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Abstract

Essential genes are genes that critical for the survival of an organism. The prediction of
essential genes in bacteria can provide targets for the design of novel antibiotic
compounds or antimicrobial strategies. Here we propose a deep neural network (DNN)
for predicting essential genes in microbes. Our DNN-based architecture called
DeeplyEssential makes minimal assumptions about the input data (i.e., it only uses
gene primary sequence and the corresponding protein sequence) to carry out the
prediction, thus maximizing its practical application compared to existing predictors
that require structural or topological features which might not be readily available. Our
extensive experimental results show that DeeplyEssential outperforms existing
classifiers that either employ down-sampling to balance the training set or use clustering
to exclude multiple copies of orthologous genes. We also expose and study a hidden
performance bias that affected previous classifiers.

The code of DeeplyEssential is freely available at
https://github.com/ucrbioinfo/DeeplyEssential

1 Introduction 1

Essential genes are those genes that are critical for the survival and reproduction of an 2

organism [17]. Since the disruption of essential genes induces the death of an organism, 3

the identification of essential genes can provide targets for new antimicrobial/antibiotic 4

drugs [7, 13]. The set of essential genes is also critical for the creation of artificial 5

self-sustainable living cells with a minimal genome [16]. Essential genes have also been a 6

cornerstone in understanding the origin and evolution of organisms [18]. 7

The identification of essential genes via wet-lab experiments is labor intensive, 8

expensive and time consuming. Such experimental procedures include single gene 9

knock-out [3, 12], RNA interference and transposon mutagenesis [8, 32]. Moreover, these 10

experimental approaches can produce contradicting results [23]. With the recent 11

advances in high-throughput sequencing technology, computational methods for 12

predicting essential genes has become a reality. Some of the early prediction methods 13

used comparative approaches by homology mapping, see, e.g., [27, 43]. With the 14

introduction of large gene database such as DEG, CEG and OGEE [4,25,40], researchers 15

designed more complex prediction models using a wider set of features. These features 16

can be broadly categorized into (i) sequence features, i.e., codon frequency, GC content, 17

gene length [29,35,42], (ii) topological features, i.e., degree centrality, cluster 18

coefficient [1, 6, 24,31], and (iii) functional features, i.e., homology, gene expression 19

cellular localization, functional domain and molecular properties [5, 9, 23,30,39]. 20
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Sequence based features can be directly obtained from the primary DNA sequence of 21

a gene and its corresponding protein sequence. Functional features such as network 22

topology requires knowledge of protein-protein interaction network, e.g., STRING and 23

HumanNET [15,37]. Gene expression and functional domain information can be 24

obtained from databases like PROSITE and PFAM [10,14]. Some of the less studied 25

bacterial species, however, lack these functional and topological features, which prevents 26

the use of classifiers that rely on them. Sequence based classifiers are the most practical 27

methods because they use the minimal amount of features. 28

Several studies have been published on the problem of predicting essential genes 29

from their sequence. In [35], the authors developed a tool called ZUPLS that uses (i) a 30

Z-curve derived from the sequence, (ii) homology mapping and (iii) domain enrichment 31

score as features to predict essential genes in twelve prokaryotes after training the model 32

on two bacteria. Although ZUPLS worked well on cross-organism prediction, the limited 33

number of bacterial species used as training dataset cast doubts on the ability of 34

ZUPLS to generalize to more diverse bacterial species. In [22], the authors proposed a 35

computational method that employs PCA on features derived from the gene sequence, 36

protein domains, homologous and topological information. Among the studies that 37

predicts essential genes across multiple bacterial species, [30] employed several genomic, 38

physio-chemical and subcellular localization features to predict gene essentiality across 39

fourteen bacterial species. In their work, the authors dealt with the redundancy in the 40

dataset (i.e., homologous genes shared by multiple bacterial genomes) by clustering 41

genes based on their sequence similarity. In [29], nucleotide, di-nucleotide, codon, and 42

amino acid frequencies and codon usage analysis were used for predicting essentiality in 43

sixteen bacterial species. The authors used CD-HIT [20] for homology detection in both 44

essential and non-essential genes. In [28], the authors identified essential genes in fifteen 45

