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Abstract

Motivation: Genome-wide profiles of chromatin accessibility and gene expression in diverse cellular
contexts are critical to decipher the dynamics of transcriptional regulation. Recently, convolutional neural
networks (CNNs) have been used to learn predictive cis-regulatory DNA sequence models of context-
specific chromatin accessibility landscapes. However, these context-specific regulatory sequence models
cannot generalize predictions across cell types.
Results: We introduce multi-modal, residual neural network architectures that integrate cis-regulatory
sequence and context-specific expression of trans-regulators to predict genome-wide chromatin
accessibility profiles across cellular contexts. We show that the average accessibility of a genomic
region across training contexts can be a surprisingly powerful predictor. We leverage this feature and
employ novel strategies for training models to enhance genome-wide prediction of shared and context-
specific chromatin accessible sites across cell types. We interpret the models to reveal insights into cis
and trans regulation of chromatin dynamics across 123 diverse cellular contexts.
Availability: The code is available at https://github.com/kundajelab/ChromDragoNN
Contact: akundaje@stanford.edu

1 Introduction
Cost-effective, sequencing-based functional genomics assays such as
RNA-seq, ChIP-seq, DNase-seq and ATAC-seq have enabled large-scale
profiling of epigenomes and transcriptomes across diverse cellular contexts
(Consortium, 2012; Kundaje et al., 2015). These datasets provide a unique
resource to understand the relationship between regulatory DNA sequence,
chromatin state and gene expression.

DNase-seq (Thurman et al., 2012; Boyle et al., 2008) or ATAC-seq
(Buenrostro et al., 2013) experiments profile the accessible chromatin
landscape typically bound by regulatory DNA binding proteins such as
transcription factors (TFs). Chromatin accessibility is highly dynamic
across cellular contexts (Thurman et al., 2012). Chromatin accessibility

of a regulatory element is largely a function of the combinatorial cis-
regulatory code of TF binding sequence motifs embedded in its DNA as
well as the availability and activity of the trans-regulatory proteins such as
TFs that bind them.

A large body of literature has focused on developing computational
models to decipher the cis-regulatory sequence code of cell-type
specific chromatin accessibility landscapes. Recently, convolutional neural
networks (CNNs) have been used to learn the cis-regulatory grammars
encoded in regulatory DNA sequences associated with cell-type specific in
vivo TF binding and chromatin accessibility (Kelley et al., 2016; Alipanahi
et al., 2015a; Quang and Xie, 2016; Haoyang Zeng and Gifford, 2016;
Zhou and Troyanskaya, 2015; Alipanahi et al., 2015b). By learning a
series of de-novo motif-like pattern detectors (called convolutional filters)
and non-linear activation transformations, CNNs are able to map raw DNA
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sequence across the genome to binary or continuous measures of associated
regulatory activity profiles without explicit feature engineering.

The Basset model (Kelley et al., 2016) is a state-of-the-art CNN
architecture that predicts binary chromatin accessibility in a specific
cellular context across the genome as a function of local 600 bp DNA
sequence context around each bin. The Basset model is also a multi-
task architecture trained simultaneously on binary chromatin accessibility
profiles from multiple cellular contexts (each context is a prediction task)
and produces a vector of outputs for any genomic position containing the
probability of accessible chromatin state at that position in each of the
cellular contexts (task). The input DNA sequences represented using a
one-hot encoding is transformed by three convolution layers. A rectified
linear unit (ReLU) nonlinear transformation is applied to the output of the
final convolution layer and a pooling operation takes the maximum across
a window of adjacent positions. These transformations are then passed to
three fully connected layers followed by a logistic non-linearity for each
task (cellular context) that outputs the probability of accessibility. The
convolutional filters learned by Basset were visualized and interpreted to
infer putative cis-regulatory sequence drivers of context-specific chromatin
accessibility. The model was also used to score putative regulatory genetic
variants using an in-silico mutagenesis approach.

The Basset model was recently enhanced by factorizing the convolution
layers (Wnuk et al., 2017) (Factorized model). The Factorized model
increases the model depth - the 3 convolution layers in Basset are replaced
by 9 convolution layers. Further, the first two convolution layers in Basset
which contain convolutional filters (motif-like pattern detectors) of widths
19 and 11 respectively are factorized into multiple convolution layers
with smaller widths. The authors note that these modifications enhance
prediction performance and reduce learning time.

