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 2 

Abstract 27 

Amyotrophic Lateral Sclerosis (ALS) is an incurable fatal neurodegenerative disease for 28 

which the precise mechanisms of toxicity remain unclear despite some significant 29 

advances in our understanding of the underlying genetic basis. A holistic, integrated 30 

view of cellular changes will be critical to understanding the processes of 31 

neurodegeneration and the development of effective treatments. Mutant forms of 32 

optineurin (a ubiquitin-binding protein involved in autophagy, membrane trafficking, 33 

and NF-kB activation) are found associated with cytoplasmic inclusions containing 34 

TDP43 or SOD1 in some ALS patients. We have taken a multi-omics approach to 35 

understand the cellular response to OPTN overexpression in a yeast model of ALS. We 36 

found that genetic interaction screens and metabolomics provided parallel, highly 37 

complementary data on OPTN toxicity. Genetic enhancers of OPTN toxicity in yeast 38 

relate directly to the native function of OPTN in vesicular trafficking and intracellular 39 

transport, suggesting the human OPTN protein is functional when expressed in yeast 40 

even though there is no yeast ortholog. Crucially, we find that the genetic modifiers and 41 

the metabolic response are distinct for different ALS-linked genes expressed in yeast. 42 

This lends strong support to the use of yeast as a model system and omics platform to 43 

study ALS.  44 

 45 
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 3 

Introduction 52 

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease for which 53 

there is no effective treatment available. ALS has been divided into familial (FALS) and 54 

sporadic (SALS) forms on the basis of family history, with FALS patients accounting 55 

for 5% of all ALS cases overall, but this dichotomy is now questioned[1]. Despite our 56 

incomplete picture of the genetic landscape of ALS, it is considered a genetic disease. 57 

Associated genetic variants, particularly the hexanucleotide repeat expansion of 58 

C9orf72[2,3] and mutations in SOD1[4], TDP43[5,6] and FUS[7,8], are the basis for 59 

experimental models of ALS in most model systems. Genetic variants and model 60 

organism studies implicate a wide range of cellular pathways in the neurodegenerative 61 

processes occurring in ALS, including oxidative stress, RNA metabolism, protein 62 

aggregation and degradation (autophagy, and the ubiquitin-proteasome system), and 63 

intracellular trafficking[9]. The hallmark histopathological feature of ALS is the 64 

presence of intracellular protein aggregates. In most cases, these aggregates contain the 65 

TDP43 protein, even though mutations in the TDP43 gene are only a rare cause of ALS. 66 

A notable exception is patients with SOD1 mutations, where intracellular aggregates 67 

contain the SOD1 protein, but not TDP43. With such a complex pathology 68 

underpinning ALS, it is vital to develop multi-omics approaches to understand how the 69 

interaction of multiple pathways is driving disease progression.  70 

 71 

The OPTN gene encodes Optineurin, a ubiquitin-binding protein involved in 72 

autophagy[10–12] membrane trafficking[13] and NF-kB activation[14]. ALS-linked 73 

OPTN mutations were first detected in a Japanese cohort of ALS patients[15], where 74 

OPTN protein was also found colocalized in cytoplasmic inclusions containing TDP43 75 

or SOD1, suggesting OPTN is broadly involved in ALS regardless of the underlying 76 
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mutation. Subsequent studies indicated that that OPTN mutations are relatively more 77 

common in Asian populations[15–19], and more rare in Caucasian ALS patients[20–78 

23]. Mutations in OPTN are also linked to primary open-angle glaucoma[24] and 79 

Paget’s disease of bone[25–27], suggesting that OPTN itself is a key driver of toxicity. 80 

Compared to other ALS-linked proteins, there is relatively little research focused on 81 

OPTN-ALS. We therefore chose to focus our study on OPTN specifically. The 82 

intracellular pathways in which OPTN is involved are strongly conserved between yeast 83 

and human cells[28,29]; however, there is no yeast ortholog of optineurin.  84 

 85 

Two previous studies have used a yeast model to study OPTN[30,31]. In the first such 86 

study, Kryndushkin et al. found that both wild-type and mutant OPTN formed 87 

intracellular aggregates and were toxic to yeast[31]. More recently, Jo et al. performed a 88 

screen for yeast single-gene deletions that modify the toxicity of human OPTN in 89 

yeast[30]. Their screen used a high-copy plasmid to express OPTN, resulting in a level 90 

of toxicity that is too high to reliably detect enhancer phenotypes (as the authors also 91 

note). Our study builds on this previous work in two main ways. First, we expressed the 92 

OPTN coding sequence from a low copy-number CEN plasmid, to get lower toxicity 93 

levels and enable the detection of both suppressors and enhancers. Secondly, we also 94 

carried out a metabolomic screen to build up a more detailed multi-omic picture of 95 

