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Abstract 

The brain functional connectome forms a relatively stable and idiosyncratic backbone that 

can be used for identification or “fingerprinting” of individuals with a high level of accuracy. 

While previous cross-sectional evidence has demonstrated increased stability and 

distinctiveness of the brain connectome during the course of childhood and adolescence, less 

is known regarding the longitudinal stability in middle and old age. Here we collected 

structural and resting state functional MRI data at two time-points separated by 2-3 years in 

75 middle-aged and older adults (age 49-80, SD = ± 6.91 years) which allowed us to assess 

the long-term stability of the functional connectome. We show that the connectome backbone 

generally remains stable over a 2-3 year time frame in middle- and old age. Independent of 

age, cortical volume was associated with the connectome stability of several canonical 

resting-state networks, suggesting that the connectome backbone relates to the structural 

integrity of the cortex. Moreover, individual longitudinal stability of subcortical and default 

mode networks were associated with differences in cross-sectional and longitudinal measures 

of episodic memory performance, supporting the functional relevance. The findings 

encourage the use of connectome stability analyses for understanding individual differences 

in cognitive aging. Furthermore, the observation that age-related changes in episodic memory 

performance relates to the stability of subcortical and default mode networks, provides new 

longitudinal evidence for the importance of these networks in maintaining mnemonic 

processing in old age. 

 

Keywords: Aging; Brain; MRI; Connectome; Episodic memory; Default Mode Network; 

Hippocampus 
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Introduction 

 Over the past two decades, numerous imaging studies have established a general 

template of human brain organization. However, few studies have explored the intra-

individual variations that lay on top of this blueprint. Recent work on functional brain 

networks revealed that whereas a substantial proportion of the temporal correlations in the 

connectome are modulated by cognitive demands, there is also a backbone that remains 

relatively stable independent of tasks and context (Finn et al., 2015; Kaufmann, Alnaes, 

Brandt, et al., 2017). The connectome backbone is highly idiosyncratic, allowing the 

identification of single individuals much like a brain-based fingerprint (Finn et al., 2015; 

Kaufmann, Alnaes, Doan, et al., 2017; Miranda-Dominguez et al., 2014). Moreover, the 

connectome stability is sensitive to individual differences in common symptoms of mental 

disorders in youth (Kaufmann, Alnaes, Doan, et al., 2017), and the neural networks 

contributing the most to an individual’s connectome– the frontoparietal and the default mode 

networks (DMN) – are also associated with individual differences in cognitive abilities (Finn 

et al., 2015). These findings hold great promise for using brain network approaches to 

advance our understanding of individual variations in cognition and behavior, including an 

extension to the study of cognitive aging and neurodegenerative disease.  

Alterations in the brain grey and white matter structural and functional connectivity 

are among the hallmarks of cognitive aging (Ferreira & Busatto, 2013; Fjell, Westlye, et al., 

2009; L. T. Westlye et al., 2010). These age-related decrements in brain connectivity are 

paralleled by decline in numerous cognitive functions, likely related to impaired 

communication between brain regions necessary for maintaining optimal cognition (Ferreira 

& Busatto, 2013; Fjell, Sneve, Grydeland, Storsve, & Walhovd, 2017; Fjell et al., 2016). 

Notably, both cortical and subcortical networks are vulnerable to aging (Ferreira & Busatto, 

2013; Sala-Llonch, Bartres-Faz, & Junque, 2015), with some networks showing increased 
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and other decreased resting-state connectivity with increasing age (Buckner, 2004; 

Mowinckel, Espeseth, & Westlye, 2012). Moreover, the extent and rate of change show 

strong heterogeneity across networks, with frontoparietal and DMN networks, repeatedly 

identified as the most discriminative of individuals, being particularly sensitive to the aging 

process (Sala-Llonch et al., 2015). Together these findings suggest that alterations in the 

structural and functional connectivity of the brain may be related to how well the individual 

connectome backbone is preserved. Furthermore, it raises the question whether longitudinal 

stability of the individual connectome is sensitive to concurrent cognitive changes in aging.  

