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Abstract

Most research into bottlenose dolphins’ (Tursiops truncatus’ ) capacity for
communication has centered on tonal calls termed whistles, in particular
individually-distinctive contact calls referred to as signature whistles. While
“non-signature” whistles exist, and may be important components of bottlenose dolphins’
communicative repertoire, they have not been studied extensively. This is in part due to
the difficulty of attributing whistles to specific individuals, a challenge that has limited
the study of not only non-signature whistles but the study of general acoustic exchanges
among socializing dolphins. In this paper, we propose the first machine-learning-based
approach to identifying the source locations of tonal, whistle-like sounds in a highly
reverberant space, specifically a half-cylindrical dolphin pool. We deliver time-of-flight
and normalized cross-correlation measurements to a random forest model for
high-feature-volume classification and feature selection, and subsequently deliver the
selected features into linear discriminant analysis, linear and quadratic SVM, and
Gaussian process models. In our 14-point setup, we achieve perfect classification
accuracy and high (3.22 ± 2.63 feet) regression accuracy with less than 10,000 features,
suggesting an upgrade in accuracy and computational efficiency to the
whole-pool-sampling SRP-PHAT method that is the only competitive alternative at
present, apart from tag-based methods.

Author summary

The common bottlenose dolphin (Tursiops truncatus) has attracted attention as a
distinctly nonhuman, yet intelligent and social species that may be capable of complex
communication. Despite the great interest in probing the “vocal” interactions of
socializing dolphins to evaluate this possibility, a prerequisite to any rigorous attempt is
the matching of vocalizations with their corresponding vocalizers. At present, no
reliable method exists for consistently performing this matching, particularly over long
periods of time and with complete information about the physical condition of all
vocalizers. In this study, we propose the first machine learning-based method for
accomplishing sound localization – the primary step of sound attribution – of
dolphin-like vocalizations in a dolphin pool. On our sample data, this method proves
extremely accurate within the body length of a dolphin, and is suggestive of greater
practical reliability than other available methods.
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Introduction 1

Dolphin communication research is an active period of growth. Many researchers expect 2

to find significant communicative capacity in dolphins given their complex social 3

structure [1–3], advanced cognition including the capacity for mirror self-recognition [4], 4

culturally transmitted tool-use and other behaviors [5], varied and adaptive foraging 5

strategies [6], and their capacity for metacognition [7]. Moreover, given dolphins’ 6

well-studied acoustic sensitivity and echolocation ability [8–10], some researchers have 7

speculated that dolphin vocal communication might share properties with human 8

languages [11–13]. However, there is an insufficiency of work in this area to make 9

significant comparisons. 10

Among most dolphin species, a particular tonal class of call, termed the whistle, has 11

been identified as socially important. In particular, for the common bottlenose dolphin, 12

Tursiops truncatus – arguably the focal species of most dolphin cognitive and 13

communication research – research has focused on signature whistles, 14

individually-distinctive whistles [14–16] that may convey an individual’s identity to 15

conspecifics [15,17] and that can be mimicked, potentially to gain conspecifics’ 16

attention [18]. 17

Signature whistle studies aside, most studies of bottlenose dolphin calls concern 18

group-wide repertoires of whistles and other, pulse-form call types [19–23]; there is only 19

a paucity of studies that seek to examine individual repertoires of non-signature 20

whistles or the phenomenon of non-signature acoustic exchanges among dolphins. 21

Regarding the latter, difficulties with sound attribution at best allow for sparse 22

sampling of exchanges [17,24]. Nevertheless, such studies constitute a logical 23

prerequisite to an understanding of the communicative potential of whistles. 24

The scarcity of such studies can be explained in part by a methodological limitation 25

in the way in which dolphin sounds are recorded. In particular, no established method 26

exists for recording the whistles of an entire social group of dolphins so as to reliably 27

attribute the signals to specific dolphins. The general problem of sound attribution, 28

which is encountered in almost every area of communication research, is typically 29

approached in one of two ways: (1) by attaching transducers to all potential sound 30

sources, in which case the source identities of sounds can usually be obtained by 31

discarding all but the highest-amplitude sounds in each source-distinctive recorder, or 32

