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Abstract  
 
Adults with childhood-onset attention-deficit hyperactivity disorder (ADHD) show altered 
whole-brain connectivity. However, the relationship between structural and functional brain 
abnormalities, the implications for the development of life-long debilitating symptoms, and 
the underlying mechanisms remain uncharted. We recruited a unique sample of 80 
medication-naive adults with a clinical diagnosis of childhood-onset ADHD without 
psychiatric comorbidities, and 123 age-, sex-, and intelligence-matched healthy controls. 
Structural and functional connectivity matrices were derived from diffusion spectrum 
imaging and multi-echo resting-state functional MRI data. Hub, feeder, and local connections 
were defined using diffusion data. Individual-level measures of structural connectivity and 
structure-function coupling were used to contrast groups and link behavior to brain 
abnormalities. Computational modeling was used to test possible neural mechanisms 
underpinning observed group differences in the structure-function coupling. Structural 
connectivity did not significantly differ between groups but, relative to controls, ADHD 
showed a reduction in structure-function coupling in feeder connections linking hubs with 
peripheral regions. This abnormality involved connections linking fronto-parietal control 
systems with sensory networks. Crucially, lower structure-function coupling was associated 
with higher ADHD symptoms. Results from our computational model further suggest that the 
observed structure-function decoupling in ADHD is driven by heterogeneity in neural noise 
variability across brain regions. By highlighting a neural cause of a clinically meaningful 
breakdown in the structure-function relationship, our work provides novel information on the 
nature of chronic ADHD. The current results encourage future work assessing the genetic and 
neurobiological underpinnings of neural noise in ADHD, particularly in brain regions 
encompassed by fronto-parietal systems. 
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Introduction 
 
Adult attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental 
disorder characterized by inattentive and hyperactive-impulsive symptoms beginning in early 
childhood1. Identifying the neural underpinnings of adult ADHD is an ongoing research 
endeavor, critical to the definition of neural mechanisms supporting clinical outcomes of 
childhood-onset ADHD and the development of novel targeted interventions2. 
 
Neuroimaging work has provided important insights into altered structural3–5 and functional6,7 
brain connectivity underpinning ADHD pathophysiology, and suggest that network 
interactions, rather than regional abnormalities, contribute to phenotypic expression of the 
disorder8. Anatomically, results have been mixed. Recent studies showing no changes in the 
ADHD connectome9, whereas others have pointed to various abnormalities in white matter 
tracts including the corpus callosum and posterior circuits related to the limbic and occipital 
systems, the fronto-striato-cerebellar connections, and the pathways linking the default-mode 
and fronto-parietal hub regions4,5,10. 
 
Complementing findings from diffusion MRI, resting-state functional magnetic resonance 
image (rs-fMRI) studies have highlighted that both diagnosis and symptoms of ADHD are 
linked to reduced segregation between the activity of control networks supporting external 
task engagement and the default-mode network6,7,11. Reduced functional connectivity within, 
and between, the default-mode, sensory, and control networks has also been reported both in 
children and adults with ADHD6,7,10,11.  
 
Emerging evidence suggests that patterns of functional connectivity are constrained by their 
anatomical underpinning: The connectome12,13. Structural and functional brain network 
alterations in adult ADHD partially overlap, but the direct link between these structure-
function aberrations has not been formally explored. Here, we used multi-echo rs-fMRI and 
diffusion spectrum imaging (DSI) to investigate possible changes in whole-brain structure-
function coupling in a large sample of well-characterized, medication-naïve adults with 
childhood-onset ADHD and matched healthy controls11. Based on previous findings11 and the 
hypothesis that psychiatric conditions are primarily pathologies of brain hubs14, we expected 
significant departures from the typical structure-function coupling in ADHD. Specifically, a 
breakdown in the structure-function association is likely to occur in connections involving 
brain hubs that belong to the control and default-mode brain networks14,15. To investigate a 
likely underlying neural mechanism of this deficit16, we adopted whole-brain computational 
modeling. Our model explicitly tested the hypothesis that increased heteroscedasticity in the 
levels of intrinsic neural noise drives the expected breakdown in the structure-function 
coupling. Heteroscedasticity occurs when the variance of explanatory variables – neural noise 
level – is not constant across brain regions. The hypothesis tested by our model is grounded 
in previous work suggesting that ADHD symptoms are linked to a pathological increase in 
baseline neural noise17–20.  
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Methods 
 