Although aging brings about decline in numerous cognitive faculties, episodic 

memory is one of the most studied. Age-related declines in episodic memory have been 

reliably identified in both cross-sectional (Hedden & Gabrieli, 2004; Nyberg, Lovden, 

Riklund, Lindenberger, & Backman, 2012; Ronnlund, Nyberg, Backman, & Nilsson, 2005) 

and longitudinal (Lundervold, Wollschlager, & Wehling, 2014; Nyberg, 2017) studies of 

healthy elderly. Moreover, impaired episodic memory is a core symptom of several 

neurodegenerative disorders, of which Alzheimer disease is the most studied (Gallagher & 

Koh, 2011). Such age-related changes in memory have been related to altered structural and 

functional connectivity in prefrontal and DMN networks (Fjell et al., 2015; Nyberg, 2017; 

Salami, Pudas, & Nyberg, 2014; Staffaroni et al., 2018; E. T. Westlye, Lundervold, Rootwelt, 

Lundervold, & Westlye, 2011) but more recently also to specific subcortical systems (i.e. the 

thalamus, amygdala and basal ganglia) (Fjell et al., 2016; Rieckmann, Johnson, Sperling, 

Buckner, & Hedden, 2018; Ystad, Eichele, Lundervold, & Lundervold, 2010). This is not 

surprising given the centrality of subcortical nuclei, which are connected to virtually all parts 

of the cortex (Sah, Faber, Lopez De Armentia, & Power, 2003; Shepherd, 2013), and that 

neurotransmitters affecting episodic memory target both cortical and subcortical brain 

structures (Backman, Nyberg, Lindenberger, Li, & Farde, 2006). Moreover, the hippocampal 
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subsection of the DMN and the basal ganglia are conventionally viewed as parallel learning 

and memory systems (DeCoteau et al., 2007), which may act competitively or cooperatively 

depending on the context. Accordingly, age-related changes in resting-state functional 

connectivity of both systems have been linked to deficits during mnemonic processing 

(Rieckmann et al., 2018; Staffaroni et al., 2018), and disorders known to predominantly target 

the striatal system have also been associated with profound memory impairments already in 

the earliest stages of the disease (Solomon et al., 2007).  

In the present study, we investigated the longitudinal stability of the connectome 

backbone in middle and old age, and how this relates to changes in episodic memory and 

structural indices of aging. We obtained T1-weighted structural and resting-state functional 

MRI data from 75 middle-aged and older adults (age 49-80, SD = ± 6.91 years) at two time-

points separated by 2-3 years, and assessed the longitudinal stability of the whole-brain 

functional connectome and a set of subnetworks. We hypothesized that connectome stability 

would decrease as a function of increasing chronological age as well as structural measures of 

brain aging. Secondly, supported by studies linking age-related cognitive decline to structural 

and functional connectivity, we hypothesized that weaker connectome stability within 

subnetworks important for episodic memory would be associated with a steeper memory 

decline.  

Materials and Methods 

Participants 

 Healthy volunteers were invited through advertisement to take part in a longitudinal 

study on cognitive aging involving extensive neuropsychological testing, MRI and 

genotyping. Participants were assessed up to three times over a period of 6.5 years, of which 

resting-state functional MRI (fMRI) data were acquired at session 2 (MRI1) and session 3 
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(MRI2). MRI1 and MRI2 were separated by 2-3 years (mean = 2.54, SD = ± 0.28 years). 

General exclusion criteria included history of substance abuse, present neurological or 

psychiatric disorder or other significant medical conditions. The protocol was approved by 

the Regional Committee for Medical and Health Research Ethics of Southern and Western 

Norway, and all subjects gave written informed consent before participation.  

The present study included 75 participants who underwent fMRI at MRI1 and MRI2. 

T1-weighted 3D images were evaluated by an experienced neuroradiologist at inclusion, and 

the presence of brain tumors, cysts, recent infarctions or gross regional or global signal 

abnormalities lead to exclusion. No participants were excluded based on the 

neuroradiological evaluation. Moreover, none of the included participants was diagnosed 

with dementia or mild cognitive impairment (Mini Mental State Exam (MMSE) < 24) 

(Mungas, 1991). For further participant characteristics, please see Table 1. 