OPTN-ALS.  96 

 97 

Results 98 

Expression of wild-type human OPTN is toxic in yeast 99 

In line with similar studies[30–35], we cloned human OPTN into yeast expression 100 

vectors under the control of the GAL promoter to allow rapidly-inducible strong 101 
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expression of the transgene. We first confirmed previous results which showed OPTN 102 

expression is toxic and that the protein forms aggregates when expressed in 103 

yeast[30,31]. Spot tests and liquid culture growth assays both demonstrated the reduced 104 

growth of cells expressing OPTN-YFP vs YFP controls (Figure 1). Microscopy 105 

demonstrated that OPTN-YFP formed intracellular aggregates in yeast, whereas YFP 106 

alone remained diffuse in the cytoplasm (Figure 1). As found previously[31], OPTN 107 

tended to aggregate as a single point, whereas TDP-43 and FUS formed multiple diffuse 108 

aggregates (not shown).  109 

 110 

Although there appeared to be a growth phenotype for the E478G mutant in the spot 111 

test, this was not confirmed in the liquid culture. Furthermore, the fluorescence of the 112 

YFP tag was not detectable for OPTN-E478G-YFP under the same microscopy 113 

conditions or in a Western blot. We therefore used only the wild-type OPTN construct 114 

for all experiments in this study. 115 

 116 

Genetic screening identifies protective genes 117 

Genetic modifiers of OPTN toxicity were identified using high-throughput synthetic 118 

genetic array (SGA) screens[36] to introduce the OPTN-YFP or control plasmids into 119 

the BY4741 deletion library. Screens were carried out in biological triplicate, each of 120 

which also contained 4 technical repeats. Hits from the screen were defined as strains 121 

whose interaction score was greater than 2 standard deviations away from the mean 122 

interaction score in all 3 biological repeats, with at least 3 of 4 technical repeats scored 123 

and normal growth on SGlu.  124 

 125 
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 6 

We identified 30 suppressors and 64 enhancers of the OPTN growth phenotype 126 

(Supplementary Table S1). The only enriched GO term for the suppressors of OPTN 127 

toxicity was cytoplasmic translation, suggesting that these genes are not specific 128 

suppressors of OPTN but instead affect the expression of OPTN from the plasmid. We 129 

therefore focused on the enhancers of OPTN toxicity. Deletion of these enhancer genes 130 

increases OPTN toxicity, which suggests their protein products exert a protective effect 131 

when present. 132 

 133 

The enriched GO terms for the enhancers are shown in Table 1. The most enriched 134 

process was “mitochondrion-ER membrane tethering”, which is known to be a key 135 

regulator of cell death processes[37]. Several of the enriched terms relate to intracellular 136 

trafficking, specifically ER-to-Golgi, which is striking as OPTN plays a major role in 137 

Golgi transport and membrane trafficking processes in human cells. Of the 64 138 

suppressors, 52 have at least one human ortholog. The human orthologs are also 139 

enriched for vesicle-mediated transport pathways, including ER-to-Golgi transport and 140 

Golgi vesicle transport, which suggests the screen results could be translatable to human 141 

cells. 142 

Jo et al. recently performed a related OPTN screen in which human OPTN was 143 

expressed from a high copy plasmid and genetic interactions were measured using 144 

pooled barcode sequencing[30]. Their detected 127 suppressors of toxicity they 145 

identified, none is significant as a suppressor or enhancer in our screen (enhancers were 146 

unreliable). However, several of the same pathways were implicated by the hits in both 147 

studies, particularly lipid metabolism and vesicle-mediated transport. 148 

 149 
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Network analysis of protective genes 150 

Given the coherent set of enriched GO terms for these genes, we expected that they, or 151 

their products, were likely to genetically or physically interact. Indeed 52/64 of the 152 

protective genes interact genetically, and 41/64 of their protein products interact 153 

physically (Figure S1). The genetic interaction network is a single component with 232 154 

edges, whereas there are 4 separate components in the protein-protein interaction (PPI) 155 

network (containing 32, 4, 3 and 2 proteins, respectively). Together, the genetic and 156 

protein interactions connect 55/64 protective genes as a single component with 279 157 

edges. The Syntaxin-like t-SNARE, TLG2 has high centrality (degree, betweeness, and 158 

closeness) in both the genetic and protein interaction networks. TLG2 is the yeast 159 

ortholog of mammalian Syntaxin-16, which functions in the ER-Golgi vesicle-mediated 160 

transport pathway. It is possible that deletion of TLG2 enhances the toxicity of OPTN in 161 

yeast by impairing trafficking to the vacuole, thus limiting protein degradation via this 162 

pathway. However, previous work in HEK cells found the ubiquitin-proteasome system 163 

to be the primary pathway responsible for degradation of OPTN[38].  164 

 165 

Genetic modifiers of OPTN toxicity have little overlap with TDP43 or FUS 166 

modifiers in yeast 167 

To determine whether the hits from our screen are specific to OPTN or simply represent 168 

a generic response to the expression of a toxic transgene, we compared our results to 169 

those of previous SGA screens for TDP43[35] (8 suppressors, 6 enhancers)and FUS[33] 170 