(2), by using a fixed array (or arrays) of transducers, a physics-based algorithm for 33

identifying the physical origin of each sound, and cameras that monitor the physical 34

locations of all potential sources for matching. 35

While notable progress has been made implementing attached transducers (or tags) 36

to identify the sources of dolphin whistles [25–27], shortfalls include the need to 37

manually tag every member of the group under consideration, the tendency of tags to 38

fall off, and the tags’ inherent lack of convenient means for visualizing caller behavior. 39

On the other hand, a consistently reliable implementation of the array/camera approach 40

to dolphin whistles has not been achieved, even if it has been achieved for dolphin 41

clicks [28]. In the context of whistles in reverberant environments, authors have noted 42

the complications introduced by multipath effects – resulting from the combination of 43

sounds received from both the sound source and acoustically reflective boundaries – to 44

standard signal processing techniques. These complications generally arise from the 45

overlap of original and reflected sounds that confound standard, whole-signal methods 46

of obtaining time-of-flight differences. Standard techniques have at best obtained 47

modest results in relatively irregular, low-reverberation environments where they have 48

been evaluated [29–32]. In unpublished work, we have achieved similar results. One 49

method of improving a standard signal processing tool for reverberant conditions, the 50

cross-correlation, has been proposed without rigorous demonstration and has not be 51

reproduced [33]. Among all the methods attempted, one, termed Steer Response Power 52
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Phase Transform (SRP-PHAT), has achieved more success than others (about 40% 53

recall of caller identity), however it relies on a computationally exhausting sampling of 54

all space and has not yet been tested in highly reverberant space [34]. 55

We propose the first machine-learning based solution to the problem of localizing 56

whistle-like sounds in a highly reverberant environment, a half-cylindrical concrete 57

dolphin pool, located at the National Aquarium in Baltimore, Maryland. We apply it to 58

a broad variety of artificial tonal whistle-like sounds that vary over a range of values 59

within a universally recognized parameter space for classifying dolphin sounds, for a 60

limited number of sampling points. We begin with a random forest classification model 61

and eventually find that a linear classification model that achieves similar results, as 62

well as a regression model that achieves dolphin-length accuracy. The latter two models 63

rely on tight feature sets containing less than 10,000 features to locate a single whistle, 64

and even with preprocessing avoid the computational burden of the full-space 65

cross-correlation sampling required by SRP-PHAT. 66

Materials and methods 67

Sample Set 68

All data were obtained from equipment deployed at the Dolphin Discovery exhibit of 69

the National Aquarium in Baltimore, Maryland. The exhibit’s 110’-diameter cylindrical 70

pool is subdivided into one approximate half cylinder, termed the exhibit pool (EP), as 71

well three smaller holding pools, by thick concrete walls and 6’x4.25’ perforated wooden 72

gates; all pools are acoustically linked. The data were obtained from the EP, when the 73

seven resident dolphins were in the holding pools. 74

To ensure that the sound samples used for classification were not previously 75

distorted by multipath phenomena (i.e., were not pre-recorded), were obtained in 76

sufficient quantity at several precise, known locations inside the EP, and were 77

representative of the approximate “whistle space” for Tursiops truncatus, we chose to 78

use computer-generated whistle-like sounds that would be played over an underwater 79

Lubbell LL916H speaker. 80

We generated 128 unique sounds (with analysis done on 127) to fill the available 81

time. To be acoustically similar to actual T. truncatus whistles, these sounds were to be 82

“tonal” – describable as smooth functions in time-frequency space, excluding harmonics – 83

and to be defined by parameters and parameter ranges, given in Table 1, representative 84

of those used by field researchers to classify dolphin whistles [35, 36]. In time-frequency 85

space, the sounds were functionally described as either sinusoids or pseudo-sinusoids of 86

the form arcsin(m·sin(2πf))
arcsin(2πf) , the latter class possessing harmonic-like stacking, similar to 87

real whistles. Waveforms were obtained for the desired time-frequency traces by a 88

standard process of integrating instantaneous frequency with respect to time, modified 89

by window functions to ensure realistic onset and decay rates and generally to ensure 90

good behavior, and played in Matlab through a MOTU 8M audio interface at calibrated 91

volumes and a rate of 192 kHz. An example of such a sound is given in Fig 1. 92

The 128 sounds were played at each of 14 locations within the EP; they 93

corresponded to 7 unique positions on the water surface on a 3 x 5 cross, at 6 feet and 94

18 feet deep. Approximate surface positions are shown in Fig 2; the difference between 95

adjacent horizontal and vertical positions was 10-15 feet. The LL916H speaker was 96

suspended by rope from a custom flotation device and moved across the pool surface by 97

four additional ropes extending from the device to research assistants standing on 98

ladders poolside. Importantly, the speaker was permitted to sway from its center point 99

in by as much as a few feet in arbitrary direction during calibration. These assistants 100

were also used handheld Bosch 225 ft. Laser Measure devices to determine the device’s 101
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Table 1. Parameters of training set sinusoids.