Neuropsychological assessments 

 All participants completed an extensive set of neuropsychological tests at each 

assessment, and the test scores were evaluated by an experienced neuropsychologist. The 

battery included tests of executive functions, episodic memory, language, IQ and mental 

processing speed. Episodic memory function was assessed using the Norwegian translation of 

the California Verbal Learning Test- Second Version CVLT-II (Delis, Kramer, Kaplan, & 

Ober, 2000). A list of 16 words (List A) was presented five times, and a total learning score 

was defined from the sum of correct responses across these trials. Upon completing the fifth 

trial, a new list was presented (List B), and subjects had to recall the words from list A 

immediately after List B (short delay free recall). Approximately 20 minutes later, subjects 

were asked to identify the words from list A again (free long delay recall). Finally, subjects 

were presented with a larger list that contained items from list A, list B as well as other 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 11, 2019. ; https://doi.org/10.1101/606178doi: bioRxiv preprint 

https://doi.org/10.1101/606178
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

various distracter items, and asked to identify the 16 items from list A (total recognition 

discrimination).  

 The CVLT-II assesses three essential features of episodic memory: learning, recall 

and recognition, represented by the variables total learning, short and long delay free recall 

and total recognition discrimination, respectively. Since the episodic memory variables were 

highly correlated, we used principal component analysis (PCA) to get a compound measure 

of episodic memory for each subject. In the sample, PCA captured 86.2% of the variance in 

one single component (PC1). The mean PC1 across MRI1 and MRI2 as well as the changes in 

PC1 from MRI1 and MRI2 were used for the imaging analyses. 

MRI acquisition 

 Whole-brain, T2*-weighted, echo-planar images (TR= 2000 ms, TE= 50 ms, Flip 

angle 90º, voxel size, 3.75 x 3.75 x 5.0 mm) were acquired using a GE Signa Echospeed 1.5 

T Scanner (General Electric Company; Milwaukee, WI, USA) supplied with a standard eight-

channel head coil. A total of 256 volumes (25 axial slices) were acquired, yielding a scan 

time of approximately eight minutes. Participants were instructed to relax with their eyes 

closed, to think of nothing in particular, and not to fall asleep. Cushions and headphones were 

used to reduce subject motion and scanner noise. For anatomical comparison purposes, two 

T1-weighted 3D inversion recovery-prepared fast spoiled gradient-recalled series (TR=9.11 

ms, TE=1.77 ms, Flip angle 7, voxel size 0.94 x 0.94 x 1.40 mmº) were acquired prior to the 

functional imaging. The imaging parameters were identical for both the T2* and the T1 series 

at the two time-points. fMRI data from MRI1 and MRI2 have been previously published 

(Hodneland, Ystad, Haasz, Munthe-Kaas, & Lundervold, 2012; E. T. Westlye et al., 2011; 

Ystad et al., 2010; Ystad et al., 2011), however, none of the studies have included 

longitudinal analyses.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 11, 2019. ; https://doi.org/10.1101/606178doi: bioRxiv preprint 

https://doi.org/10.1101/606178
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

MRI processing and analysis 

 T1-weighted 3D MR were processed using the longitudinal pipeline in FreeSurfer v 

5.3 (http://surfer.nmr.mgh.harvard.edu), which enables fully automated volumetric 

segmentation of neuroanatomical structures and longitudinal comparisons. The processing 

steps included motion correction and averaging, removal of non-brain tissue and automated 

Talairach transformation. Tessellation of the grey/white matter boundary together with 

surface deformation following intensity gradients to optimally place the grey/white/CSF 

borders allowed segmentation of cortex as well as subcortical white matter and deep gray 

matter structures. All segmented scans were visually inspected. 

 fMRI data were processed using FMRI Expert Analysis Tool (FEAT), as 

implemented in FMRIB Software Library (FSL (Smith et al., 2004; Woolrich et al., 2009), 

(http://surfer.nmr.mgh.harvard.edu)), and included motion correction, spatial smoothing 

using a six mm full-width at half-maximum (FWHM) Gaussian kernel as well as high-pass 

temporal filtering (90 s). To minimize the influence of noise (e.g. related to participant 

motion and vascular artifacts) we applied FMRIB’s independent component analysis (ICA)-

based Xnoisifier (FIX (Salimi-Khorshidi et al., 2014)), which uses single-session multivariate 

exploratory linear optimized decomposition into independent components (MELODIC 

(Beckmann, DeLuca, Devlin, & Smith, 2005)) to decompose the individual fMRI data sets. 