While these and other sequence-only models (Zhou and Troyanskaya,
2015; Kelley et al., 2018) have provided useful insight into context-
specific cis-regulatory sequence features and the context-specific impact
of regulatory genetic variants, these models cannot be used to predict
chromatin accessibility or other regulatory profiles in cellular contexts
not present in the training set. This is largely because these sequence-
only models do not model the regulatory activity of trans-factors that
vary across cellular contexts. Gene expression levels of trans-factors as
measured by RNA-seq provide a useful, albeit indirect surrogate for
their availability and activity in different cellular contexts. Models that
can integrate cis-regulatory DNA sequence and trans-regulator expression
should in principle be able to generalize to predict chromatin accessibility
landscapes across cellular contexts. Such a model would be very valuable
because it would enable prediction of chromatin accessibility profiles in
large collections of cellular contexts that are currently characterized only
by RNA-seq (Collado-Torres et al., 2017). Moreover, interpreting such an
integrative model would also provide insights into cis-regulatory sequence
features and trans regulators that are predictive of chromatin dynamics
across cellular contexts.

Deep-learning architectures allow this kind of flexibility to integrate
multi-modal data i.e. DNA sequence coupled with RNA expression
profiles. Hence, we expand upon previous work to predict genome-wide
maps of chromatin accessibility using sequence and gene expression
data (Kelley et al., 2016; Wnuk et al., 2017). We introduce multi-
modal, residual neural network architectures (He et al., 2016) that
integrate cis-regulatory sequence and context-specific expression of trans-
regulators to predict genome-wide chromatin accessibility profiles across
cellular contexts. We show that the average accessibility of a genomic
region across training contexts can be a powerful baseline predictor. We
leverage this feature and employ novel strategies for training models to
enhance prediction performance of shared and context-specific chromatin
accessible sites across cell types. Further, we show that we can interpret

these cross-cell type models to reveal insights into cis and trans regulators
of chromatin dynamics across 123 diverse cellular contexts.

2 Methods

2.1 Chromatin accessibility data

DNase-seq datasets profiling genome-wide chromatin accessibility were
downloaded from the Roadmap Epigenomics Project1 and ENCODE2.
The complete list of DNase-seq datasets and their identifiers is provided in
Supp. Table 1. The fastq files were aligned with BWA aln (v0.7.10), where
all datasets were treated as single-end, with ENCODE default alignment
parameters. After mapping, reads were filtered to remove unmapped reads
and mates, non-primary alignments, reads failing platform/vendor quality
checks, and PCR/optical duplicates (-F 1804). Low quality reads (MAPQ
< 30) were also removed. Duplicates were then marked with Picard
MarkDuplicates and removed. The final filtered file was then converted to
tagAlign format (BED 3+3) using bedtools bamtobed. Cross-correlation
scores were then obtained for each file using phantompeakqualtools (v1.1).

All files were checked to have cross-correlation with a quality tag above
0 and discarded if not. For the ENCODE data generated from the Stam Lab
protocol, all datasets were trimmed to 36 bp and then combined if technical
replicates. Read depths were considered, and a standardized depth of 50
million reads was set for the final datasets. As such, the files were filtered to
remove mitochondrial reads, filtered for mappability, and then subsampled
to 50 million reads. For the ENCODE data generated from the Crawford
Lab protocol, the same procedure as above was performed, except reads
were trimmed to 20 bp due to the different library generation protocol. For
the Roadmap data, which was all generated by the Stam Lab protocol, the
same procedure as above was performed with trimming to 36 bp, and files
were only combined to give a minimum read depth of 50 million reads,
since each file came from a different developmental time point. These
trimmed, filtered, subsampled tagAlign files were then used to generate
signal tracks and call peaks. Signal tracks and peaks were called with a
loose threshold (p < 0.01) with MACS2 to generate bigwig files (fold
enrichment and p-value) and narrowPeak files, respectively.