Parameter Value Set
Duration (sec) [0.3, 1]
Number of Cycles [1, 2 ]
Center Frequency (Hz) [6000, 10500]
Cycle Amplitude (Hz) [2000, 5000]
Phase (rad) [−π2 , π

2 ]
Power Onset/Decay Rate * [0.1, 0.25]

* Values indicate fraction of signal length over which a sin2 rise/falls occurs.

Fig 1. Spectrogram of an artificial whistle whistle. Displayed is a standard,
1024-bin spectrogram of one of the 128 whistle-like sounds that were generated. The
spectrogram was constructed from the original, source signal.

distance from their reference points (several measurements were taken for each location), 102

and through a triangulation process the device location could always be placed on a 103

Cartesian coordinate system common with the hydrophones. Each sound in a 128-sound 104

run was played after a 2-second delay as well as after a 0.25-second, 2-kHz tone, that 105

allowed for the creation of a second set of time-stamps in order to compensate for clock 106

drift during the automated signal extraction. 107

Recording System 108

Acoustic and visual data was obtained from a custom audiovisual system consisting of 109

16 hydrophones (SQ-26-08’s from Cetacean Research Technology, with approximately 110

flat frequency responses between 200 and 25,000 Hz) split among 4 semi-permanent, 111

tamper-resistant arrays and 5 overhead cameras – for the purpose of this study, only a 112
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Fig 2. Pool test point and hydrophone array layout. The National Aquarium
Exhibit Pool (EP) is shown. Circled in red are the approximate surface projections of
the fourteen points at which sounds were played. Circled in orange are the four
hydrophone arrays, each containing four hydrophones.

central AXIS P1435-LE camera, managed by Xeoma surveillance software was used. 113

The four arrays were spaced approximately equally around half-circle boundary of the 114

EP (a “splay” configuration). The physical coordinates of all individual hydrophones 115

were obtained by making underwater tape-measure measurements as well as 116

above-water laser-rangefinder measurements; various calibrations were performed that 117

are outside the scope of the present paper. During this test, sounds were collected at 118

192 kHz by two networked MOTU 8M into the Audacity AUP sound format, to avoid 119

the size limitations of standard audio formats – this system was also used for playing 120

the sounds. Standard passive system operation was managed by Matlab scripts 121

recording to successive WAV files; for consistency Matlab was also used for most data 122

management and handling. Data is available at 10.6084/m9.figshare.7956212. 123

Classification and Regression 124

1,605 recorded tones were successfully extracted to individual 2-second-long, 16-channel 125

WAV’s that were approximately but not precisely aligned in time. Each tone was 126

labeled with a number designating the region in which it was played. A random 10% of 127

sounds were set aside for final testing, sinusoids and pseudo-sinusoids with the same 128

parameters grouped together. 129

Each sound was initially digested into 1,333,877 continuous, numerical features: 120 130

time-difference-of-arrivals (TDOA’s) obtained using the Generalized Cross-Correlation 131

Phase Transform (GCC-PHAT) method [37], which in currently unpublished work we 132

found to be most successful among correlation-based methods for obtaining whistle 133

TDOA’s (if still too imprecise for achieving reliable sound localization with Spherical 134

Interpolation), 6601 x 136 standard normalized cross-correlations (truncated in time to 135

discard physically impossible delay peaks), and 27,126 x 12 truncated Fourier 136

transforms. Preliminary analysis found the Fourier transform features to be completely 137

disregarded during classification, so they were discarded, leaving 897,871 features. 138