Using default options, components were classified as noise and non-noise variability, 

respectively, using a standard training set supplied with FIX. Components identified as noise 

and the estimated participant motion parameters were regressed out of the data, and we 

manually inspected the resulting cleaned fMRI data sets.  

 The fMRI volumes were registered to the participants’ skull-stripped T1-weighted 

scans using the FMRIB linear image registration tool (FLIRT, (Jenkinson & Smith, 2001)) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 11, 2019. ; https://doi.org/10.1101/606178doi: bioRxiv preprint 

http://surfer.nmr.mgh.harvard.edu/
https://doi.org/10.1101/606178
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

implementing boundary-based registration. The T1-weighted volume was nonlinearly warped 

to the Montreal Neurological Institute MNI-152 template using FMRIB’s nonlinear image 

registration tool (FNIRT (Anderson, Jenkinson, & Smith, 2007)), and the resulting nonlinear 

transform was applied to the fMRI data. To control subsequent analyses for data quality and 

motion confounds, we utilized quality assurance scripts released by Roalf and colleagues 

(Roalf et al., 2016) and calculated estimates of temporal signal-to-noise ratio (tSNR). One 

estimate of tSNR per subject and run was calculated by computing voxel-wise mean and SD 

of the time series (after correcting for linear trends) and averaging the ratio of mean and SD 

across voxels in the individual brain mask from FSL FEAT. In addition, we estimated an 

individual mean motion parameter by taking the mean of the relative frame-to-frame 

displacement (including both rotation and translation) of the raw data.  

Individual level fingerprinting using fMRI data 

 We used a functional whole-brain atlas consisting of 268 regions of interest (ROIs) 

(Shen, Tokoglu, Papademetris, & Constable, 2013) and estimated the pairwise Pearson 

correlations between all ROIs independently for each of the two time points (MRI1 and 

MRI2). ROIs were excluded if they were not covered by a minimum of 10% of voxels in all 

subjects, leading to the exclusion of 20 ROIs in total. The whole-brain connectivity matrix 

from each individual at each time point was then transformed into a vector of size 1 x 30628 

(248 ROIs and 30628 network links between them). Next, we computed the connectome 

stability in line with the approach by Kaufmann et al. (Kaufmann et al., 2018) which involved 

computing the within-subject Spearman correlation coefficient between MRI1 and MRI2 

networks.  

In addition to parcellating the brain into 248 nodes, we also clustered these nodes 

based on Yeo et al.’s network scheme (Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011), 
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yielding nine large-scale networks (i.e. medial frontal, frontoparietal, default mode, motor, 

visual 1, visual 2, visual association, cerebellum, subcortical) (Finn et al., 2015; Kaufmann, 

Alnaes, Doan, et al., 2017). In line with the whole-brain analysis, we calculated between time 

points connectome stability scores for each of these nine networks. 

Statistical analysis 

 All statistical analyses were performed in R (version 3.5.0; R Development Core 

Team, 2018). Longitudinal analyses modeling the relationship between episodic memory 

performance and age-, sex, session and time between sessions were performed using linear 

mixed effects models (lme4 package in R (Bates, Maechler, Bolker, & Walker, 2015)). 

Separate models were run for each CVLT-II variable (i.e. learning, short delay memory, long 

delay memory and recognition discrimination). As fixed effects, we entered age (mean across 

MR1 and MR2), sex, session and time between sessions (without interaction terms) into the 

model. In addition to these fixed-effects, the model included subject ID as random factor, 

modeling the individual level intercept. P-values were obtained by likelihood ratio χ
2
-tests of 

the full model with the effect in question compared to a model without the effect in question.  

Next, we used a general linear model to test for associations between individual 

whole-brain connectome stability and age while controlling for sex, tSNR, mean motion and 

time between sessions. The analysis was repeated for each of the nine subnetworks 

separately, based on studies reporting anatomical differences in the rate and degree of aging 

(Buckner, 2004). Beyond chronological age, we also tested for associations between cortical 

or hippocampus volume and connectome stability. As such, the general linear models were 

expanded to also include a predictor for mean (across MRI1 and MRI2) or longitudinal 

changes in total cortical or hippocampus volume while additionally controlling for total 

intracranial volume (ICV).  
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To explore the cognitive significance of the whole-brain as well as the subnetworks 

temporal stability, we used the PC1 obtained from the episodic memory compounds. In 

separate general linear models we tested for associations between the mean PC1 or changes 

(across time) in the PC1 and connectome stability, while covarying for sex, age, tSNR, mean 

motion and time between sessions for each of the nine subnetworks.  