bacterial species using information theoretical features, e.g., Kullback-Leibler divergence 46

between the distribution of k-mers (k = 1, 2, 3), conditional mutual information and 47

entropy features. Although their work showed promising results for intra-organism and 48

cross-organism predictions, the model performed rather poorly when trained on the 49

complete bacterial dataset. Recently, [23] showed the most extensive prediction analysis 50

on thirty-one bacterial species. The authors employed the features proposed in [30], 51

with additional features such as trans-membrane helices and Hurst exponent. Their 52

algorithm used a regularized feature selection method called least absolute shrinkage 53

and selection operator (Lasso) and used SVM as the classifier. 54

The latest work in gene essentiality prediction [2] uses network based features and 55

Lasso for feature selection with Random Forest as classifier. The authors used a 56

recursive feature extraction technique to compute 267 features in three different 57

categories i.e. local features such as degree, egonet features which refers to the node and 58

the induced subgraph formed by a node and all of its neighbors and regional features 59

which is a combination of local and egonet features. They also used fourteen network 60

centrality measures as a separate feature set for the essentiality prediction. Finally they 61

combined their network based features with the sequence based features in [23] and [35] 62

for their prediction model. For the models in [23], [2] and [35], the authors 63

down-sampled non-essential genes to balance the training set but did not realize that 64

their dataset contained multiple copies of homologous genes which created a “data leak” 65

issue which biased their results (see below). 66

In this work we propose a feed forward deep neural network (DNN) called 67

DeeplyEssential that uses features derived solely from the primary gene sequence to 68

identify essential genes in bacterial species, thus maximizing its practical application 69

compared to other predictors that require structural or topological features which might 70

not be readily available. To the best of our knowledge, this is the first time a deep 71

neural network has been used for gene essentiality prediction. 72
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Table 1. The thirty bacterial species used for our experiments (GP is Gram-positive,
GN is Gram-negative)

Accession GP/GN # Essential genes # Non-essential genes

NC 000907 GN 1284 1024
NC 000908 GP 762 188
NC 000913 GN 1810 14000
NC 000915 GN 646 2270
NC 000962 GP 4144 17586
NC 000964 GP 542 7808
NC 002163 GN 788 5602
NC 002505/002506 GN 1558 5886
NC 002516 GN 906 21266
NC 002745 GP 604 4562
NC 002771 GP 620 644
NC 003197 GN 460 8456
NC 004347 GN 804 2206
NC 004631 GN 1422 15822
NC 004663 GN 650 8906
NC 005966 GN 998 5188
NC 006351/006350 GN 1010 10444
NC 007297 GP 454 2674
NC 007795 GP 702 5082
NC 008463 GN 670 1920
NC 008601 GN 784 2658
NC 009009 GP 436 4104
NC 009511 GN 1070 8630
NC 010729 GN 1488 6870
NC 011375 GP 482 2354
NC 011916 GN 960 6448
NC 016776 GN 1094 7486
NC 016810 GN 706 8070
NC 016856 GN 210 10420
NC 007650/007651 GN 812 10452

2 Materials and Methods 73

2.1 Dataset 74

Genetic data for thirty bacterial species were obtained from the database DEG, which is 75

a curated and comprehensive repository of experimentally-determined bacterial and 76

archaeal essential genes. Among the thirty bacterial species, nine are Gram-positive 77

(GP) and twenty-one are Gram-negative (GN). DEG provides the primary DNA 78

sequence and corresponding protein sequence for both essential and non-essential genes, 79

as well as gene functional annotations. We only considered protein-coding genes, i.e., we 80

excluded RNA genes, pseudo-genes and other non-coding genes. At the time of writing, 81

DEG contained exactly 28,876 essential protein-coding genes (of which 8,746 belonged 82

to a GP species and 20,130 belonged to a GN species) and 209,026 non-essential 83

protein-coding genes (of which 45,002 were GP and 164,024 were GN). Table 1 shows 84

the basic statistics of the dataset. Observe that the dataset is highly unbalanced: while 85

species NC 000907 and NC 002771 have approximately the same number of essential 86

and non-essential genes and bacteria NC 000908 has more essential genes than 87

non-essential genes, for ten bacterial species less than 10% of their genes are essential. 88