(36 suppressors, 24 enhancers) in yeast. These genetic modifiers have limited overlap, 171 

consistent with the relevance of our hits to the endogenous function of OPTN. All genes 172 

identified as modifiers in more than one screen are shown in Table 2.  173 

 174 
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The only overlapping genetic modifiers for OPTN were with FUS, with 3 common 175 

enhancers and 2 common suppressors. Deletion of the MAP kinase gene SLT2 176 

enhanced the toxic phenotype of both OPTN and FUS, potentially due to dysregulation 177 

of peroxisome assembly or the unfolded protein response, both of which are regulated 178 

by Slt2p. In a recent study, Jo et al. found that pharmacological inhibition of MAP2K5, 179 

an upstream regulator of MAPK7, is a potential target for ALS therapy[30]. The 2 other 180 

common enhancers, KGD2 and COX5A, encode mitochondrial proteins involved in the 181 

TCA cycle (KGD2) and the inner mitochondrial membrane electron transport chain 182 

(COX5A). Both deletions cause a severe reduction in growth rate and may be false 183 

positives as the additional effect of OPTN is small. 184 

 185 

Two suppressor deletions (rpl19b and rpp2b) were common to the OPTN and FUS 186 

screens. Both genes encode ribosomal proteins and therefore affect cytoplasmic 187 

translation. It is therefore possible that the protective phenotype is due to lowered 188 

expression of the toxic transgene rather than a specific interaction. Finally, despite their 189 

more similar cellular functions, only MRPL39, was identified (as an enhancer) in both 190 

the TDP43 and FUS screens. 191 

 192 

MS and NMR identification of altered metabolites and lipids 193 

Given that the genetic modifiers of OPTN toxicity were distinct from those previously 194 

identified for the ALS risk genes FUS and TDP43, we wondered whether strains 195 

expressing these human proteins are also metabolically distinct. The stationary phase 196 

(72hr) endometabolomes of yeast strains overexpressing OPTN, FUS and TDP43 were 197 

therefore compared to controls using untargeted metabolic profiling by NMR and 198 

targeted profiling by MS. A PCA analysis of OD- and TSP-normalized and pareto-199 
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scaled NMR data matrices indicated that the profiles are, in fact, distinct 200 

(Supplementary Figure S2A) and thus the metabolic differences are due to the specific 201 

overexpressed protein. The targeted MS analysis of both the aqueous and lipid fractions 202 

(Supplementary Figure S2B) from the same samples confirmed this.  203 

The statistically significant metabolites (from MS and NMR data) that were altered in 204 

OPTN samples compared to controls were identified and the effect size calculated 205 

(Figure 2).  206 

Metabolites whose levels increase when OPTN is overexpressed include those 207 

associated with cellular and metabolic stress - such as g-aminobutyric acid (GABA), 208 

oxidized glutathione, glycerol, and trehalose. Many others are related to cellular energy 209 

processes such as the TCA cycle, glycolysis and gluconeogenesis 210 

(phosphoenolpyruvate, glutamine; Gln, glutamic acid, adenine nucleotides, and malate). 211 

The most significantly increased metabolite was orotidylic acid followed by uridine-212 

diphosphate-N-acetylglucosamine (UDP-GlcNAc) and glycerol, while the metabolites 213 

that decreased include the basic amino acids leucine and isoleucine; the TCA cycle 214 

intermediates, succinate and citrate; and glycerophosphocholine (GPC). 215 

 216 

Metaboanalyst 4.0[39] was used to identify the pathways most affected by the presence 217 

of overexpressed OPTN compared to controls (Figure 3). The pathways affected that 218 

have the highest impact include: alanine, aspartate and glutamate metabolism; glycine, 219 

serine and threonine metabolism; arginine and proline metabolism and glutathione 220 

metabolism. Pathways with high significance but lower impact include: butanoate 221 

metabolism; pyrimidine/purine metabolism and glycerolipid metabolism.  222 

 223 
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To confirm the effect of OPTN on lipid metabolism indicated in the Metaboanalyst 224 

results, we also profiled the endometabolome using LC-MS on the organic phase 225 

extract. Distinct profiles were again observed (Figure S2B) for OPTN, FUS and TDP43 226 

and 75 (37 negative ion + 38 positive ion) statistically significant m/z species were 227 

identified as increased in cells overexpressing OPTN, while 78 (28 negative ion + 50 228 

positive ion) species decreased. Of these, a reduced group was selected based on an 229 

effect size above or below 4 and with VIPs larger than 1.56 from a UV-scaled PLS-DA 230 

model using the positive ion mode data and ES above or below 4 and VIPS above 1.68 231 

for the negative ion mode data. Identified lipid families are shown in Table 3 and the 232 

associated m/z ions and tentative identification in Supplementary Table S2. 233 

 234 

Discussion 235 

In this study, we have generated genome-wide genetic interaction data and carried out a 236 

metabolomic screen on the same OPTN yeast model. Significantly, we show that in 237 

both profiles, yeast cells expressing OPTN are distinct from yeast cells expressing other 238 

human genes associated with ALS (TDP-43 and FUS). We have also identified genetic 239 

modifiers of OPTN toxicity that are directly related to the endogenous function of 240 