Given our computational resources, this feature set remained too large to 139

May 2, 2019 5/12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/606673doi: bioRxiv preprint 

https://doi.org/10.1101/606673
http://creativecommons.org/licenses/by/4.0/


accomodate most classifiers. A notable exception was random forests, which were 140

suitable not only for classification – being powerful nonlinear classifiers with built-in 141

resistance to overfitting – but for feature reduction, via the delta error metric that can 142

serve as a measure of feature importance. We grew a Breiman random forest composed 143

of CART decision trees on the training data; each tree was trained on a random subset 144

of ˜75% of the training samples using a random ˜
√

897, 871 feature subset. Out-of-bag 145

(OOB) error was used for validation. 146

We subsequently used delta error as a measure of feature importance, both to 147

examine the selected features for physical significance – recall that cross-correlation 148

features correspond to pairs of sensors – and to obtain a reduced feature set appropriate 149

for training additional models. On the reduced feature set, we considered a basic 150

decision tree, a linear and quadratic SVM, and linear discriminant analysis. We also 151

considered Gaussian process regression (also termed kriging) – a nontraditional, 152

nonparametric method of regression that could accommodate our under-constrained 153

data. 154

We then assessed our ability to locate sounds not originating on the training/testing 155

grid using Gaussian process models. We trained models on training data exclusive of a 156

single grid point, and then evaluated the regression’s performance predicting the 157

coordinates of test sounds from that point. We repeated this process for all grid points 158

and generated statistics. 159

Lastly, we obtained a minimal, nearly sufficient feature set by training a single 160

sparse decision tree classifier on all features of all training data. We then investigated 161

these minimal features for physical significance, by mapping features’ importance (again, 162

using a random forest’s delta error) back to the sensor and array pairs that they 163

represented. 164

Results 165

The random forest trained on the full feature set, as specified above, reached 100.0% 166

OOB accuracy at a size of approximately 180 trees. We continued training to 300 trees, 167

and evaluated the resulting model on the test set: 100.0% accuracy was achieved, with 168

6,788 features possessing delta error greater than 0 (based on OOB evaluations). Note 169

that, given the stochastic construction of the random forest, these features did not 170

represent a unique set or superset of sufficient features for obtaining 100.0% test 171

accuracy. When we considered which array pairs the 6,778 TDOA and cross-correlation 172

features represented, we found that all pairs of the four hydrophone arrays were 173

represented with no significant preference. 174

We trained several more models on the reduced feature set, including a basic 175

decision tree, a linear and quadratic SVM, and linear discriminant analysis, using 176

10-fold cross-validation. The quadratic SVM as well as linear discriminant analysis 177

achieved 100.0% cross-validation and 100.0% test accuracy, the basic decision tree 178

achieved 96.9% cross-validation and 97.75% test accuracy, and the linear SVM achieved 179

100.0% cross-validation accuracy and 99.44% test accuracy. 180

On the reduced feature set we also performed Gaussian process regression (kriging), 181

generating one model for each spatial dimension. The predicted locations of testing 182

samples for a subset of test locations are plotted in Fig 3. The calculated error was 3.22 183

± 2.63 feet. 184

When the Gaussian process regression models were prompted to predict the 185

coordinates of test sounds from single grid points from which they received no training 186

data, the error was significantly greater, at 10.73 ± 2.45 feet. We also calculated the 187

error separately in each dimension: referring to Fig 2, in the horizontal direction the 188

error was 2.45 ± 2.26, in the vertical direction the error was 3.11 ± 3.32, and into the 189
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Fig 3. Predictions of test sound locations by Gaussian process regressors.
The half-cylindrical National Aquarium EP is depicted. Large unfilled circles indicate
the true coordinates of the test sounds; each has a unique color. Small filled circles
indicate the test sound coordinates predicted by Gaussian process regression, colors
matching their respective true coordinates.

figure the error was 8.95 ± 3.07; based on one-sided, unpaired t-testing, the differences 190

between all three are statistically significant (<0.05). 191

Next, we trained a single, sparse decision tree on the full training set. The severe 192

feature reduction left 22 features. While the decision tree achieved only 96.63% 193

accuracy on the test set, a random forest trained on the same features achieved 98.88% 194

test accuracy. Thus, we considered this feature set both sufficient and sparse enough to 195

meaningfully ask these features tell us about sensor-sensor pairs a classifier might 196

emphasize. The delta error was summed across hydrophone and array pairs, visualized 197

in Fig 4. Overall, we note that, directly or indirectly, features representing all pairs of 198

hydrophone arrays are utilized. 199

Discussion 200

We provide a proof of concept that sound source localization of bottlenose whistles can 201

be achieved implicitly as a classification task and explicitly as a regression task in a 202

highly reverberant, half-cylindrical aquatic environment. We began with 127 unique 203

tonal sounds played at 14 positions in the primary dolphin pool at the National 204

