptus nitents (Suontama et al. 2018),  prediction 412 

accuracies reported for density (0.74 – 0.79), diameter (0.29 – 0.51) and height (0.29 – 413 

0.51) were slightly lower. Our accuracy estimations for MFA and MOE are similar to those 414 

reported for MFA in white spruce (0.71) and  MOE in Norway spruce (0.70-0.76), by 415 

Beaulieu et al. (2014) and Chen et al. (2018a), respectively. In addition, PAs for Ht, DBH, 416 

MFA and MOE were similar to those reported in Norway spruce, black spruce (Picea 417 

mariana)  or eucalyptus hybrids (Tan et al. 2017; Chen et al. 2018a; Lenz et al. 2017). 418 

However, they were slightly lower than those reported for diameter and height in maritime 419 

pine (Isik et al. 2016).  420 

Effects of the training and validation set sizes 421 

Our results differed from previous studies which stated that predictive ability and 422 

prediction accuracy increased as the size of the training set increased. For instance, Tan et 423 

al. (2017) detected that PA increased as the TS size increased without reaching any plateau 424 

for all models and traits evaluated in Eucalyptus hybrids. Similarly, Lenz et al. (2017) 425 

asserted that accuracy increased as the TS size increased, however after assigning TS of 426 

45% individuals or more, the accuracy increase was not as important. Nevertheless, we 427 

found some similarities between other studies, in which the accuracy increased as the TS 428 

size increased but reaching a plateau for height when TS reached 80% of individuals and 429 

75% of individuals for wood quality traits (Chen et al. 2018a). In the current study, the 430 

highest PA and accuracy was obtained when TS size was between 70-80% of the trees, 431 

depending on the trait. From those studies, we know, as well, that the number of trees per 432 
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family have an effect on the GS efficiency; however, we could observe the advantage of 433 

applying GS prediction methods, even when the number of trees per family were low. 434 

Marker number effects 435 

In a general conifer breeding program simulation study, Li and Dungey (2018) detected an 436 

increase in the accuracy of GEBV for traits with low and high heritability when the subset 437 

of SNPs increased from 7K to 90K, for a training population with 1000 clones from five 438 

simulated generations. Moreover, the same pattern was observed in Norway spruce (Chen 439 

et al. 2018a), where the accuracy increased with number of markers reaching a plateau 440 

between 4K and 8K markers. On the contrary, for black spruce, Lenz et al. (2017) did not 441 

find an remarkable decrease in prediction accuracies when markers were reduced randomly 442 

from 5K to 1K; nonetheless, when markers were further reduced to 500, the accuracy 443 

decreased dramatically. Tan et al. (2017) noted a greater impact of the number of SNPs 444 

than their genomic location in the predictive ability, for both GBLUP and RKHS. In the 445 

same study, they also observed a stronger reduction in the PA when the subset of SNPs 446 

dropped below 5K, and that traits with lower heritabilities were more sensitive to the 447 

reduction in the number of SNPs. 448 

The results in this study are in accordance with previous studies (Tan et al. 2017; Lorenz 449 

et al. 2011; Chen et al. 2018a) that GBLUP is preferable for large SNP markers datasets, 450 

since the Bayesian approaches are computationally demanding, as long as there are no 451 

major QTL effects in the study. In the current study 3K to 4K SNP were required to reach 452 

a similar efficiency to that achieved when using all 8719 SNPs.  453 
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Heritabilities 454 

Bartholome et al. (2016) stated that no clear pattern was detected between accuracy and 455 

heritability estimates for maritime pine. Additionally, Grattapaglia and Resende (2011) and 456 

Chen et al. (2018a) observed that heritability impact on prediction accuracies is relatively 457 

insignificant,  therefore the former authors recommended that larger training sets should 458 

be used for traits with lower heritabilities. Whereas no trend was detected among prediction 459 

accuracies and trait heritabilities, we noted a positive linear trend among PA and 460 

heritabilities, i.e., traits with lower heritabilities (below 0.25) exhibited the lowest PA while 461 

higher PA were detected for traits with moderate heritabilities (above 0.30). This is 462 

congruent with the positive correlation between trait heritabilities and PA indicated by 463 

Resende et al. (2012b) in loblolly pine, that showed a positive trend between trait 464 

heritabilities and PA. Similarly, traits with low heritabilities had lower predictive ability in 465 

a maritime pine study (Isik et al. 2016).  Chen et al. (2018a) in their Norway spruce study 466 

concluded that narrow-sense heritability was more similar to PA than to prediction 467 

accuracy, as PA involves both phenotypic and genetic values. 468 

Relative selection efficiency 469 

A simulation study conducted by Grattapaglia and Resende (2011) showed that when the 470 

breeding cycle length was reduced by 50%, the RE/year doubled, and that when the cycle 471 

length was reduced by 75% the RE/year reached 3 folds at high marker levels. This theory 472 

was confirmed by Resende et al. (2012a) that by reducing 50% the loblolly pine breeding 473 

cycle, obtained an increase in the RE/year between 53-92% for DBH and 58-112% for Ht, 474 

compared to the traditional pedigree-based selection. Similarly RE varied between 106% 475 
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to 139%  for Ht when the breeding cycle length of interior spruce was reduced by 25% 476 