Sample  
We recruited 80 medication-nai�ve adults with childhood-onset ADHD aged 18–39 years 
(mean 26.7 years), who fulfilled DSM-IV-TR criteria for the current diagnosis of ADHD.  
This carefully phenotyped sample allows the unequivocal assessment of structural and 
functional brain networks in the absence of common confounds in ADHD research including 
other developmental delays, medication exposure and intellectual disabilities. Results from 
the clinical sample were benchmarked against the findings of 123 age- (mean 25.7 years), 
sex-, and IQ-matched healthy controls. Participants were assessed at the Department of 
Psychiatry, National Taiwan University Hospital (NTUH), Taipei, Taiwan.  
 
This study has been approved by the Research Ethics Committee of NTUH 
(201401024RINC; ClinicalTrials.gov number: NCT02642068) and all participants provided 
written informed consent. Details regarding the recruitment procedure are described in our 
previous work11 (Supplementary Methods).  
 
MRI acquisition and preprocessing 
Brain imaging data were acquired with a Siemens 3T Tim Trio scanner equipped with a 32-
channel head coil. Details regarding preprocessing multi-echo resting-state data are described 
elsewhere11 (Supplementary Methods). In short, the pipeline included: quality control, 
comprehensive data denoising using multi-echo independent components analysis (ME-ICA 
v3.0)21, coregistration to individual anatomical images, non-linear normalization to MNI 
space, and filtering (0.01∼0.1 Hz).  
 

DSI data underwent an initial quality control procedure to ensure acceptable levels of in-
scanner head motion, which were estimated by signal loss22. This quality control step resulted 
in a final sample of 78 ADHD adults and 118 healthy controls (Table 1). DSI data were then 
reconstructed using the q-space diffeomorphic reconstruction approach23 implemented in the 
software DSI Studio (Supplementary Methods). 
 

Further quality control analyses showed that micro-head movements (mean framewise 
displacement)24 for rs-fMRI and signal dropout counts22 for DSI, were not significantly 
different between ADHD and controls (p = 0.35 and 0.54, respectively).   
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Table 1. Demographic and clinical features of the participants. 
Mean (SD) Control (N=118) ADHD (N=78) Statistics 
Age (18-39 years) 25.8 (5.0) 26.6 (5.5) p = 0.287 

Sex (M/F) 76/42 54/24 p = 0.484 

FIQ 
109.8 (9.3)  
(range: 89-138) 

107.5 (10.4) 
(range: 80-137) 

p = 0.101 

VIQ 108.2 (9.0) 105.7 (11.2) p = 0.088 

PIQ 110.4 (11.4) 108.3 (16.3) p = 0.289 

ADHD symptoms    

SNAP-IV (Parent-report)a    

 Inattention (0-27) 6.6 (4.9) 19.6 (5.0) p < 0.001 

 Hyperactivity/Impulsivity (0-27) 3.2 (4.4) 13.4 (6.4) p < 0.001 

ASRS (Self-report)     

 Inattention (0-36) 13.3 (5.2) 27.0 (4.8) p < 0.001 

 Hyperactivity/Impulsivity (0-36) 9.1 (5.2) 19.9 (6.3) p < 0.001 

Mean frame-wise displacementb (mm) 
0.045 (0.021) 
(range: 0.014-0.123) 

0.048 (0.024) 
(range: 0.017-
0.108) 

p = 0.354 

Signal dropout countsc 30.8 (22.4) 28.8 (21.4) p = 0.536 
 

a Measured by the parent-rated Swanson, Nolan, and Pelham, version IV (SNAP-IV) scale. 
b A summary estimate of in-scanner motion levels of resting-state fMRI, as estimated by the Euclidian norm 
(enorm: square root of the sum of squares of the differences in motion derivatives), computed with AFNI's 
1d_tool.py. 
c A summary estimate of in-scanner motion levels of diffusion spectrum imaging (see the Methods). 
Abbreviation: ADHD=attention-deficit hyperactivity disorder; FIQ=full intelligence quotient; PIQ=performance 
intelligence quotient; VIQ=verbal intelligence quotient; ASRS=Adult ADHD Self-Report Scale; M=male; 
F=female; R=right; L=left; SD=standard deviation. 
 