OPTN in human cells. 241 

 242 

The wild-type OPTN protein was toxic when expressed in yeast, consistent with related 243 

studies of other ALS genes[30,31,33–35,40]. The ALS-linked OPTN mutant E478G 244 

was not efficiently expressed in our system, and therefore we used the wild-type protein 245 

for all screens. Although we are therefore unable to model the effect of the specific 246 

mutations linked to ALS, a significant part of ALS pathology appears to be a 247 

proteinopathy, which is recapitulated in this system. For example, Armakola et al. used 248 
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wild-type TDP-43 for a genome-wide yeast screen and identified dbr1 as a modifier 249 

gene that was validated in human neuronal cell lines[35]. Therefore, whilst this system 250 

models only part of the pathology of ALS, previous data suggest that results in this type 251 

of system are translatable to human cells.  252 

 253 

Crucially, the growth phenotype of this yeast proteinopathy model is not a generic 254 

response to an overexpressed transgene, as might have been expected. This is shown by 255 

the distinct modifiers identified for the ALS-linked genes FUS, TDP-43 and OPTN in 256 

genetic interaction screens and in our metabolic profiling. One possible mechanism for 257 

these distinct modifiers is that the expressed proteins retain at least part of their 258 

endogenous function when expressed in yeast. Yeast is widely used for recombinant 259 

protein production, both for research and commercial applications. Whilst the correct 260 

folding of any particular recombinant protein is not guaranteed, and a substrate (and/or 261 

cofactor) required to carry out that protein’s molecular function may not be available in 262 

yeast, it is possible that the OPTN protein retains its native molecular function when 263 

expressed in yeast.  264 

 265 

In a seminal work, Kachroo et al.[41] found that almost half of the deletion of 414 266 

essential yeast genes could be complemented (“humanised”) by the expression of their 267 

human ortholog. Although yeast does not possess an OPTN ortholog, the function of 268 

this human protein may be retained through interaction with conserved components of 269 

the same pathways. For example, yeast also does not have any orthologs of the Bcl-2 270 

apoptosis regulator proteins, yet expression of mammalian Bax protein induces cell 271 

death[42,43], apparently though a mechanism conserved in human cells[44]. Taken 272 

together with the direct relevance of the modifiers we identify in our genetic screen to 273 
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the endogenous function of OPTN (specifically intracellular trafficking and ER-Golgi 274 

transport), and the differing metabolic profiles of FUS, TDP-43 and OPTN, we suggest 275 

that the phenotype of yeast expressing transgenic OPTN is due to the native properties 276 

or functions of the OPTN protein, and not simply due to its overexpression.  277 

 278 

The metabolic profiling results suggest that OPTN is affecting the TCA cycle, which 279 

may be related to general mitochondrial dysfunction. As overexpression of a non-native 280 

protein in yeast would also be expected to induce the UPR (and ER stress), the 281 

increased levels of some amino acids may be a result of this process causing increased 282 

protein catabolism, a reduction in protein biosynthesis or a reduction in amino acid 283 

utilization/biosynthesis. Oxidative stress was increased in OPTN yeast compared to 284 

controls as the GSHred/GSHox ratio is 1.4 times lower in these cells (Supplementary 285 

Figure S3). Interestingly, an increase in the amino acid proline is seen in OPTN 286 

expressing yeast. As the presence of this amino acid has been found to minimize protein 287 

aggregation and the depletion of proline has been linked to the inhibition of the 288 

UPR[45], our results are consistent with OPTN aggregation and triggering of the UPR 289 

in our yeast system. Increased UDP-GlcNAc levels suggests that cell wall biosynthesis 290 

may be decreased, and lipid metabolism also appears to be altered as indicated by a 291 

decrease in GPC and an increase in Ser and in UDP-glucose, both involved in 292 

sphingolipid biosynthesis. As UDP-GlcNAc is also intimately involved in the 293 

production of N-glycans, with biosynthesis first taking place in the ER and subsequently 294 

in the Golgi apparatus, any disruption in trafficking between these organelles could also 295 

affect UDP-GlcNAc levels. This may corroborate our conclusion that the phenotype of 296 

yeast cell expressing OPTN reflects the native function of the protein (ER-Golgi 297 

transport) and is not a generic response to an exogenous protein. Our profiling data also 298 
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indicates that orotidylic acid had the largest increase of all the aqueous assigned 299 

metabolites detected in our study. At this time, we do not have an explanation as to the 300 

significance of this perturbation. 301 

 302 

A number of metabolomic biomarkers have been proposed for neurological diseases 303 

including ALS[46–49]. The results from Wuolikainen et al.[46] show some correlation 304 

with our results where 3 of the top 5 positively correlated ALS metabolites (Pro, Trp, 305 