In order to improve the performance of our classifier, we balanced the dataset by 89

downsampling non-essential genes. 90
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2.2 Feature selection 91

As said, various intrinsic gene features, such as protein domains, protein-interaction 92

network data, etc. have been used for predicting gene essentiality [22,28]. 93

DeeplyEssential utilizes codon frequency, maximum relative synonymous codon 94

usage (RCSU), codon adaptation index (CAI), gene length and GC content. Along with 95

these DNA-derived features, DeeplyEssential also uses amino acid frequency and 96

sequence length from the protein sequences. 97

2.2.1 Codon frequency 98

Codon frequency has been recognized an important feature for gene essentiality 99

prediction [23,30]. Given the primary DNA sequence of a gene, its codon frequency is 100

computed by sliding a window of three nucleotides along the gene. The raw count of 101

43 = 64 codons is then normalized by the total number of genes. Observe in Figure 1 102

that the codon frequency can be quite different in the two classes. For instance, codon 103

AAA, GAA, TGA, GAT, AAG, ATT and AGA had at least 30% difference in their 104

normalized codon frequency between essential and non-essential genes. 105

2.2.2 Gene length and GC content 106

Other distinguishing features for gene essentiality are gene length and GC content. 107

Figure 2 shows the distribution of gene length in GP, GN and complete dataset 108

(GP+GN). Observe that in the complete dataset and the GN dataset, gene have similar 109

average length in the two classes, while in the GP dataset essential genes are on average 110

longer than non-essential genes. As said, the GC content is another informative feature 111

of essentiality prediction. Figure 3 shows the difference in distribution in GC content 112

between two classes. Observe that non-essential genes have higher GC content than 113

essential genes. 114

2.2.3 Relative synonymous codon usage 115

Unbalanced synonymous codon usage is prevalent both in prokaryotes and
eukaryotes [26]. The degree of bias varies among genes not only in different species but
also among genes in the same species. Differences in codon usage in one gene compared
to its surrounding genes may imply its foreign origin, different functional constraints or
a different regional mutation. As a result, examining codon usage helps to detect
changes in evolutionary forces between genomes. Essential genes are critical for the
survival of an organism thus codon usage acts as a strong distinguishing feature. To
calculate the relative synonymous codon usage we compare the observed number of
occurrence of each codon to the expected number of occurrences (assuming that all
synonymous codons have equal probability). Given a synonymous codon i that has an
n-fold degenerate amino acid, we compute the relative synonymous codon usage (RCSU)
as follows

RCSUi =
Xi

(1/n)
∑n

i=1 Xi

where Xi is the number of occurrence of codon i, and n is 1, 2, 3, 4, or 6 (according to 116

the genetic code). 117

2.2.4 Codon adaptation index 118

The codon adaptation index (CAI) estimates the bias towards certain codon that are
more common in highly expressed genes [26]. The CAI is defined by the geometric mean
of the relative adaptedness statistics. The relative adaptedness for codon i is defined on
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Figure 1. Normalized codon frequency of gene sequences in GP + GN dataset

the relative frequency of the codon in a species-specific reference set of highly expressed
genes. Formally, the relative adaptedness is defined by

ri =
RCSUi

RCSUmax
=

Xi

Xmax

where RCSUmax and Xmax are corresponding RCSU and X value of the most
frequently used codon. The CAI for a gene is defined by

CAI =

(
L∏

i=1

ri

) 1
L

where L is the number of codons in the gene excluding methionine, tryptophan, and 119

stop codon. The value of CAI ranges from zero to one, where zero indicates no bias. 120

2.2.5 Protein sequence features 121

Another informative set of features used for the prediction of gene essentiality are those 122

derived from the corresponding protein sequences. Previous studies have used frequency 123

of rare amino acids, and the number of codons that are one-third base mutations 124

removed from the stop codons [23]. DeeplyEssential only uses amino acids 125

frequencies and the lengths of the protein sequences. 126
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Figure 2. Distribution of gene lengths in datasets GP+GN, GN, GN