To rule out confounding effects of potential extreme values on our results, we 

excluded subjects with values > 4SD from the group mean from the mixed effects and the 

general linear models. Throughout the manuscript, we report uncorrected p-values, with a 

significance threshold for all tests determined by the Benjamini-Hochberg false-discovery 

rate procedure at q=0.05. In the figures, the regression lines represent the association between 

dependent and independent variables estimated without covariates.   

Results  

Verbal episodic memory function 

 Table 1 summarizes the changes in mean scores for all episodic memory measures, 

supporting significantly lower performance scores in MRI2. The contribution of age, sex and 

session intervals in predicting individual longitudinal episodic memory performance were 

assessed in linear mixed effect models, with separate models for each of the four CVLT-II 

variables. Standard likelihood-ratio χ
2
-tests revealed that sex and session were significant 

predictors of all four memory components (Table 2). As such, performance dropped from 

MRI1 to MRI 2, and more so for males than females. In addition, higher age was associated 

with greater decrements of learning, long delay free recall and recognition discrimination 

(Figure 1).  
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Functional connectome analyses 

 Figure 2 shows the results from the connectome stability analyses. In line with recent 

work in a longitudinal sample of youths (Miranda-Dominguez et al., 2018) the connectome 

fingerprint retained relatively stable across 2-3 years (mean Spearman correlations between 

scans for all subjects: rho=0.4, range: 0.15-0.60 for the full brain connectome).   

Figure 3a illustrates the association between connectome stability and age (mean 

across MRI1 and MRI2). The association between age and whole-brain connectome stability 

(slope (± SE) = -0.003 ± 0.002, t69=-1.57, p=0.12) as well as between age and subnetwork 

connectome stabilities (all p>0.05) were subtle and none remained significant when 

accounting for multiple comparison.  

We next investigated if the association between connectome stability and age was 

influenced by cortical volume (defined as CortexVol in FreeSurfer). As such, the general 

linear models were expanded to also include a predictor for mean (across MRI1 and MRI2) or 

time-dependent changes in total cortical volume while additionally controlling for ICV. Mean 

cortical volume was positively associated with DMN (slope=1.66x10
-6 

± 6.19 x10
-7

,
 
t66=2.68, 

p=0.009, Figure 3b), subcortical (slope=1.62x10
-6 

± 5.22 x10
-7

, t66=3.11, p=0.003, Figure 3b), 

medial prefrontal (slope=2.31x10
-6 

± 8.17 x10
-7

, t66=2.83, p=0.006, Figure 3b), visual 

association (slope=2.18x10
-6 

± 8.91 x10
-7

, t66=2.45, p=0.02, Figure 3b) and whole-brain 

(slope=1.60x10
-6 

± 5.32 x10
-7

, t66=3.01, p=0.004, Figure 3b) connectome stability, indicating 

higher stability with larger brain volumes. No significant associations emerged between the 

network stabilities and longitudinal changes in cortical volume (all p>0.05). Finally, 

including hippocampus volume as a predictor in the models, revealed no association between 

mean or changes in hippocampus volume and connectome stability (all p>0.05). 

Episodic memory performance was related to longitudinal connectome stability. The 

analyses revealed a significant negative association between connectome stability and mean 
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episodic memory performance (i.e. the mean of PC1 across MRI1 and MRI2) for the 

subcortical network (slope=-0.05 ±0.02, t68=-2.92, p= 0.005, Figure 4a), indicating higher 

subcortical network stability with lower mean episodic memory performance. Similar 

analyses for the other networks revealed no significant associations after correcting for 

multiple comparisons. Furthermore, the analyses revealed a significant negative association 

between DMN network stability and change in episodic memory performance, indicating 

larger episodic memory decline between MRI1 and MRI2 in individuals with higher DMN 

stability (slope= -0.07 ±0.02, t67=-3.13, p=0.003, Figure 4b). In addition, there was a nominal 

significant association between changes in episodic memory performance and subcortical 

network stability (slope= -0.04 ±0.02, t68=-2.21, p=0.03). Finally, while mean cortical volume 

was associated with connectome stability, general linear models revealed no significant 

associations (all p>0.05) between cortical volume and mean or changes in PC1 while 

adjusting for age, sex, ICV and time between sessions.  