AMP) in plasma are also seen as increased in our OPTN cells. A deficit in RNA 306 

synthesis was also seen, suggesting a decrease in the PPP. The decrease in ribose-5-307 

phosphate seen in our yeast model is consistent with this. Basic amino acids were also 308 

indicated as potential biomarkers in CSF and plasma. However, we see decreases in 309 

yeast, while increases are seen in human fluids. A recent metabolomic study of a 310 

neuronal cellular model of ALS[50] included analysis of metabolite variations seen for 311 

cells overexpressing SOD1 and G93A SOD1 under serum deprivation. These results, in 312 

general, compare well with those found in our OPTN stationary-phase yeast model.  313 

 314 

Our lipid data from LC-MS profiling indicated that many lipid species were 315 

significantly increased in OPTN-expressing cells (16 increasing above ES 7 compared 316 

to 2 decreasing). In fact, only OPTN (and not FUS or TDP43) showed a larger number 317 

of increased lipids compared to decreased lipids. Thus, OPTN appears to affect lipid 318 

metabolism even as an exogenous protein in yeast. An LC-MS profiling study of the 319 

lipidome for the CSF of ALS patients has identified a number of lipid biomarkers for 320 

ALS46. Phosphatidylcholines, sphingomyelins, glucosylceramides and sterols were 321 

found to be increased, while TAG was decreased in ALS patients. We also see increases 322 

in lipids from these families in OPTN-overexpressing yeast cells. Although in a 323 
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different model, two ALS studies using different SOD1 mutated mice[51,52] also 324 

demonstrated that lipids such as sphingolipids, ceramides and glucosylceramides are 325 

increased in spinal cord fluid and skeletal muscle. Therefore, it appears that OPTN may 326 

be producing a yeast phenotype that reflects lipidome effects seen in in vivo situations. 327 

 328 

We have studied genetic interactions, integrating those results with protein interaction 329 

data, and metabolites. However, additional ‘omics approaches could, and should, be 330 

added to build both a broad and deep intracellular understanding of ALS. This 331 

panoramic view of ALS is necessary to predict the impact of perturbations to this 332 

system either by mutation or, eventually, by treatment.  333 

 334 

Methods 335 

Yeast strains and media 336 

The Synthetic Genetic Array (SGA)[36] starter strain Y7092 (MATα can1∆::STE2pr-337 

Sp_his5 lyp1∆ his3∆1 leu2∆0 ura3∆0 met15∆0) was used for all experiments was 338 

mated with the BY4741 deletion library in the SGA. Strains were manipulated, and 339 

media prepared using standard microbiological techniques. Yeast were cultured in 340 

synthetic minimal media without uracil, and with either 2% glucose (SGlu), 2% 341 

raffinose (SRaf) or 2% galactose (SGal) as the carbon source.  342 

 343 

To induce expression from the plasmid in liquid culture, single colonies were picked 344 

into 50µl SGlu in a 96-well plate and incubated at 30˚C with shaking. After 24h, 10µl 345 

of the SGlu cultures was inoculated into 200µl SRaf and incubated at 30˚C with 346 

shaking. After 24h, 20µl of the SRaf cultures were inoculated into 100µl fresh SRaf and 347 
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incubated at 30˚C with shaking. SGal medium was inoculated with a 1:20 dilution of 348 

this SRaf culture in either 96-well or 384-well plates. 349 

 350 

For induction in the SGA, deletion mutants containing the plasmid were pinned onto 351 

SGal plates at 384 colonies per plate. After incubation at 30˚C for 24h, these colonies 352 

were pinned onto SRaf at 384 colonies per plate and incubated at 30˚C for 24h. Each 353 

colony from the SRaf plates was pinned onto SGal 4 times (1536 colonies per plate), 354 

and incubated at 30˚C. Plates were scanned at 300dpi after 48h of growth. All pinning 355 

steps were performed using a Singer ROTOR HDA.  356 

 357 

Plasmid construction 358 

OPTN in pEGFP-C3 was kindly donated by Dr. Justin Yerbury. The OPTN ORF was 359 

PCR amplified from pEGFP-C3 and cloned into the Gateway donor plasmid 360 

pDONR221 (KanR) via the Gateway BP reaction according to the manufacturer’s 361 

instructions. The E478G mutation was introduced by site-directed mutagenesis using 362 

the Aglient QuikChange II Site-Directed Mutagenesis Kit. Donor plasmids containing 363 

FUS and TDP43 were kindly donated by the Gitler lab.  364 

 365 

All pDONR221 Gateway donors were cloned into the Gateway destination vector 366 

pAG416GAL-ccdb-EYFP[53] (CEN, URA3, AmpR, referred to as pAG416) obtained 367 

from Addgene via the LR reaction, according to manufacturer instructions.  368 

 369 

The empty pAG416 vector was modified to create the control (YFP only) plasmid by 370 

removing the sequence between the GAL1 promoter and YFP. In the unmodified 371 

pAG416, YFP is approximately 1750 bp from the GAL1 promoter, resulting in weak 372 
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expression. The YFP coding sequence was PCR-amplified from pAG416 and, in 373 

parallel, pAG416 was digested with Kpn1 and Not1. The larger restriction fragment was 374 

gel-purified and recombined with the PCR product in yeast. The resulting plasmid, 375 

pAG416-short, was used as the control in all experiments.  376 

 377 

All plasmid sequences were confirmed by restriction mapping and DNA sequencing. 378 