(Ratcliffe et al. 2015). In Norway spruce, the RE/year of MOE increased between 69 – 477 

83% when the cycle length was also shortened by 50% (Chen et al. 2018a). Our results 478 

exhibited the same pattern for growth and wood quality traits, with a RE/year ranging 479 

between 50 – 90%, with a reduction of the cycle length of 50%. 480 

 481 

CONCLUSIONS 482 

Our results provides an initial perspective of the use of genomic prediction in Scots pine 483 

and are encouraging to develop GS strategies for the species. Similar predictive abilities 484 

and accuracies among all genomic prediction models were observed, suggesting that the 485 

traits are under additive genetic control. Due to both the computational and predictive 486 

efficiency, GBLUP was the most effective method to perform genomic predictions for both  487 

growth and wood quality traits in Scots pine. The main advantage of GS in Scots pine is 488 

the possibility of reducing of the breeding cycle. Our study showed that GS could 489 

potentially reduce the breeding cycle by half, and under that assumption, the relative 490 

genomic selection efficiency could be as high as 90% depending on the selection strategy 491 

and the trait.   492 

The results presented here are based on a relatively small population with a shallow 493 

pedigree. More studies using different populations, preferably populations with deeper 494 

pedigrees should be carried out to better understand the predictive power of SNP markers 495 

for traits with complex inheritance patterns in the species. The predictive power of SNP 496 

markers should be tested over two generations as suggested by Isik (2014) because the 497 
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marker-QTL phase is expected to change once the population undergoes through breeding, 498 

due to recombination of homologue chromosomes during the meiosis.499 
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Table 1. Predictive ability (PA) and prediction accuracy (Accuracy) of each model and trait,  ± standard errors.  702 

Model Type Traits               

    Ht1 Ht2 DBH1 DBH2 MFA MOEs DEN  MOEd 

ABLUP PA 0.20 ± 0.01 0.38 ± 0.000 0.26 ± 0.003 0.23 ± 0.01 0.30 ± 0.001 0.39 ± 0.01 0.41 ± 0.01 0.44 ± 0.02 

 Accuracy 0.83 ± 0.01 0.81 ± 0.000 0.83 ± 0.003 0.84 ± 0.01 0.83 ± 0.001 0.75 ± 0.01 0.81 ± 0.01 0.82 ± 0.01 

GBLUP-EM PA 0.20 ± 0.01 0.39 ± 0.001 0.26 ± 0.002 0.26 ± 0.01 0.29 ± 0.002 0.39 ± 0.01 0.40 ± 0.01 0.41 ± 0.02 

 Accuracy 0.69 ± 0.02 0.75 ± 0.002 0.73 ± 0.001 0.74 ± 0.01 0.73 ± 0.003 0.69 ± 0.01 0.73 ± 0.01 0.74 ± 0.01 

GBLUP-RND PA 0.19 ± 0.003 0.38 ± 0.000 0.25 ± 0.000 0.25 ± 0.01 0.28 ± 0.002 0.37 ± 0.02 0.38 ± 0.02 0.40 ± 0.02 

 Accuracy 0.67 ± 0.004 0.74 ± 0.002 0.71 ± 0.002 0.72 ± 0.01 0.71 ± 0.003 0.67 ± 0.02 0.71 ± 0.01 0.72 ± 0.01 

BL-EM PA 0.15 ± 0.04 0.39 ± 0.02 0.22 ± 0.02 0.30 ± 0.04 0.33 ± 0.03 0.36 ± 0.03 0.32 ± 0.02 0.40 ± 0.03 

 Accuracy 0.66 ± 0.03 0.74 ± 0.01 0.70 ± 0.02 0.75 ± 0.02 0.76 ± 0.02 0.67 ± 0.02 0.69 ± 0.01 0.71 ± 0.02 

BL-RND PA 0.26 ± 0.03 0.36 ± 0.04 0.26 ± 0.02 0.26 ± 0.02 0.28 ± 0.05 0.34 ± 0.03 0.40 ± 0.02 0.41 ± 0.03 

 Accuracy 0.69 ± 0.02 0.73 ± 0.02 0.71 ± 0.01 0.72 ± 0.01 0.68 ± 0.03 0.65 ± 0.02 0.71 ± 0.01 0.72 ± 0.02 

BRR-EM PA 0.18 ±  0.04 0.41 ± 0.03 0.25 ± 0.05 0.27 ± 0.03 0.33 ± 0.04 0.42 ± 0.03 0.40 ± 0.03 0.46 ± 0.02 

 Accuracy 0.65 ± 0.03 0.77  ± 0.02 0.72 ± 0.01 0.75 ± 0.01 0.73 ± 0.03 0.70 ± 0.02 0.72 ± 0.02 0.76 ± 0.01 