Discussion 

 In this study, we tested the long-term stability of the functional connectome in 

middle- and old age, and how brain network stability relates to structural indices of aging and 

memory performance. We demonstrated relatively high stability of the connectome over a 2-

3 year time frame. While our analyses only revealed a subtle association with age, network 

stability was related to mean cortical volume across the two time points, suggesting that the 

structural integrity of the brain is associated with connectome stability. Supporting its 

relevance to cognitive aging, both cross-sectional and longitudinal measures of episodic 

memory were related to longitudinal stability of the DMN and the subcortical networks. The 

findings encourage the use of connectome stability for understanding individual differences 
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related to brain aging and risk of neurodegenerative disease. Furthermore, the observation 

that individual variations in episodic memory decline relates to the stability of subcortical and 

DMN networks, provides new evidence for the importance of these networks in maintaining 

mnemonic processes in middle and old age. 

Although previous studies have documented that the connectome individualizes 

during adolescence to form unique functional connectivity profiles (Kaufmann, Alnaes, 

Doan, et al., 2017), our knowledge regarding connectome stability in aging has been limited. 

The high stability obtained in the present study suggests that the connectome backbone may 

represent a robust trait-like marker also in middle and old age, despite the vast changes in 

brain structural and functional connectivity associated with increasing age. The finding is 

important as it opens a new avenue for studies of individual differences in cognitive aging as 

well as separating healthy aging from neurodegenerative disease. Despite large efforts in 

linking cognitive decline to brain changes in aging, the majority of previous studies have not 

been able to separate state- or task-based variability from static, subject-unique features. The 

notion that the connectome backbone generally remains stable across contexts and cognitive 

tasks (Finn et al., 2017; Kaufmann, Alnaes, Brandt, et al., 2017), and serves as a powerful 

predictor of cognitive abilities (Finn et al., 2015; Rosenberg et al., 2016), holds great promise 

for using connectome based approaches to map clinically useful changes of brain functional 

connections also in middle and old age.  

Although the stability of the connectome backbone only showed a subtle association 

with age, the stability was related to individual differences in cortical volume. Aging is 

associated with structural degeneration of the cerebral cortex as indicated by widespread 

reductions in cortical thickness (Fjell, Westlye, et al., 2009) and grey matter volume (Good et 

al., 2001; Raz et al., 2005). However, individuals differ markedly in rate and degree of 

structural brain changes, and thus brain structure is relatively well preserved in some 
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individuals into old age. Such individual differences is likely to be related to numerous 

factors, including individual variations in microvasculature (Dey, Stamenova, Turner, Black, 

& Levine, 2016) and white matter pathologies (Langen et al., 2017), processes which affects 

both local and distant brain connections and thus the connectome backbone. Of note, attempts 

to link cortical shrinkage to age related changes in cognition have been mixed (Salthouse, 

2011) and was further supported by the lack of association between cortex volume and 

episodic memory performance in the present study. However, our finding that cortical 

volume relates to the connectome stability of medial prefrontal, DMN and subcortical 

networks suggests a mechanism by which cortical structural integrity could impact cognition. 

Thus, future studies may investigate if the association between cortical structure and age-

related changes in cognition is mediated by the stability of the connectome, with 

consequences for our understanding of numerous neurodegenerative disorders.  

The finding that the temporal stability of the subcortical network was inversely related 

to episodic memory performance may at first seem counterintuitive. However, increased 

subcortical network stability may not necessarily represent better brain maintenance. 

Increased network stability may come at the cost of decreased flexibility, including the task 

dependent engagement of cortico-subcortical networks in episodic memory tasks. In line with 

this notion, middle aged and older subjects experiencing increased striatal or hippocampal 

synchronization during rest, also had diminished cortical-subcortical connections and poorer 

memory performance in cross-sectional studies (Rieckmann et al., 2018; Salami et al., 2014). 