Aquarium, recorded with four four-hydrophone arrays. First, we showed that a random 205

forest classifier with less than 200 trees can achieve 100% testing accuracy using 6,788 206

of 897,871 features, including TDOA’s obtained from GCC-PHAT and normalized 207

cross-correlations between all pairs of sensors. We then showed that linear discriminant 208

analysis and a quadratic SVM can achieve the same results on the reduced feature set. 209

If the linear model in particular were to remain valid when trained on a finer grid of 210

training/testing points (finer by about two fold, which would reduce the distance 211

between grid points to approximately the length of a mature bottlenose dolphin), it 212

would constitute a simple and computationally efficient method of locating the origin of 213

tonal sounds in a reverberant environment. 214

Although it remains unclear to what extent sounds originating off-grid are classified 215
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(a) (b)

(c) (d)

Fig 4. Minimal Cross-Hydrophone and Cross-Array Feature Importances.
Aggregate feature importance values for a minimal set of 22 features across hydrophone
and hydrophone array pairs are formed by summing the importances (delta error) of
features across hydrophone pairs, and subsequently averaging hydrophone pair sums
across array pairs. A: Cross-hydrophone importances for cross-correlation features.
Hydrophones belonging to common panels (1-4, 5-8, 9-12, 13-16) are grouped by red
boxes. B: Cross-array importances for cross-correlation features. Facing the pool from
the panels increase in number from left to right. C: Cross-hydrophone importances for
TDOA features. D: Cross-array importances for TDOA features.

to the most logical (i.e., nearest) grid points, a concern even for a classifier trained on a 216

finer grid, we note that our classifiers’ success was achieved despite the few-foot drift of 217

the speaker during play-time; this may indicate a degree of smoothness in the classifiers’ 218

decision-making. Also, that a linear classifier, which by definition cannot support 219

nonlinear decision making, suffices for this task on features (TDOA’s, cross-correlations) 220

that are generally expected to vary continuously in value across space is reassuring. 221

Nevertheless, this question does warrant further investigation, perhaps with deliberately, 222

faster moving sources. 223

We more suitably addressed the question of off-grid prediction for Gaussian process 224

regression, which was also quite successful when trained on the full training data set, 225

achieving test error of 3.22 ± 2.63 feet – less than the expected length of an adult 226

common bottlenose dolphin [38]. Not only is regression inherently suited to 227

interpolation, but it was straightforward to assess regression’s performance on test data 228

from grid points excluded during training. While the regression’s overall performance on 229

novel points was not satisfactory, admitting error larger than average dolphin length at 230

10.73 +/- 2.45 feet, when we decomposed the error into three dimensions (2.45 +/- 2.26 231

feet in X, 3.11 +/- 3.32 feet in Y, 8.95 +/- 3.07 feet in Z, all statistically different under 232
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one-sided t-testing), we saw that much of the error originated in the direction of pool 233

depth. This is unsurprising given that all data are evenly distributed between only two 234

depths; we would expect a significant boost to performance by introducing additional 235

depth(s) to the data. 236

It also remains unclear to what extent sounds outside the training set, specifically 237

real dolphin whistles, are properly assigned. A test of this would require a large set of 238

dolphin whistles played at known locations in the pool, which would do not possess at 239

present. However, even were an evaluation of real dolphin whistles to fail, we note that 240

in general captive dolphins’ “vocabularies” tend to be limited – groups seem to possess 241

less than 100 unique types [21] – and that it would be realistic to train 242

classification/regression models with whistles closely resembling group members’ sounds, 243

avoiding the need for the model to generalize in whistle type space. 244

We also showed that an extremely sparse, 22-item feature set that lends itself to 245

relatively strong classification accuracy includes time-of-flight comparisons from all four 246

pairs of arrays. As much sound amplitude information was removed in the process of 247

feature creation, this suggests that the decision tree and random forest implicitly use 248

time-of-arrival information for classification from four maximally spaced sensors, 249

consistent with a naive analytic-geometric approach to sound source localization. 250