BRR-RND PA 0.24 ± 0.02 0.39 ± 0.03 0.21 ± 0.02 0.24 ± 0.03 0.27 ± 0.03 0.40 ± 0.04 0.40 ± 0.03 0.45 ± 0.04 

  Accuracy 0.72 ± 0.02 0.75 ± 0.02 0.70 ± 0.02 0.74 ± 0.01 0.73 ± 0.02 0.68 ± 0.02 0.72 ± 0.01 0.75 ± 0.02 

EM and RND denote expectation maximization and random imputation methods, respectively.  ABLUP and GBLUP denote pedigree 703 

and genomic best linear unbiased predictions, respectively whereas BRR and BL denote Bayesian ridge regression and Bayesian lasso  704 

respectively. 705 
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Table 2. Additive genetic variance (𝜎𝑎
2) residual variance (𝜎𝑒

2) and heritability with 706 

standard error (h2  SE) from ABLUP and GBLUP models.  707 

Trait IM Method 𝜎𝑎
2 𝜎𝑒

2 h2  SE 

Ht1 . ABLUP 331.3 1445.9 0.19  0.06 

 EM GBLUP 294.6 1504.6 0.16  0.06 

 RND GBLUP 305.2 1484.3 0.17  0.06 

Ht2 . ABLUP 3827.5 5810.3 0.40  0.09 

 EM GBLUP 3539.0 6170.3 0.37  0.08 

 RND GBLUP 3437.0 6075.4 0.36  0.08 

DBH1 . ABLUP 147.2 460.6 0.24  0.07 

 EM GBLUP 144.7 473.4 0.23  0.07 

 RND GBLUP 133.6 475.4 0.22  0.07 

DBH2 . ABLUP 158.8 628.7 0.20  0.07 

 EM GBLUP 173.4 625.6 0.22  0.07 

 RND GBLUP 164.4 624.2 0.21  0.06 

MFA . ABLUP 4.8 12.4 0.28  0.08 

 EM GBLUP 4.3 13.3 0.24  0.07 

 RND GBLUP 4.0 13.3 0.23  0.07 

MOEs . ABLUP 1.3 2.0 0.39  0.10 

 EM GBLUP 1.4 2.1 0.39  0.09 

 RND GBLUP 1.2 2.2 0.35  0.08 

DEN . ABLUP 419.0 543.9 0.44  0.10 

 EM GBLUP 402.9 593.3 0.40  0.08 

 RND GBLUP 367.7 595.6 0.38  0.08 

MOEd . ABLUP 0.8 1.0 0.46  0.10 

 EM GBLUP 0.7 1.1 0.38  0.08 

 RND GBLUP 0.7 1.1 0.39  0.08 

IM: imputation method. EM and RND denote expectation maximization and random 708 

imputations, respectively. 709 
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Table 3. Relative efficiency (RE) and relative efficiency per year (RE/year) of genomic 710 

prediction models compared to ABLUP from cross validated models and for each trait. 711 

Trait RE      REa/year    REb/year   

  GBLUP BRR BL  GBLUP BRR BL  GBLUP BRR BL 

Ht1 0.83 0.78 0.80  1.66 1.57 1.59  1.59 1.50 1.52 

Ht2 0.93 0.95 0.91  1.85 1.90 1.83  1.77 1.81 1.74 

DBH1 0.88 0.87 0.84  1.76 1.73 1.69  1.68 1.66 1.61 

DBH2 0.88 0.89 0.89  1.76 1.79 1.79  1.68 1.70 1.70 

MFA 0.88 0.88 0.92  1.76 1.76 1.83  1.68 1.68 1.75 

MOEs 0.92 0.93 0.89  1.84 1.87 1.79  1.76 1.78 1.71 

DEN 0.90 0.89 0.85  1.80 1.78 1.70  1.72 1.70 1.63 

MOEd 0.90 0.93 0.87  1.80 1.85 1.73  1.72 1.77 1.65 

a  and b represent  first and second group of selection strategies from the Swedish Scots 712 

pine breeding cycle, respectively. 713 

GBLUP, BRR and BL estimates are based on the EM imputation algorithm. 714 
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 715 

Fig.1. A) Predictive ability (PA) and B) prediction accuracy (Accuracy) of the genomic 716 

prediction models for different sizes of training and validation sets. 717 
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 718 

Fig. 1. Prediction accuracy (Accuracy) and predictive ability (PA) of Bayesian Ridge 719 

Regression prediction model for 14 different subsets of SNPs (10, 20, 50, 100, 200, 500, 720 

1000, 2000, 3000, 4000, 5000, 6000, 7000 and 8719 SNPs). 721 
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 723 

 724 

Fig. 2. A) Regression between Predictive ability and trait heritabilities. B) Regression 725 

between predictive accuracy (Accuracy) and trait heritabilities. Trait heritabilities were 726 

estimated with GBLUP-EM model. 727 
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