YFP expression (either alone or as a tag) was confirmed by fluorescence microscopy 379 

and Western blot using anti-GFP (AbCam antibody ab6556) and anti-histone H3 380 

(AbCam ab1791) as a loading control. The presence of the expressed protein (OPTN, 381 

TDP43 or FUS) was confirmed by in-gel digestion, followed by LC-MS/MS. Briefly, 382 

yeast protein extraction for both western blotting and LC-MS/MS was performed 383 

according to[54]. Total extract, corresponding to approximately 1.7 x 106 cells, was 384 

resolved by SDS-PAGE gel electrophoresis. Following Coomassie staining, a band was 385 

excised from the gel that corresponded to a ca. 20 kDa range around the predicted 386 

molecular weight of the eYFP-tagged human protein. The band was dissected into cubes 387 

of approximately 1 mm and destained (using ammonium bicarbonate), reduced (with 388 

dithiothreitol) and alkylated (using iodoacetamide). The sample was digested for 16 h at 389 

37C using a 1:50 (w/w) ratio of Sequencing Grade Modified Trypsin (Promega):protein 390 

in the gel. The digest was analysed by LC-MS/MS on a nanoAcquity UPLC system 391 

(Waters) coupled in-line to a LTQ Orbitrap Velos mass spectrometer (ThermoFisher 392 

Scientific), essentially according to[55], but with the modification that MS2 scans were 393 

performed on the twenty most intense ions per survey scan with a charge of 2+ or 394 

above. In all cases, the human protein corresponding to the expressed transgene was 395 

correctly identified in the LC-MS/MS data. 396 

 397 
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Mass spectrometry data processing  398 

Raw mass spectrometry data files were converted to MGF format using MSConvert 399 

(version 3.0.9283, Proteowizard). MGF files were searched using an in-house Mascot 400 

server (version 2.6.0, Matrix Science) against three databases at the same time, which 401 

were a canonical S. cerevisiae database, downloaded from UniProt (March 2017; 6,749 402 

sequences), a canonical isoformal version of the human SwissProt database (November 403 

2016; 42,144 sequences) and the cRAPome database of common mass spectrometry 404 

contaminants[56] (January 2017; 115 sequences). Precursor tolerance was set to 20 ppm 405 

and fragment tolerance to 0.6 Da. Carbamidomethylation of cysteine was specified as a 406 

fixed modification and oxidation of methionine as a variable modification.  407 

 408 

Genetic interaction screen 409 

Genetic interactions were screened using Synthetic Genetic Array technology as 410 

described[36], the only modification being the use of URA3 as the selectable marker for 411 

the query strain (Y7092 transformed with OPTN-YFP or control plasmid) instead of 412 

NatMX4. Interactions were scored from images scanned at 300dpi after 48h of growth 413 

on SGal using Gitter[57] in SGAtools[58] (available at 414 

http://sgatools.ccbr.utoronto.ca/). Colonies that failed to grow on SGlu media were 415 

excluded from the analysis. Hits from the screen were defined as strains greater than 2 416 

standard deviations away from the mean interaction score in all 3 biological repeats 417 

with at least 3 of 4 technical repeats scored and normal growth on SGlu.  418 

 419 

Interaction networks 420 

Yeast interaction data was retrieved from the 06/11/2017 update of YeastMine[59] 421 

(https://yeastmine.yeastgenome.org) and analysed in Cytoscape[60]. 422 
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 423 

Quenching and extraction of the endometabolome 424 

For all samples (TDP, FUS, OPTN) and controls two biological replicates were 425 

prepared and two technical replicates used. After the final incubation in 25 ml galactose 426 

medium (OD600 = 0.05) the samples were harvested at 72 hr and immediately placed 427 

on ice. A protocol similar to Palomino-Schätzlein et al. (2013) was followed[61]. 428 

Pelleting and resuspension in cold phosphate buffer was carried out followed by 429 

centrifugation and flash freezing in liquid nitrogen. For metabolite extraction, 500 µL of 430 

methanol/chloroform (2:1) at 4°C was added to the frozen samples and the pellet was 431 

resuspended by vortexing after 5 min. Five freeze/thaw cycles of 1 min in liquid 432 

nitrogen and 2 min on ice were then carried out followed by addition of 250 µL of 433 

chloroform and 250 µL of MilliQ water. Vortexing for 1 min was followed by a 30 min 434 

centrifugation (20ºC, 16000 x g). The upper aqueous layer was collected carefully with 435 

a Gilson pipette. The lipophilic phase was collected into a glass vial. The samples were 436 

dried using a stream of N2 gas (NitroFlowLab) on a Techne Dri-Block(R) DB30 437 

(aqueous 2-4 hr, lipid 10 min). The aqueous samples were further dried in a speedvac 438 