Structural and functional brain network construction 
We generated whole-brain structural (SC) and functional (FC) connectivity matrices for each 
individual, based on a common and recently validated cortical parcellation25 (Fig. 1A). 
Fourteen additional subcortical structures from the Harvard-Oxford atlas were added to the 
parcellation, resulting in 214 total regions (Schaefer-214 henceforth; Supplementary Table 
1). Individual whole-brain tractography maps were combined with the pre-defined anatomical 
boundaries defined by this Schaefer-214 parcellation to generate a weighted SC matrix (Fig. 
1B). Each edge of the network corresponds to the total number of normalized streamlines that 
interconnect any two brain regions, adjusted for the interregional fiber length26. For resting-
state data, regional time-series were calculated as the mean across voxels within each region 
included in the brain parcellation. For each individual, Pearson’s correlations were calculated 
between the time-series of all regions to calculate FC. Finally, a Fisher z-transformation was 
applied to the FC matrices.  
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Connection classes 
We identified hub regions according to an aggregate ranking across multiple metrics 
including degree, strength, subgraph centrality, and betweenness27,28. The top 15% composite 
scores (N = 32, Supplementary Table 1&2) were used to identify hub regions within each 
individual; all other nodes were assigned as periphery nodes. Hub connections were defined 
as edges that connected any two hub nodes. Feeder connections linked hub nodes to 
periphery nodes, and local connections linked periphery nodes (Fig. 1C)15,29. 
 
Structure-function relationships 
Brain network structure-function relationships were conducted in line with previous research 
15. First, non-zero SC values within each individual connectome were isolated and normalized 
using a rank-based inverse Gaussian transformation30. The resulting SC values were 
correlated with corresponding FC values (i.e., the same edges), within each individual. This 
analysis produced a single Pearson’s r value that summarized the global structure-function 
association for each individual31. These values were used to populate group distributions and 
were subsequently contrasted using between-group statistics. This entire procedure was 
completed at the level of the whole network and within each respective connection class: 
hubs, feeders, and local edges.  
 
Previous work investigating resting-state networks, including data from the current cohort11, 
has highlighted the key role of control, default-mode, and sensory networks in adult 
ADHD6,7. Based on these results, we also tested for specific changes in SC-FC coupling 
within these networks. To ensure that a sufficient number (minimum of 50) of edges was 
used to infer structure-function relationship, control networks were defined as the 
combination of fronto-parietal, alongside dorsal and ventral attention affiliations from the 
adopted parcellation, while sensory connections included both visual and somatomotor 
affiliations. Default-mode connections were as in the original parcellation. Once SC-FC 
coupling was estimated within each network, the mean r values (Control-ADHD) were 
presented within and between each network. 
 
Relationship between structure-function coupling and behavioral symptoms of ADHD 
Given the notion that measures of ADHD symptoms are continuously distributed in the 
general population32,33, we investigated brain-behavior relationships across both ADHD and 
control groups (Fig. 1C). Inattention and hyperactivity-impulsivity symptoms based on the 
parent-rated Swanson, Nolan, and Pelham, IV (SNAP-IV)34 and self-rated Adult ADHD Self-
Report Scale (ASRS)35 (Table 1) were used in the analysis. These four symptom items (two 
from each measure) were transformed using a rank-based inverse Gaussian, then entered into 
a principal component analysis to reduce the dimensionality of the data. The first component, 
accounting for 81% of the variance, was then correlated with the structure-function coupling 
of the whole sample (Supplementary Table 3).  
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Statistical comparisons between groups 
To ensure that the general structural network density did not explain between-group 
differences, summed binary and weighted degrees were compared between groups. Average 
connection weights within each connection class were compared between each group. In 
addition, the network based statistic (NBS)36 was used to explore any possible differences in 
SC between controls and ADHD (5000 permutations, threshold t = 3). ADHD-associated 
alterations of FC using NBS have been reported in our initial study on this sample11.  
 