2.2.6 Combining all the features 127

Given the primary DNA sequence of a gene, we generate 43 = 64 values for the codon 128

frequency, and one value for the GC content, gene length, CAI and RCSUmax. From the 129

protein sequence, we compute the amino acid frequency vector (20 components), and 130

one value for the protein length. The total number of features used by 131

DeeplyEssential is 89. 132

2.3 Multi-layer perceptron 133

Multi-layer perceptron (MLP) consists of multiple layers of computational units where 134

the information flows in forward direction, from input nodes through hidden nodes to 135

the output nodes without any cycles [33]. MLP networks have been used successfully for 136

several molecular biology problems, see, e.g. [11, 21,34]. The architecture of 137

DeeplyEssential is composed of an input layer, multiple hidden layers and an output 138

layer. The output layer encodes the probability of a gene to be essential. The addition 139

of dropout layer makes the network less sensitive to noise in the training and increase 140

its ability to generalize. This layer randomly assign zero weights to a fraction of the 141

neurons in the network [36]. 142

Let −→x = (x1, · · · , xn)T be the input to the MLP. Let vector y denotes the output of
the ith hidden layer. The output y depends on the input in the previous layer as follows

y = a(W ix(i−1) + b(i−1))

where a is the activation function, b is the bias and W is the weight matrix for each 143

edge in the network. During training, the network learns the weights W and the bias b. 144

DeeplyEssential uses a rectified linear unit (ReLU) in each neuron in the hidden 145

layers. ReLU is an element-wise operation that clamps all negative values to zero. 146

In the output layer DeeplyEssential uses a sigmoid as the activation function to
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Figure 3. GC content distribution in essential and non-essential gene sets in GP + GN
dataset
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Figure 4. The architecture of the neural network used in DeeplyEssential

perform discrete classification

y =
1

1 + e−x

The loss function is binary cross-entropy defined by

M∑
c=1

ŷo,c log(po,c)

where M is the number of classes (two in our case), ŷ is the binary indicator if class 147

label c is the correct classification for observation o, and p is the predicted probability 148

observation o is of class c. Figure 4 illustrates the architecture of the neural network 149

used in DeeplyEssential. 150
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3 Results and Discussion 151

3.1 Classifier design and evaluation 152

As mentioned in Section 2.1, the number of non-essential genes is significantly larger 153

than the number of essential genes. To address this imbalance in the training set and 154

allow for unbiased learning, we randomly down-sample non-essential genes. In [42], the 155

authors showed that balancing the dataset did not negatively influence the prediction of 156

gene essentiality. 157

3.1.1 Model hyper-parameters 158

Recall that each gene (and its corresponding protein) is represented by 89 features in 159

the input layer. The deep learning architecture of DeeplyEssential was determined 160

my running extensive experiments on the training data over a wide range of 161

hyper-parameters. The number of hidden layers, the number of nodes in each of the 162

hidden layers, the batch size, the dropout rate and the type of optimizer were selected 163

by optimizing the performance of the classifier. Table 2 lists the range of 164

hyper-parameter considered and the values of the hyper-parameter selected for the final 165

architecture of DeeplyEssential. 166

Observe in Figure 4 that the final fully-connected layer reduces the 1024 dimensional 167

vector to a two-dimensional vector corresponding to the two prediction classes 168

(essential/non-essential). The sigmoid activation function forces the output of the two 169

neurons in the output layer to sum to one. Thus their output value represents the 170

probability of each class. Among the available optimizer in Table 2, we chose adadelta 171

because of its superior performance. Adadelta is parameter-free, thus we do not need to 172

define the learning rate. The training was ran for 100 epochs with early stopping 173

criteria. 174

We trained DeeplyEssential on three datasets, namely GP, GN and GP+GN (see 175

Section 2.1 and Section 3.2). For each dataset, 80% data is used for training, 10% data 176

for validation and 10% data for testing. The random selection was repeated ten times, 177

i.e., a ten-fold cross-validation was performed to complete the inference. 178

3.1.2 Evaluation metrics 179

The tools described in [23], [30], [29] and [28] are currently unavailable. We ran 180

DeeplyEssential on the datasets used in the corresponding papers, and compared 181