For reproducible peak sets, we performed pseudoreplicate subsampling
on the pooled reads across all replicates (taking all reads from the
final tagAligns and splitting in half by random assignment to two
replicates) and retaining reproducible peaks passing an Irreproducible
Discovery Rate (IDR v2.0.3) (Li et al., 2011) (https://github.
com/kundajelab/idr) threshold of 0.1 to get a reproducible peaks
for each DNase experiment. The pipeline is available in a Zenodo record
https://doi.org/10.5281/zenodo.156534.

We bin the human genome (GRCh37 assembly) into 200 bp bins (i)
every 50 bp. For each of the 123 cellular contexts (j = {1 . . . 123}),
all bins are assigned binary labels (yi,j ∈ {0, 1}) corresponding
to accessible (+1) or inaccessible (0) state based on whether they
overlap (> 50% overlap) context-specific reproducible DNase-seq peaks
or not. The genome-wide binary labels for each task j (cellular
context) are highly imbalanced (Proportion of positive bins: min=3%,
median=7%, max=10% across cell types). The complete binary label
matrix is available via a Zenodo archive https://doi.org/10.

5281/zenodo.2603199. The cis-regulatory sequence context (Si) for
each bin i is represented using 1000 bp of genomic DNA sequence centered
at the bin. We use a 1000 bp sequence context since previous work showed
performance gains using contexts up to 1000bp (Zhou and Troyanskaya,
2015; Avsec et al., 2018).

1 http://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/
2 https://www.encodeproject.org/
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2.2 Gene expression data

RNA-seq fastq files (no subsampling, no filtering, no trimming) from
Roadmap and ENCODE were mapped using the STAR aligner (version
2.4.1d), using ENCODE default parameters. GENCODE release 19
(GRCh37.p13) transcriptome annotations were used. To determine the
strandedness of the file (which is needed for RSEM quantification),
the infer_experiment.py script from RSeQC (version 2.6.4) was used
in conjunction with the STAR output that was sorted by coordinate.
The strandedness and the pairedness (paired end or single end) of the
experiment were passed on to RSEM (version 1.2.21). For RSEM, we
used ’–estimate-rspd’ to estimate read start position distribution, and we
did not calculate confidence bounds. If the experiment was stranded,
we set ’–forward-prob’ to be 0, and unstranded experiments were left
at default. The transcriptome aligned file from STAR was used in the
RSEM run. The complete list of RNA-seq datasets and their identifiers
is provided in Supp. Table 3. The pipeline is available at https:
//github.com/ENCODE-DCC/rna-seq-pipeline (v1.0).

The final dataset includes RNA-seq data associated with each of the
123 cell types. We extract the TPM (transcripts per million) values and
normalize the values by taking the log of the values.

The trans-regulatory feature space Rj for each cellular context j =

{1 . . . 123} is represented by the log(TPM) expression levels of a list of
1630 putative TFs as curated by the FANTOM5 consortium 3 of human
TFs. The TF gene expression feature matrix is available via a Zenodo
archive https://doi.org/10.5281/zenodo.2603199.

2.3 ChromDragoNN Neural network architecture

Our goal is to learn a model F (Si, Rj) that can predict the binary
chromatin accessibility state yi,j at any bin i in genome in any cellular
context j as a function of the one-hot encoded 1 Kb cis-regulatory sequence
contextSi of bin i and the expression of 1630 TFsRj in cellular context j.
We use a multi-modal neural network model to integrate the cis-sequence
and trans-expression modalities and optionally the mean accessibility of
the bin across cell types.

The one-hot encoded sequence Si for each bin i in the genome is fed
into a residual convolutional neural network (ResNet) model (Fig. 1A). The
ResNet architecture includes hierarchically arranged convolution layers
that are able to map one-hot encodings of raw DNA sequence input data to
learn complex representations without explicit feature engineering. Each
convolution layer learns and scans a set of weight matrix pattern detectors
(convolutional filters) across its input and detects patterns in the input
sequence. Residual neural networks (ResNets) (He et al., 2016) have been
show to be more effective for training CNNs with a large number of layers
by introducing skip connections between blocks of convolution layers to
optimize gradient flow and improve learning. Utilizing these concepts, we
use a ResNet architecture to extend previous models (Kelley et al., 2016;
Wnuk et al., 2017). The residual network (He et al., 2016) consists of
blocks in which the input is transformed through one or more convolutional
layers to an intermediate output to which the input is added back. In our
model, the convolution layers within a block preserve the input dimensions.