Previous studies have reported altered variability of neural networks with increasing age 

(Garrett, Kovacevic, McIntosh, & Grady, 2013; Guitart-Masip et al., 2016), which may 

depend on dopaminergic neurotransmission (Guitart-Masip et al., 2016). An optimal level of 

variability in neural activity and connectivity may increase detection of weak incoming 

signals (McDonnell & Ward, 2011) and also allow a greater range of responses to a greater 
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range of stimuli (Deco, Jirsa, & McIntosh, 2011), all of which are likely to be important for 

episodic memory function. Moreover, the ability of neuronal networks to flexibly adapt in 

response to neurodegenerative changes, may be a prerequisite for maintaining cognitive 

function in older age. As such, increased subcortical within- network stability may reflect 

diminished ability to flexibly adapt in response to neurodegenerative changes locally and 

elsewhere in the brain, which translated into impaired episodic memory function.  

 In addition to the subcortical stability, subjects experiencing greater memory decline 

also had a more stable DMN during the 2-3 year time frame. This fits well with evidence that 

the DMN entails interacting subsystems that are implicated in episodic memory (Staffaroni et 

al., 2018), and that the longitudinal trajectory of DMN connectivity is associated with 

changes in episodic memory function in aging (Staffaroni et al., 2018). Moreover, increased 

DMN connectivity has been observed in mild cognitive impairment (Celone et al., 2006), 

preceding the profound reductions in whole-brain connectivity characteristic of Alzheimer 

disease. Although speculative, increased DMN stability may be a required permissive for the 

spread of pathological proteins, which eventually leads to aberrant network connectivity (de 

Haan, Mott, van Straaten, Scheltens, & Stam, 2012). In line with this heuristic, increased 

DMN synchrony over a lifetime is associated with total amyloid depositions in posterior 

DMN subsystems (Buckner et al., 2005). Moreover, the brains of healthy adults experiencing 

greater cognitive decline are more likely to harbor pathological proteins, including amyloid. 

Irrespective of this our results support the view that memory impairment in old age depends 

on simultaneous changes in multiple memory systems as connectome stability of different 

subnetworks (DMN, subcortical) was associated with episodic memory performance (Fjell et 

al., 2016). Accordingly, a whole-brain approach may provide a more holistic approach to 

memory in aging than the consideration of single networks or brain areas. 
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The vast majority of studies investigating resting-state functional connectivity in 

association to age-related memory changes have been cross-sectional. However, these studies 

do not allow determining whether the memory decline precedes the connectivity changes or 

the reverse. Among the few longitudinal exceptions, one study reported that the stability of 

the DMN was positively related to episodic memory maintenance in aging (Persson, Pudas, 

Nilsson, & Nyberg, 2014). Another study reported that better preservation of striatal- cortical 

connectivity over time yielded a more favorable memory outcome at follow-up testing (Fjell 

et al., 2016) possibly related to inhibition of subcortical intra-network connectivity at rest 

(Salami et al., 2014). While these studies investigated how individual changes in a common 

template of brain functional organization relates to episodic memory, they did not explore 

how age-related changes in the connectome backbone may affect memory function in old 

age. Accordingly, our finding that the stability of the subcortical and the DMN connectome 

relates to episodic memory in aging suggests that individual differences in the organization of 

subcortical and DMN networks influence how well mnemonic processes are maintained into 

old age. 

The present study had some limitations. First, we note that the follow-up time of this 

study was relatively short, which may not be sufficient to detect reliable changes in 

functional connectivity in middle and older age. However, previous studies investigating 

longitudinal changes in functional brain connectivity in aging also used a follow-up time of 

approximately three years (Fjell et al., 2016). Moreover, grey matter atrophy (Storsve et al., 

2014) and changes in structural connectivity (Sexton et al., 2014) could be reliably tracked 

over a three year time-interval, and possibly even shorter (Fjell, Walhovd, et al., 2009). 