Mann–Whitney U tests were used to identify possible differences in the structure-function 
association between control and ADHD groups. Bonferroni correction (family-wise error 
rate, FWE) for multiple comparisons was applied to follow-up statistics, with ����  < 0.05 
indicating statistical significance. Statistical analyses were performed in MATLAB 
(Mathworks) with code available online (https://github.com/ljhearne/ADHDSCFC). 
 

 
Fig. 1 Conceptual overview of the analysis pipeline. A. Analyses were conducted using a whole-brain 
parcellation including 214 cortical and subcortical regions. Replication analyses were performed 
using two alternative brain parcellations (see text). B. Structural (SC) and functional connectivity 
(FC) matrices were derived from diffusion spectrum imaging (DSI) and multi-echo resting-state fMRI 
data, respectively. Darker colors indicate higher normalized streamline counts (SC) and higher Fisher-
z normalized Pearson’s correlation values between every possible pair of brain regions (FC). C. The 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/606228doi: bioRxiv preprint 

https://doi.org/10.1101/606228
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

topological organization of the SC matrices was examined to derive measures of different connection 
types: hub connections, feeder connections, and local connections. Individual-level correlations 
between SC and FC were used to estimate structure-function coupling, which was then analyzed with 
between-group statistics. D. A computational model was used to assess the potential neural 
mechanisms that lead to decreased structure-function coupling. Empirical SC was used as input in the 
model and model parameters were estimated by fitting to empirical FC. We systematically assessed if 
an increase in the noise heterogeneity in hub or peripheral nodes could result in a marked dissociation 
between functional and structural connectivity. 

 
Computational modeling: Assessing the neural factors driving structure-function breakdown 
The adopted whole-brain computational model incorporates SC to represent the strength of 
connections between brain regions. In addition to the weights specified in the empirical SC 
matrix, structural connections are scaled by a global coupling parameter. This parameter can 
then be varied systematically to simulate and compare the global dynamics emerging from 
the model with the empirical FC derived from the rs-fMRI data.  
 
We chose a simple stochastic linear model of the Ornstein-Uhlenbeck type37–39. The main 
motivations behind this choice were that the model: (i) allows us to simulate whole-brain 
patterns of FC from SC matrices; (ii) enables tests of the hypothesis that increased 
heteroscedasticity of neural noise levels results in a breakdown in structure-function 
coupling; (iii) can be considered a generic linearization of more complex models with a stable 
fixed point (a mathematical approach at the core of e.g. dynamic causal modeling for 
fMRI40); and (iv) permits a direct analytical derivation of FC from empirical SC without the 
need of computationally demanding numerical simulations. The model equation is: 
 

��� � ���� � � 	 
�����

���

 �  � � ���
�  

 

 
where ��  is the activity of the �-th region; � is the global coupling strength which rescales the 
strength of structural connections of the system; 
��  is the connectivity weight to region � 
from region �  (as specified by the empirical SC matrix); ��  is the intrinsic noise 
amplitude/level of the �-th region, and defines the size of random increments ���
�  in the 
dynamics of the region, and N is the total number of regions in the connectome. Previous 
modeling studies38,39 have considered the noise levels to be constant across the whole 
network (i.e., the homoscedastic case in which all ��  are identical). In light of previous 
suggestions17–20, we hypothesized that heteroscedasticity across a specific subset of brain 
regions (hubs or periphery) would have a detrimental impact on SC-FC decoupling. To test 
our hypothesis and determine in which connection classes heteroscedasticity has the largest 
impact, we systematically analyzed varying degrees of heteroscedasticity in the noise levels 
in distinct subsets of regions independently (hub and periphery regions). A comprehensive 
description of the modeling can be found in the Supplementary Methods.   
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Results 
 
Similar structural connectivity between groups 
Results showed no difference in weighted (p = 0.89, z = 0.13), or unweighted (p = 0.24, 
z = -1.19) summed degree across groups. Likewise, the whole-brain network-based statistics 
comparing ADHD and healthy control groups revealed no significant differences in structural 
connectivity between the groups (ADHD > controls, p = 0.63; controls > ADHD, p = 0.78). 
Next, we sought to investigate potential differences in classes of structural connections, 
namely hubs, feeders, and local connections. No significant group differences were observed 
when comparing mean connection strength within hub (p = 0.86, z = -0.17), feeder (p = 0.77, 
z = -0.29), or local connections (p = 0.23, z = 1.21).  
 