DeeplyEssential’s classification metrics to the published metrics. 182

We evaluated the performance of DeeplyEssential using the Area Under the 183

Curve (AUC) of the Receiver Operating characteristic Curve (ROC). ROC plot 184

represents the trade-off between sensitivity and specificity for all possible thresholds. 185

Although our primary evaluation measure is the AUC score, we report the following 186

additional performance measures 187

Sensitivity(Sn) =
TP

(TP + FN)

Specificity(Sp) =
TN

(FP + TN)

PPV =
TP

(TP + FP )

Accuracy =
(TP + TN)

(TP + FN + TN + FP )
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Figure 5. Violin plot of DeeplyEssential’s AUC across ten experiments on the GP,
GN, GP+GN datasets

where TP , TN , FP and FN represent the number of true positives, true negatives, 188

false positives and false negatives, respectively. 189

All experiments were carried out a Titan GTX 1080 Ti GPU, running Keras 2.1.5. 190

3.2 Gene essentiality prediction 191

We collected essential and non-essential gene for thirty bacterial species as described in 192

Section 2.1 into three datasets, namely GP, GN and GP+GN. After re-balancing the 193

dataset by down-sampling non-essential genes, we extracted the features for each gene 194

as explained in Section 2.2. Table 3 shows the basic statistics for each dataset. 195

Table 4 shows the training classification performance of DeeplyEssential, 196

averaged over ten repetitions. The violin plot in Figure 5 shows the distribution of 197

AUCs across the ten repetitions of the experiment, which appears very stable. The 198

receiver operator curves (ROC) are shown in Figure 7. DeeplyEssential yielded an 199

area under the curve of 0.838, 0.829 and 0.842 for GP, GN and GP+GN on average, 200

respectively. The ROC curve also indicates the relation between the number of training 201

samples and stability in model performance. Observe that DeeplyEssential’s 202

performance was more stable on the GP+GN dataset than the GP dataset (which 203

contains the smallest number of samples). 204

3.3 Comparison with published methods that use 205

down-sampling 206

As said in Section 2.1, the gene essentiality dataset is highly unbalanced. It is 207

well-known that class imbalance can negatively affect the performance of a classifier [41]. 208

To quantify how class imbalance affects the performance of our classifier we trained 209

DeeplyEssential on the full (unbalanced) dataset that has 322.6% more non-essential 210

genes than essential genes. Figure 6 shows that the sensitivity and Positive Predictive 211

Value (PPV) of the classifier trained on unbalanced data is much worse than the 212

balanced dataset. As said, some of the existing methods use down-sampling to address 213

this problem. Both Liu et al. 2017 [23] and Azhagesan et al. 2018 [2] randomly 214

down-sampled the majority class data to match the size of the minority class. 215

DeeplyEssential also uses this approach. Table 5 shows the performance 216
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Table 2. Hyperparameters for DeeplyEssential

Parameters Range Selected Parameter

# hidden layers [2 - 8] 6
# nodes [32, 64, 128, 512, 1024, 2048] [128, 256, 512, 1024, 1024, 1024]
dropout rate [0.1 - 0.5] 0.3
epochs – 100 (early stopping)
optimizer sgd, adam, adadelta, RMSProp adadelta

Table 3. Basic statistics for GP, GN and GP+GN (balanced and unbalanced)

Dataset # Training Samples # Validation Samples # Test Samples

GP 7,065 883 884
GN 14,364 1,795 1,797
GP+GN (bal) 21,432 2,678 2,680
GP+GN (unbal) 90,571 11,321 11,322

Table 4. Training classification performance of DeeplyEssential on GP, GN, GP+GN

Metric GP GN GP+GN
AUC 0.838 0.823 0.842
Sensitivity 0.741 0.784 0.801
Specificity 0.758 0.708 0.721
PPV 0.774 0.722 0.749
Accuracy 0.749 0.745 0.762

Figure 6. Comparing the prediction performance of DeeplyEssential when trained
on balanced or unbalanced GP+GN dataset

Figure 7. DeeplyEssential’s ROC curves on GP, GN, GP+GN
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Table 5. Comparing the performance of DeeplyEssential on down-sampled dataset;
numbers in boldface indicate the best performance

Method Feature set AUC Sensitivity PPV

Liu et al. 2017 Sequence
and Phys-
iochemical
Propoerties
(40)