(1-2 hr, Savant Speed Vac(R) SPD111V). All extracts were stored at 4°C. 439 

 440 

NMR spectroscopy 441 

For the NMR analysis, the aqueous extracts were re-suspended in 620 µl D2O, 0.01% 442 

TSP and 100 mM pH 7.0 phosphate buffer (Na2HPO4 100 mM, pH 7.0). All samples 443 

were centrifuged (1 min, 20 °C, 16,000 g) before transferring to 5mm NMR tubes. The 444 

1H-NMR spectra were recorded at 298K on a Bruker Avance III 500 MHz spectrometer 445 

using a TXI or TCI probe. 1D 1H spectra were acquired using a NOESY pulse sequence 446 

to suppress the water resonance, with a sweep width of 7002 Hz (14 ppm), 32k data 447 
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points, a recycle delay of 12 s, a mixing time of 100 ms and 128 scans per free 448 

induction decay (FID). 449 

 450 

Mass spectrometry 451 

Aqueous fractions 452 

Metabolite concentrations for the aqueous fractions were determined on a liquid 453 

chromatography (Agilent 1290 Infinity) and tandem mass spectrometry (Agilent 6460) 454 

system. All compounds were identified by comparing retention time and fragmentation 455 

pattern with analytical standards. The instrument was operated in single reaction 456 

monitoring mode. Ion transitions and analytical methods used for metabolite 457 

identification and concentration determination are given in Supplementary Tables S3 458 

and S4. Metabolite concentrations were determined by external calibration. Solvents 459 

were of UPLC grade and chemicals of at least analytical grade. Specific conditions for 460 

amino acids, other polar metabolites and UDP-N-acetylglucosamine are given in 461 

supplementary methods.    462 

 463 

Lipid fractions 464 

Samples, re-suspended in 200µl of HPLC grade methanol, were analysed in both 465 

positive and negative ion modes using a Waters Xevo G2 quadrupole time of flight (Q-466 

ToF) combined with an Acquity Ultra Performance Liquid Chromatogram (UPLC) 467 

(Waters Corporation, Manchester, UK). Injection volumes and conditions along with 468 

gradient parameters and data acquisition are given in supplementary methods. 469 

 470 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 26, 2019. ; https://doi.org/10.1101/605998doi: bioRxiv preprint 

https://doi.org/10.1101/605998


 20 

Multivariate analysis 471 

iNMR software (http://www.inmr.net) was used to process the NMR spectra with zero 472 

filling to 64k data points and 0.3 Hz line broadening being applied before Fourier 473 

transformation. The spectra were manually phased, baseline corrected, referenced to 474 

TSP at 0.00ppm and exported (0.5-9.5 ppm for aqueous phase, 0.5-8 ppm for lipid 475 

phase) as a matrix. The spectra were normalized to OD600 at the time of extraction and 476 

then to TSP. The OD600 values at the time of extraction were (mean ± standard 477 

deviation): control = 7.98 ± 0.14, TDP43 = 6.80 ± 0.09, FUS = 7.91 ± 0.08 and OPTN = 478 

7.87 ± 0.15. The normalised spectra were then checked in iNMR and, if necessary, 479 

alignment was carried out using using the ‘speaq’ package in R. The water region was 480 

excluded from the alignment.  481 

 482 

MVA were performed using the ropls package[62] in R. Initial Principal Components 483 

Analysis identified outliers that were excluded from subsequent analyses. The 484 

identification of metabolites for NMR was carried out by comparing the spectra with 485 

those of standard compounds from the Biological Magnetic Resonance Data Bank, the 486 

Yeast Metabolome Database and the Human Metabolome Database. The relative 487 

amounts of the NMR metabolites and the effect size were determined by integrating the 488 

area under the most well-separated metabolite peak in iNMR and then using in-house R 489 

scripts. MS metabolite concentrations were used directly after normalisation to OD600. 490 

Pairwise t-tests were carried out using the False Discovery Rate (FDR) to adjust for 491 

multiple testing. Effect sizes were calculated and corrected for small sample sizes using 492 

the formula:  493 

!""#$% S&'#= (1− (3/(4(1+(2−2) −1))(()1−)2)/*++,#-./) 494 
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where pooled SD is the pooled standard deviation, x1 and x2 are the mean levels of 495 

metabolite x and n1 and n2 are the number of replicates. Metaboanalyst 4.0[39] was 496 

used to identify enriched metabolic pathways. The final list of metabolites used 497 

included 51 from the targeted MS analysis and 7 (orotidylic acid, 498 

glycerophosphocholine, trehalose, glycerol, betaine, uracil and acetate) non-duplicated 499 

metabolites from NMR. 500 

 501 

For the lipid LCMS data, positive and negative ion mode deisotoped results were 502 

normalised to total area and analysed as for aqueous NMR and MS data. Tentative 503 

identification of lipids with statistically significant effect size differences was carried 504 

out using m/z data and the LIPID MAPS Online Tools[63] (Supplementary Table S2). 505 