Together, these studies suggest that a three-year period may be sufficient to detect age-related 

changes in functional connectivity. Moreover, we cannot rule out a practice effect in our 

subjects, which is a limitation in all longitudinal studies of neurocognitive aging. In the 
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present study, an initial whole-brain approach was utilized, followed by predefined sub-

network analyses. Although the subnetworks represent relatively coarse subdivisions of the 

brain, they do not exclude parts of the connectome, which is the case in all seed-based 

approaches. Thus, our findings should be followed-up using other approaches, including 

longitudinal seed-based studies investigating how alterations in the connectivity of specific 

subcortical nuclei correlate with age-related variations in memory.  

In summary, our results suggest that the connectome backbone remains relatively 

stable over a 2-3 year time period in middle and old age. Individual differences in the 

stability of selected networks were associated with cortical volume and memory performance, 

supporting the neurocognitive relevance. Future large-scale longitudinal studies comprising 

genetics and rich cognitive and biological phenotyping with connectome-wide stability 

analyses could bring us closer to a mechanistic understanding of how age-related changes in 

neural events give rise to age-related cognitive decline, ranging from physiological changes 

to neurodegenerative disease.   
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Table 1 Means and standard deviation for CVLT-II raw-scores and demographic variables 

for MRI1 and MRI2. 

  MRI1 MRI2 t-value p-value 

Age 64.3 (6.9) 66.8 (6.8) 78.24 <0.001 

Years of education  14.0 (2.9) 

 

  

Women, % 65.3 

 

  

MMSE  28.9 (1.0) 29.1 (1.4) 1.00 0.32 

IQ 116 (11)  

 

  

CVLT, total learning  56.7 (10.9) 49.6 (11.3) -8.01 <0.001 

CVLT, short delay recall 12.3 (2.9) 10.6 (3.6) -5.61 <0.001 

CVLT, long delay recall 12.9 (2.7) 11.0 (3.4) -6.93 <0.001 

CVLT, recognition discrimination 3.4 (0.7) 3.0 (0.8) -4.87 <0.001 
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Table 2 Association between longitudinal changes in the four different episodic memory 

components and sample characteristics. 

 Estimate SE Χ
2
-test p-value  pfdr-value 

Learning      

   Age -0.37 0.14 6.21 0.01 0.03 

   Sex† -9.32 2.04 18.39 <0.001 <0.001 

   Session -7.09 0.88 46.83 <0.001 <0.001 

   Time between sessions 0.02 0.01 6.04 0.01 0.05 

Short delay recall      

   Age -0.08 0.04 3.57 0.06 0.06 

   Sex -3.17 0.59 24.12 <0.001 <0.001 

   Session -1.73 0.31 26.54 <0.001 <0.001 

   Time between sessions 0.004 0.003 2.71 0.1 0.13 

Long delay recall      

   Age -0.09 0.04 4.79 0.03 0.04 

   Sex -2.82 0.55 22.44 <0.001 <0.001 

   Session -1.85 0.27 36.90 <0.001 <0.001 

   Time between sessions 0.006 0.003 4.41 0.04 0.08 

Recognition discrimination      

   Age -0.02 0.01 5.83 0.02 0.03 

   Sex -0.64 0.14 19.21 <0.001 <0.001 

   Session -0.35 0.07 20.86 <0.001 <0.001 

   Time between sessions 0.001 0.0006 2.24 0.13 0.14 
†Using male as a reference 
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Figure legends 

 

Figure 1 The association between age and time between scans and changes in the four 

different episodic memory components from MRI1 to MRI2. The four episodic memory 

components included total learning, short delay free recall, long delay free recall and total 

recognition discrimination. . 

 

Figure 2 Connectome stability of the whole-brain and the nine subnetworks between the two 

sessions 

 

Figure 3 The association between age or total cortical volume and connectome stability. (A) 

Association between connectome stability and age (mean across MRI1 and MRI2) for the 

whole-brain and the nine subnetworks. (B) Association between connectome stability and 

total cortical volume (mean across MRI1 and MRI2) for the whole-brain and the nine 

subnetworks. 

 

Figure 4 The association between episodic memory performance and subcortical or default 

mode network stability. (A) The association between mean (i.e. mean across MRI1 and MRI2) 

principal component 1 and subcortical network stability. (B) The association between 

individual changes in principal component 1 from MRI1 to MRI2 and default mode network 

stability. 
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B: Effect of mean cortex volume on longitudinal connectome stability
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