0.748 0.688 0.254

Azhagesan et al. 2018
ReFex (267) 0.838 0.754 0.321
Network cen-
trality (14)

0.835 0.742 0.321

ZUPLS Sequence
(274)

0.705 0.663 0.255

DeeplyEssential Sequence
(89)

0.842 0.801 0.762

DeeplyEssential compared to the two published methods that use down-sampling. 217

Observe that DeeplyEssential achieves the best AUC, sensitivity and PPV. 218

3.4 Identification of “data leak” in the gene essentiality 219

prediction 220

Bacteria are unicellular organisms with a relatively small set of genes. Across bacterial 221

species a significant fraction of genes are conserved because they performs similar 222

fundamental biological functions. These conserved (homologous) genes are quite similar 223

at the sequence level. All published methods rely on dataset containing multiple 224

bacteria on which genes have been labeled essential or non-essential. Let x and y be two 225

homologous genes, i.e., x and y have very similar sequence. If x is used on the training 226

and y if used for testing, this introduces a bias, or a “data leak”. Training examples and 227

testing examples are supposed to be distinct, and in this hypothetical scenario they are 228

not. 229

To quantify the effect of the data leak issue, we clustered the set of all genes across 230

the thirty bacterial species using OrthoMCL [19]. OrthoMCL is a popular method for 231

clustering orthologus, homologous and paralog proteins which uses reciprocal best hit 232

alignment to detects potential in-paralog/recent paralog pair, and reciprocal alignments 233

best hits across any two genomes to identify potential ortholog pairs. A similarity graph 234

is then generated based on the proteins that are interlinked. To split large clusters, a 235

Markov Clustering algorithm (MCL) is then invoked [38]. Inside MCL clusters, weights 236

between each pair of proteins is normalized to correct for evolutionary differences. 237

As said, OrthoMCL produces a list of clusters where each cluster consists of genes 238

that have been determined to be orthologus. To quantify the effect of gene sequence 239

similarity on the prediction performance, we created a dataset where no gene from a 240

single cluster can end up in both the training set and the testing set. The modified 241

dataset contains 11,168 training samples, 2,798 validation samples and 4,270 testing 242

samples. The prediction was repeated ten times. Table 6 shows the clustering step 243

heavily influences DeeplyEssential’s prediction performance: AUC decreased by more 244

than 7% (on average), while the accuracy decreased by 6.9% (along with significant 245

decrease in all performance measures). Figure 8 shows the difference in performance 246

before and after clustering. While the AUCs were stable across experiments, sensitivity, 247

specificity and PPV varied largely across experiments for clustered dataset. 248
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Figure 8. Effect of “data leak” on DeeplyEssential’s prediction performance

Table 6. Comparing the effect of clustering on the prediction performance of
DeeplyEssential on the GP+GN dataset

Metric Non-clustered Clustered Difference (%)
AUC 0.842 0.786 7.12%
Sensitivity 0.801 0.780 2.69%
Specificity 0.721 0.646 11.60%
PPV 0.749 0.688 8.86%
Accuracy 0.762 0.713 6.87%

3.5 Comparison with methods that address orthologus genes 249

Some published studies have addressed the data leak issue by identifying homologus 250

genes using sequence similarity metrics. In [28], the authors used the Kullback-Leibler 251

divergence (KLD) to measure the distance between k-mer distribution (for k = 1, 2, 3) 252

obtained from sequences. In [29], the authors used CD-HIT to remove redundancy in 253

the training data and improve the generalization ability of their model. As explained in 254

the previous section, DeeplyEssential uses OrthoMCL to cluster homologous genes 255

to prevent similar genes to appear in both training and testing dataset. Table 7 and 256

Table 8 shows the performance comparison of DeeplyEssential with [29] and [28] on 257

their respective datasets. Observe that in both cases DeeplyEssential achieves the 258

best predictive performance. 259

3.6 Feature importance 260

DeeplyEssential uses exclusively sequence based features and yet produces higher 261

prediction performance. Unlike other machine learning classifiers, the DNN architecture 262

does not readily provide any insight about the feature set that contributed maximally 263

towards the prediction performance. To understand the impact of a feature on the 264