To provide the model with quantitative information on the availability
of trans-regulator TFs, we follow recent work (Wnuk et al., 2017) that
extended the Basset model to predict chromatin accessibility in held-
out cellular contexts, using RNA-seq profiles as surrogates of cell-type
specific availability and activity of trans-regulators. RNA-seq profiles have
been shown to uniquely identify individual cell types while preserving
biological similarity between cell types (Sudmant et al., 2015). We
use log(TPM) RNA expression levels of 1630 transcription factors as a
meaningful representation of trans-regulatory cell state, as TFs are the

3 http://fantom.gsc.riken.jp/5/sstar/Browse_Transcription_Factors_hg19

DNA binding proteins that would affect chromatin accessibility by binding
cis-regulatory sequence patterns. The sequence ResNet-CNN component
of the model learns cis-regulatory sequence patterns and returns a
transformed sequence-based feature space as intermediate representation.
The TF RNA-seq vectorRj for cellular context j is concatenated with this
intermediate sequence representation, which is then passed through fully
connected neural network layers and a logistic non-linearity to produce an
output F (Si, Rj) representing the predicted probability that the bin i is
accessible in the cellular context j. The mean accessibility for bin i across
all training cell types, if used, is concatenated at the final fully connected
layer. The complete sequential network is as follows:

One-hot input sequence of dimension 1000. 2 convolutional layers
with 48 and 64 channels respectively, filter size (3,1). 2 residual blocks,
each with 2 convolution layers with 64 channels and filter size (3,1). 2
residual blocks, each with 2 convolution layers with 128 channels and
filter size (7,1). 2 residual blocks, each with 3 convolution layers with 200
channels and filter sizes (7,1), (3,1), (3,1) respectively. 2 residual blocks,
each with 2 convolution layers with 200 channels and filter size (7,1). The
output is flattened and concatenated with gene expression. In case of mean
accessibility models, the mean is concatenated. Fully connected layer with
1000 dimension output. Fully connected layer with 1000 dimension output.
Fully connected layer with 1 output dimension.

A single convolution layer is present after each residual block (except
the third) to transform the number of channels. Batch normalization (Ioffe
and Szegedy, 2015) layers are present after each layer. A max pool is
applied after the last 3 residual blocks. We use the ReLU non-linearity
transform. We use a fixed dropout of 0.3 on the fully connected layers.

2.4 Multi-stage training

We randomly split our 123 cellular contexts into training, validation and
test sets across 5 folds (Supp. Table 2). For each fold, we train models
genome-wide across the training cell types. The validation set cell types
are used for hyperparameter tuning. The models are evaluated based on
their genome-wide predictions in the held-out cell types in the test sets.

The shift from a multi-task cell type specific sequence-only model to
a single-task, cross-cell type, multi-modal model increases the number of
training examples by a factor of C, equal to the number of cell types in
the training data. The increased size of the training data has implications
for training. A naive training setup could potentially take up to a factor C
longer to train compared to a fixed cell type model. To improve efficiency,
performance and interpretability, we train our models in two steps: the first
stage pre-trains a multi-task sequence-only model that maps sequence of
each genomic bin to accessibility labels in each of the cellular contexts in
the training set as individual tasks. The second stage trains the multi-modal
model across all genomic bins and cellular contexts in the training set by
initializing the sequence-mode’s convolutional layer weights using the pre-
trained model. The two-stage training scheme provides added flexibility
in that during the second stage of training, the convolutional layer weights
may or may not be frozen while the fully connected layers are trained.