However, the inner decision making of the models ultimately remains unclear. 251

Overall, we feel this study offers a strong demonstration that machine-learning 252

methods are suitable to solving the problem of sound-localization for tonal whistles in 253

highly reverberant aquaria. Were the performance of the methods presented here extend 254

to a finer grid – which was not and will not be feasible in our own work at the National 255

Aquarium – they would constitute the most accurate methods to sound source 256

localization of dolphin-whistle-like sounds in a highly reverberant environment yet 257

proposed that avoid the need for tagging; currently, successful localization of whistles in 258

similar environments is no greater than 70% [29–32]. Moreover, as these methods do not 259

require the computation of cross-correlations across the whole sample space, we expect 260

these methods to be less computationally expensive than SRP-PHAT, the primary 261

alternative. With a set of four permanent hydrophone arrays surrounding a subject 262

enclosure, automated overhead tracking, and suitable training set, this method may 263

allow for the creation of a high-fidelity record of dolphin exchanges suitable to 264

statistical analysis in many settings. 265

Acknowledgments 266

We thank the National Aquarium for participating in this study, as well the National 267

Science Foundation (Awards 1530544, 1607280), the Eric and Wendy Schmidt Fund for 268

Strategic Innovation, and the Rockefeller University for funding. While regrettably we 269

cannot name everyone, we also thank the approximately two dozen people at the 270

National Aquarium, the Rockefeller University, and Hunter College for assisting with 271

various aspects of the project. 272

References

1. Shirihai H, Jarrett B. Whales, Dolphins, and Other Marine Mammals of the
World. Princeton and Oxford: Princeton University Press; 2006.

2. Connor RC, Heithaus MR, Barre LM. Complex social structure, alliance stability
and mating access in a bottlenose dolphin ’super-alliance’. Proceedings of the
Royal Society B: Biological Sciences. 2001;268(1464):263–267.

May 2, 2019 9/12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/606673doi: bioRxiv preprint 

https://doi.org/10.1101/606673
http://creativecommons.org/licenses/by/4.0/


3. Krutzen M, Sherwin WB, Connor RC, Barre LM, Van de Casteele T, Mann J,
et al. Contrasting relatedness patterns in bottlenose dolphins (Tursiops sp.) with
different alliance strategies. Proceedings of the Royal Society B: Biological
Sciences. 2003;270(1514):497–502.

4. Reiss D, Marino L. Mirror self-recognition in the bottlenose dolphin: A case of
cognitive convergence. Proceedings of the National Academy of Sciences.
2001;98(10):5937–5942.

5. Krutzen M, Mann J, Heithaus MR, Connor RC, Bejder L, Sherwin WB. Cultural
transmission of tool use in bottlenose dolphins. Proceedings of the National
Academy of Sciences. 2005;102(25):8939–8943.

6. Sargeant BL, Mann J, Berggren P, Krutzen M. Specialization and development of
beach hunting, a rare foraging behavior, by wild bottlenose dolphins ( Tursiop
sp.). Canadian Journal of Zoology. 2005;83(11):1400–1410.

7. Smith JD. Inaugurating the Study of Animal Metacognition. International
Journal of Comparative Psychology. 2010;23(3):401–413.

8. Au WWL, Moore PWB, Pawloski D. Echolocation transmitting beam of the
Atlantic bottlenose dolphin. The Journal of the Acoustical Society of America.
1986;80:688–691.

9. Johnson CS. Discussion. In: Busnel RG, editor. Animal Sonar Systems Biology
and Bionics. Jouy-en-Josas, France; 1967. p. 384–398.

10. Au WWL. Echolocation in Dolphins. In: Hearing by Whales and Dolphins. New
York City, New York: Springer; 2000.

11. Lilly JC, Miller AM. Vocal Exchanges between Dolphins. Science.
1961;134(3493):1873–1876.

12. Dreher JJ. Linguistic Considerations of Porpoise Sounds. The Journal of the
Acoustical Society of America. 1961;33(12):1799–1800.