Structure and function coupling in ADHD is reduced in feeder connections 
When considering all edges within the network, results indicated a significant difference in 
SC-FC coupling (p = 0.01, z = 2.51, Fig. 2A). We then assessed the contribution to this effect 
of each connection class (hub, feeder or local). Results showed that compared to controls, 
ADHD had a significantly lower SC-FC association in feeder connections (pFWE = 0.005, z = 
3.10) but not in hub (pFWE = 1, z = 0.55) or local (pFWE = 0.33, z = 1.60) connections (Fig. 
2A).   
 

 
Fig. 2 Structure-function relationships in drug-naïve adults with ADHD and healthy matched 
controls. A. Distributions of r values across the whole connectome and the three connection classes57. 
Significant differences between ADHD and Control groups were observed in the whole connectome 
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but were driven by a large group difference in feeder connections. B. Mean differences in SC-FC 
coupling (Controls minus ADHD) when constrained to feeder connections within and between 
control, default-mode, and sensory functional networks. The largest deficit in SC-FC coupling in 
ADHD compared to controls were found between control and sensory network connections (r = 
0.026). C. Correlation between symptoms and SC-FC coupling in feeder connections. SC-FC 
coupling strength was negatively correlated with the ADHD symptom factor scores derived from 
principal components analysis. * < 0.05, ** < 0.01 corrected for multiple comparisons. 
 
 

Feeder structure-function decoupling in control, default-mode, and sensory brain networks 
To further explore the anatomical specificity of the observed deficits in structure-function 
coupling, we isolated feeder connections that belonged to control, default-mode, or sensory 
(merging somatomotor and visual) networks. As per the previous analysis, we correlated SC 
and FC values for connections within and between the selected brain networks. This resulted 
in a three-by-three matrix for both ADHD and healthy control groups that represented the 
degree of SC-FC coupling within and between control, default mode, and sensory networks. 
The largest reduction in SC-FC associations in ADHD compared to healthy controls were 
located in connections between control and sensory networks (Fig. 2B). 
 
The magnitude of structure-function decoupling correlates with the severity of ADHD 
symptoms 
Individual symptom scores captured by PCA linearly correlated with indices of structure-
function coupling in feeder connections, such that lower structure-function coupling was 
associated with more severe ADHD symptoms (p = 0.0004, r = -0.25, Fig. 2C).  
 
Control analyses 
A number of tests were conducted to establish the reliability of our findings. To ensure that 
our chosen brain parcellation had little bearing on the results41, we repeated the analyses in 
two other, independent brain parcellations: Shen-21342 and Brainnetome-24443. The reported 
effects were all successfully replicated (Supplementary Table 2). Using these alternative 
brain parcellations, we also found that adults with ADHD exhibited weaker structure-function 
coupling in hub connections. However, the effect size of these between-group differences 
was consistently smaller than the effect in feeder connections. 
 
Noise in hubs and periphery as a neural mechanism for structure-function breakdown 