Table 7. Comparing the performance of DeeplyEssential and Ning et al on the Ning
et al dataset [29]; numbers in boldface indicate the best performance

Method Clustering method AUC
Ning et al 2014 CD-HIT 0.758
DeeplyEssential OrthoMCL 0.818
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Table 8. Comparing the performance of DeeplyEssential and Nigatu et al on the
Nigatu et al dataset [28]; numbers in boldface indicate the best performance

Method Clustering method AUC
Nigatu et al 2017 Kullback-Leibler divergence 0.650
DeeplyEssential OrthoMCL 0.840

Figure 9. Pairwise correlation among all features; features 0–65 are DNA specific
feature; features 68–89 are protein specific features

predictive performance, we carried out an ablation study which removes feature(s) from 265

the input and observe the performance difference to determine the importance of a 266

feature. However, this type of study is not very informative in the presence of highly 267

correlated features. In this case, the absence of a feature can be compensated by 268

another feature which is highly correlated with the former feature. To address this issue, 269

we first computed pairwise Pearson correlation among all input features. Figure 9 270

illustrate the heatmap of the pairwise correlation. Each axis shows the indices of the 271

features: indexes 0–65 contains DNA specific feature, index 68–89 contains protein 272

specific features. GC content, CAI and RSCUmax have negative correlation with all 273

other features. There were nineteen pair of features showing correlation higher than 0.9 274

(in absolute value). For our ablation study we either removed one feature at a time (if 275

uncorrelated) or one of the 19 feature pairs to test the performance changes on the GP 276

+ GN dataset using 5-fold cross validation. We measured the difference in AUC and 277

ordered the features based on their impact in decreasing the predictive performance 278

(Figure 10). Observe that codon TTT caused the highest AUC decrease (3.5%) while 279

AGA, TTC, CGT, CGA, gene length, protein length, GC content, CAI, amino acids R, 280

W, Y, K, L and pairs of correlated features CCG+CGC, TAA+TTA, Gene length+L, 281

D, and protein length+T caused more than a 3% AUC decrease. 282

3.7 Discussion 283

A large number of structural and functional features have been used for gene essentiality 284

prediction, i.e. producibility, choke points, load scores, damages, degree of centrality, 285

clustering coefficient, closeness centrality, betweenness centrality, gene expression, 286

phyletic retention, among others. These features cannot be obtained from the gene 287

sequences and are often not available for many bacterial species. To maximize its 288

practical utility, DeeplyEssential uses exclusively features derived directly from the 289

sequence. 290
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Figure 10. Changes in AUC predictive performance due to the removal of a feature or
pairs of correlated features
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Our experiments showed that DeeplyEssential has better predictive performance 291

both on down-sampled and clustered datasets. On the down-sampled dataset used 292

in [23], DeeplyEssential showed an improvement of 12.8% in AUC compared to [23] 293

and achieved a slightly better AUC on the network-based feature model [2]. In addition, 294

DeeplyEssential produced significantly better sensitivity and precision than the 295

three methods in Table 5, achieving 6.2% improved sensitivity and 137.4% improved 296

precision compare to [2]. If one uses all the 597 features in the prediction model in [2], 297

then this latter method achieves 1.7% improved AUC compared to DeeplyEssential. 298

We believe that collecting this very large amount of features from multiple databases 299

does not warrant the additional (minor) benefit in predictive performance. 300

DeeplyEssential also achieved better performance on clustered datasets. Table 7 and 301

Table 8 show 7.9% and 29.2% improved AUC compared to [29] and [28], respectively. 302

4 Conclusion 303

We proposed a deep neural network architecture called DeeplyEssential to predict 304

gene essentiality in microbes. DeeplyEssential makes minimal assumption about the 305

input data (i.e, it only uses the gene sequence), thus maximizing its practical 306

application compared to other predictors that require structural or topological features 307

which might not be readily available. Extensive experiments shows that 308

DeeplyEssential has better predictive performance than existing prediction tools. We 309

believe that DeeplyEssential could be further improved if more annotated bacterial 310

data was available, making it an essential tool for drug discovery and synthetic biology 311

experiments in microbes. 312
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