13. McCowan B, Hanser SF, Doyle LR. Quantitative tools for comparing animal
communication systems: information theory applied to bottlenose dolphin whistle
repertoires. Animal Behaviour. 1998;57(2):409–419.

14. Caldwell MC, Caldwell DK. Individualized Whistle Contours in Bottlenosed
Dolphins (Tursiops truncatus). Nature. 1965;207(1):434–435.

15. Caldwell MC, Caldwell DK, Tyack PL. Review of the
signature-whistle-hypothesis for the Atlantic bottlenose dolphin. In: Leatherwood
S, Reeves RR, editors. The Bottlenose Dolphin. San Diego; 1990. p. 199–234.

16. Sayigh LS, Esch HC, Wells RS, Janik VM. Facts about signature whistles of
bottlenose dolphins, Tursiops truncatus. Animal Behaviour.
2007;74(6):1631–1642.

17. Janik VM, Sayigh LS. Communication in bottlenose dolphins: 50 years of
signature whistle research. Journal of Comparative Physiology A.
2013;199(6):479–489.

18. Tyack PL. Whistle Repertoires of Two Bottlenosed Dolphins, Tursiops truncatus :
Mimicry of Signature Whistles? Behavioral Ecology and Sociobiology.
1986;18(4):251–257.

May 2, 2019 10/12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/606673doi: bioRxiv preprint 

https://doi.org/10.1101/606673
http://creativecommons.org/licenses/by/4.0/


19. McCowan B. A New Quantitative Technique for Categorizing Whistles Using
Simulated Signals and Whistles from Captive Bottlenose Dolphins (Delphinidae,
Tursiops truncatus). Ethology. 1995;100:177–193.

20. McCowan B, Reiss D. Whistle Contour Development in Captive-Born Infant
Dolphins (Tursiops truncatus): Role of Learning. Journal of Comparative
Psychology. 1995;109(3):242–260.

21. McCowan B, Reiss D. Quantitative Comparison of Whistle Repertoires from
Captive Adult Bottlenose Dolphins (Delphinidae, Tursiops truncatus): a
Re-evaluation of the Signature Whistle Hypothesis. Ethology. 1995;100:194–209.

22. McCowan B, Reiss D, Gubbins C. Social familiarity influences whistle acoustic
structure in adult female bottlenose dolphins (Tursiops truncatus). Aquatic
Mammals. 1998;24(1):27–40.

23. McCowan B, Reiss D. The fallacy of ‘signature whistles’ in bottlenose dolphins: a
comparative perspective of ‘signature information’ in animal vocalizations.
Animal Behaviour. 2001;62(6):1151–1162.

24. Janik VM, King SL, Sayigh LS, Wells RS. Identifying signature whistles from
recordings of groups of unrestrained bottlenose dolphins (Tursiops truncatus).
Marine Mammal Science. 2013;29(1):109–122.

25. Tyack PL. An optical telemetry device to identify which dolphin produces a
sound. The Journal of the Acoustical Society of America. 1985;78(5):1892–1895.

26. Watwood SL, Owen ECG, Tyack PL, Wells RS. Signature whistle use by
temporarily restrained and free-swimming bottlenose dolphins, Tursiops
truncatus. Animal Behaviour. 2005;69(6):1373–1386.

27. Akamatsu T, Wang D, Wang K, Naito Y. A method for individual identification
of echolocation signals in free-ranging finless porpoises carrying data loggers. The
Journal of the Acoustical Society of America. 2000;108(3):1353–5.

28. Watkins WA, Schevill WE. Listening to Hawaiian Spinner Porpoises, Stenella Cf.
Longirostris, with a Three-Dimensional Hydrophone Array. Journal of
Mammalogy. 1974;55(2):319–328.

29. Bell BM, Ewart TE. Separating Multipaths by Global Optimization of a
Multidimensional Matched Filter. IEEE Transactions on Acoustic, Speech, and
Signal Processing. 1986;ASSP-34(5):1029–1036.

30. Freitag LE, Tyack PL. Passive acoustic localization of the Atlantic bottlenose
dolphin using whistles and echolocation clicks. The Journal of the Acoustical
Society of America. 1993;93(4):2197–2205.

31. Janik VM, Thompson M. A Two-Dimensional Acoustic Localization System for
Marine Mammals. Marine Mammal Science. 2000;16(2):437–447.
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