Finally, we sought a neural mechanism for how altered structure-function relationships could 
emerge in the absence of significant differences in the connectome. In particular, we aimed to 
use computational modeling to explain our finding of selective deficits in feeder connection 
SC-FC coupling (leaving hub and local connections relatively unscathed). We systematically 
explored two scenarios with noise heteroscedasticity – i.e., increased heterogeneity in the 
intrinsic neural noise levels ��  across brain regions.  
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In the first scenario, we analyzed the simple case of heterogeneity between hubs and 
periphery (�� � ��) for hub nodes (H) and peripheral regions (P), maintaining ��  and ��  
constant within each class of regions. Exploring ranges of ��  and ��  (Fig. 3A-C) we 
analyzed the changes in SC-FC coupling for the three classes of connections (hub, feeder, and 
local). We found that feeder connections were the most susceptible to subtle imbalances 
between intrinsic noise levels in hub and periphery regions, reflected in the quick decrease in 
SC-FC coupling (Fig. 3B). On the contrary, hub and local connections exhibited only small 
changes (Fig. 3A&C). Specifically, a small imbalance such that �� � ��, with ��  10% larger 
than �� , produced a slight (< 2%) reduction in SC-FC coupling in hubs compared to the 
homogenous �� � ��  case, similar to the empirically observed slight decrease for hub 
connections in Fig. 2A (< 2%). Conversely, a 10% imbalance in the opposite direction 
(�� � �� ) yielded a negligible (~0.3%) increase in hub SC-FC coupling. The increased 
sensitivity of feeder connections was demonstrated by the same 10% imbalance (�� � ��) 
resulting in a 4% decrease in SC-FC coupling for feeder connections compared to the 
homogenous case. Importantly, an imbalance of approximately 50% (�� � ��) was required 
to obtain the 10% decrease in SC-FC coupling empirically observed in ADHD feeder 
connections (Fig. 2A). This larger imbalance also resulted in a < 2% reduced SC-FC 
coupling in hub connections, again in accordance with empirical results. Thus, larger 
differences between mean noise amplitude levels in hubs and periphery led to greater SC-FC 
decoupling specific to feeder connections, mirroring the selective deficits observed in 
ADHD. 
 
In the second scenario, we modeled the more realistic case where the noise levels (��) within 
hubs and periphery also varied from region to region. This allowed us to examine whether 
heteroscedasticity within hubs and/or periphery regions could contribute to the observed 
disruption of SC-FC coupling in ADHD. We systematically explored ranges of variance 
(Var��	� and Var��
�) for noise levels normally distributed around  means (E��	� and E��
�), 
set here such that E��
�  is 10% larger than ���	�  in line with the above results for hub 
connections (comparing Fig. 3A to Fig. 2A). We found that connections within a region class 
(i.e., hub-hub or periphery-periphery) are resilient to increased variability of intrinsic noise 
levels in the opposite type. Indeed, the SC-FC coupling in hub connections (Fig. 3D) and 
local connections (Fig. 3F) remained almost constant for increased noise variability in 
peripheral and hub regions, respectively. However, feeder connections (Fig. 3E) are clearly 
susceptible to changes in noise level heterogeneity within either hub or periphery regions, 
which implies an increased sensitivity to heteroscedasticity could also contribute to the 
disruption of SC-FC coupling in ADHD. 
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Fig. 3 Modeling the effect of noise heteroscedasticity on structure-function coupling. Effects 
of noise heteroscedasticity on SC-FC coupling. Top row: Scenario 1 - Noise heterogeneity 
between hubs and periphery (��≠ ��) for hubs (H) and peripheral brain regions (P), �� and 
��  constant within each class of regions (hubs and periphery). Bottom row: Scenario 2 - noise 
levels (��) within hubs and periphery varied from region to region. The colormaps quantify 
the SC-FC coupling (Pearson correlation between SC and FC matrix entries). A/D. Hub 
connections. B/E. Feeder connections. C/F. Local connections. E[
] = expected mean value; 
Var[
] = variance. The line in each panel corresponds to the case E��� = E���� (top row) or 
Var��� = Var��� (bottom row).  
 

 
Discussion 
The present study provides evidence of a clinically significant breakdown in brain structure-
function (SC-FC) coupling in medication-naive adults with childhood-onset ADHD. In line 
with the hypothesis that hub regions are critically vulnerable to brain pathology14,15,44, ADHD 
was associated with a marked SC-FC decoupling in connections linking brain hubs to 
peripheral regions (feeders) within and between control and sensory networks. Results from 
our modeling work further suggest that such decoupling could be linked to: (i) an imbalance 
in noise amplitudes in hubs and the periphery (e.g., increased 'unreliability' in signals 
originating from the periphery) and, (ii) higher peripheral heteroscedasticity (i.e., the 
peripheral noise is more diverse and more difficult for the hubs to filter out). Altogether, 
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results from this work propose a novel neural mechanism explaining structure-function 
decoupling in brain connectivity underpinning the chronic manifestation of ADHD 
symptoms.  
 