 506 

Data availability 507 

The metabolomics data has been deposited at Metabolights with access code, 508 

MTBLS796. 509 
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Figure Legends 754 

Figure 1. Expression of OPTN is toxic to yeast. a) Growth in liquid culture showed a 755 

reduced maximum exponential growth rate for cells expressing OPTN (red) compared 756 

to YFP (black). There was no phenotype for cells expressing OPTN-E478G (blue). b) 757 

Fluorescence microscopy showed diffuse cytoplasmic fluorescence for YFP alone, 758 

whereas OPTN-YFP formed focal aggregates. There was no observable fluorescence for 759 

OPTN-E478G with the same exposure (not shown). c) Spot-tests comparing growth on 760 

Glucose (expression off) to Galactose (expression on) showed a growth phenotype for 761 

OPTN that was similar to TDP43, and a weaker phenotype for OPTN-E478G.  762 

 763 

Figure 2.  Metabolic ES variations observed for yeast overexpressing OPTN versus 764 

controls using data from targeted MS data and untargeted NMR profiles. Statistically 765 

significant differences (p<0.05) are shown as orange and green bars. 766 

 767 
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Figure 3. Enriched metabolic pathways observed for yeast overexpressing OPTN versus 768 

controls using data from targeted MS data and untargeted NMR profiles in 769 

Metaboanalyst 4.0. 770 

 771 

 772 

Tables 773 

 774 
 775 
 Reference SGA screen enhancers (n=58) 
GO biological process 
term # # expected 

Fold 
Enrichment +/- P value 

mitochondrion-
endoplasmic reticulum 
membrane tethering 5 3 0.04 69.53 + 2.83E-02 
organelle localization by 
membrane tethering 42 6 0.36 16.55 + 4.19E-03 
membrane docking 42 6 0.36 16.55 + 4.19E-03 
phospholipid transport 24 5 0.21 24.14 + 5.21E-03 
ER to Golgi vesicle-
mediated transport 88 7 0.76 9.22 + 2.54E-02 
Golgi vesicle transport 195 14 1.68 8.32 + 2.09E-06 
vesicle-mediated 
transport 402 17 3.47 4.9 + 6.77E-05 
membrane organization 219 10 1.89 5.29 + 3.85E-02 
Unclassified 702 4 6.06 0.66 - 0.00E+00 

 776 

Table 1. GO biological process term enrichment for enhancer hits. Enrichment of terms 777 

for the 58/64 enhancers that were mapped in the PANTHER database. The +/- column 778 

indicates enrichment (+) or depletion (-) of the corresponding term in the enhancers 779 

gene set. Enrichment calculated with PANTHER release 20170413 and GO release 780 

2017-10-24. P values are shown after applying Bonferroni correction for multiple 781 

testing. 782 

 783 

 784 
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 785 

 786 

 787 

 788 

 789 

 790 

 791 
Effect ALS genes Deletion 

systematic 
name 

Deletion 
standard name 

Human ortholog 

Enhancer OPTN, FUS YHR030C SLT2 MAPK7 
Enhancer OPTN, FUS YDR148C KGD2 DLST 
Enhancer OPTN, FUS YNL052W COX5A COX4I1, COX4I2 
Enhancer TDP43, FUS YML009C MRPL39 MRPL33 
Suppressor OPTN, FUS YBL027W RPL19B RPL19 
Suppressor OPTN, FUS YDR382W RPP2B RPLP2 

 792 

Table 2. Genetic modifiers identified for multiple ALS genes in yeast. OPTN modifiers 793 

identified in this paper, TDP43 modifiers from Armakola et al.[35], FUS modifiers from 794 

Sun et al.[33]. 795 

 796 
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 806 

 807 

 808 

 809 

 810 

 811 

 812 

 813 

Lipid family Increased Decreased 
FA01 Fatty acids and conjugates 3 2 
ST01 Sterols 3  

GL02 Diradylglycerols (DAG) 5  

GL03 Triradylglycerols (TAG) 2  

GP01 Glycerophosphocholines 1  
GP10 Glycerophosphates 1  

SP02 Ceramides 2  

SP05 Neutral glycosphingolipids 1  
Unknown - 2  

 814 

Table 3. Identified lipid families[63] with differential levels in the LC-MS profiled 815 

endometabolome of OPTN yeast vs control. 816 

 817 
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 820 

 821 
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Figure 1. Expression of OPTN is toxic to yeast. a) Growth in liquid culture showed a reduced 

maximum exponential growth rate for cells expressing OPTN (red) compared to YFP (black). 

There was no phenotype for cells expressing OPTN-E478G (blue). b) Fluorescence 

microscopy showed diffuse cytoplasmic fluorescence for YFP alone, whereas OPTN-YFP 

formed focal aggregates. There was no observable fluorescence for OPTN-E478G with the 

same exposure (not shown). c) Spot-tests comparing growth on Glucose (expression off) to 

Galactose (expression on) showed a growth phenotype for OPTN that was similar to TDP43, 

and a weaker phenotype for OPTN-E478G.  
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