Structural networks are thought to place significant constraints on FC and local brain activity 
12,16,31. The decoupling between FC and its structural basis is therefore thought to represent a 
key index of brain network pathology in psychiatric illnesses including schizophrenia15,45,46. 
Our results are in line with the general notion that a structure-function breakdown in 
psychiatric illnesses involves anatomically defined hub brain regions14. The observed 
association with behavior, indicating that reduced structure-function coupling in feeder 
connections is related to higher severity of ADHD symptomology, provides support for the 
clinical relevance of this deficit in ADHD. By using a parsimonious model explaining the 
emergence of functional connectivity from underlying anatomical connectivity, we found that 
increased heteroscedasticity in intrinsic noise levels, either in hubs or periphery, has a strong 
detrimental effect in feeder connections, and to a lesser extent in hub-hub connections. 
Physiologically, reduced SC-FC coupling due to increased neural noise heteroscedasticity in 
peripheral regions can be understood as brain hubs being unable to average out peripheral 
functional disruptions. This adds weight to the notion that ADHD symptoms may arise from 
increased neural noise in the resting-state activity of associative brain regions19,20. Our 
findings are also compatible with ADHD involving a deficit in catecholaminergic systems 
regulating neural signals (neural gain, 17), and methylphenidate-induced reductions in neural 
noise19,47. 
     
Our empirical findings showed that feeder connections are the most affected by the 
decoupling between function and anatomy. Feeder connections comprise long-range 
anatomical routes allowing efficient communication between remote brain regions belonging 
to different brain networks 29. We here found that connections within control networks, as 
well as between regions comprising control and sensory networks, contributed to the overall 
reduction in structure-function association in ADHD. These findings are in agreement with 
previous neuroimaging studies in ADHD6,7,48,49 and healthy controls50,51, highlighting the key 
role of these connectivity patterns to support normal and pathological attention and inhibitory 
processes. We also note that altered patterns of FC, and SC-FC decoupling, can occur in the 
absence of deficits in SC45. In fact, whereas white matter connections are predictors of FC31, 
the opposite is not always true52. 
 
The absence of significant group differences in the structural connectome is at odds with 
some previous reports3,4. Due to the sample size and the quality of the data, it is unlikely that 
the negative finding reported here is due to a lack of statistical power in detecting meaningful 
differences in the ADHD connectome. Moreover, our result is consistent with recent work 
showing the existence of FC abnormalities with preserved white matter proprieties in 
ADHD53. The discrepancy between our findings and earlier literature3 may be explained by 
non-neural factors. For example, the absence of significant differences between the ADHD 
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and control connectomes reported here may reflect our emphasis on comparable levels of 
head motion between the two groups; a critical factor that has recently been shown to 
produce spurious group differences in ADHD3,54. Our cohort of medication-naive adults with 
established childhood-onset ADHD in the absence of co-occurring psychiatric conditions 
may also contribute to this negative finding, as psychostimulant exposure55 and comorbidity56 
have been reported to affect SC in ADHD. Although our results cannot completely exclude 
the presence of altered white matter integrity in ADHD, they suggest that any such 
differences are small overall, and the manifestation of ADHD symptoms is underpinned by 
functional deregulations and related decoupling in SC-FC.   
 
By combining functional and diffusion-weighted imaging with computational modeling, our 
study has advanced the understanding of neural mechanisms that underpin chronic ADHD 
symptoms. More specifically, our work showed that a clinically meaningful function-
structure decoupling in ADHD is likely to be related to increased neural noise heterogeneity 
between hubs and periphery regions. This knowledge is consistent with the positive effect of 
current pharmacological interventions for ADHD and provides neurobiological support for 
future clinical research focusing on reducing periphery-to-hub noise amplitude ratio and 
peripheral noise heteroscedasticity using targeted interventions including brain stimulation. 
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