2.5 Model Training and testing

We use the Adam optimizer (Kingma and Ba, 2014) on binary cross entropy
loss to update our network’s weights, along with batch normalization on
the convolution and fully connected layers. We use the default PyTorch
v0.4 parameter initialization method (LeCun et al., 2012). We perform
hyperparameter searches for all stage 1 models with batch sizes (128, 256)
and learning rates (2e-2, 2e-3, 2e-4), and for stage 2 models with batch
sizes (256, 512, 1024) and learning rates (1e-3, 1e-4). To mitigate the class
imbalance, we maintained a 1:3 ratio of positives to negatives per batch
by upsampling accessible regions in the second stage of training.
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Given the significant class imbalance in the labels, we use the
area under precision-recall curve (AUPRC) as our primary performance
evaluation measure.

2.6 Motif extraction

The dynamics of chromatin accessibility of regulatory elements across
cellular contexts is a result of distinct subsets of context-specific TFs
binding combinations of motifs encoded in the sequence of the regulatory
elements (Sherwood et al., 2014; Voss and Hager, 2014). Deep neural
network models of regulatory DNA sequence implicitly learn these motifs
as distributed representations across the convolutional filters. Hence,
valuable insights on predictive regulatory sequence features can be
obtained by interpreting the model. A commonly used approach for
involves directly visualizing the convolutional filters or deriving position
weight matrices from subsequences that maximally activate filters (Kelley
et al., 2016). However, this approach has the drawback that the motifs
obtained from individual filters are often redundant or incomplete since
the models learn distributed representations (Shrikumar et al., 2018). An
alternative approach is to use feature attribution methods to interpret
predictive patterns in specific input DNA sequences. These feature
attribution methods (Shrikumar et al., 2017; Sundararajan et al., 2017;
Simonyan et al., 2013) decompose the output prediction of a model for
a specific input sequence of interest in the form of contribution scores of
individual nucleotides in the sequence. Nucleotides with high positive
scores can be interpreted as driving the prediction for the sequence.
Feature attribution methods allow for instance-by-instance interpretation
of predictive patterns but do not provide a global summary of predictive
motifs across all accessible sites within and across cellular contexts. Hence,
we used a new method we recently developed called TF-MoDISco (v0.2.1)
(Shrikumar et al., 2018) that (i) identifies predictive sequence patterns
within the sequences of each accessible site across the genome in a
cell context of interest as subsequences (called seqlets) with significant
contribution scores derived using a feature attribution method (specified
below); (ii) computes a similarity matrix between all predictive seqlets
across the accessible landscape; and (iii) clusters the seqlets into non-
redundant motifs. To obtain nucleotide-resolution contribution scores for
each input sequence corresponding to accessible bins in the genome in a
specific cellular context, we used the gradient of the logit of the output
probability of the model (predicted probability of site being accessible in
the specific cellular context) with respect to the one-hot DNA sequence,
gated by the observed nucleotides in the input sequence. To focus on motifs
associated with dynamic chromatin accessible sites, for each cellular
context, we extracted the contribution score profiles from the ResNet model
(that does not use mean accessibility as an input feature) for subsets of
20,000 bins that are accessible in the given cellular context and in < 30%
of all the cell types. Contribution score profiles computed for these 20K
sequences in each cellular context were passed to TF-MoDISco to learn
context-specific globally predictive motifs. The TF-MoDISco motifs were
matched against a database of known TF motifs using Tomtom (Gupta
et al., 2007).

3 Results

3.1 Accurate prediction of chromatin accessibility across
cellular contexts from DNA sequence and gene
expression with multi-stage training

We developed multi-modal neural network architectures to predict the
binary chromatin accessibility state at each bin in the genome in any
cellular context by integrating 1Kb cis-regulatory sequence context around
each genomic bin and gene expression levels of 1630 transcription factors
in the specific cellular context. Models were trained on a subset of training

cell types and their performance was reported based on genome-wide
predictions in held-out test cell types. We developed a two-stage learning
strategy to improve efficiency, performance and interpretability of the
models. In the first stage, we pretrained a multi-task sequence-only model
across all training cell types. In the second stage, we trained a multi-
modal model integrating sequence and expression, where we initialized
the convolutional layer weights of the sequence model from the first
stage. We found that tuning the convolution layers in the second stage
consistently improved performance over freezing the weights of the layers
at an increased computational cost. Further, pre-training the sequence
mode consistently improved training time and performance (Fig. 1B).

We experimented with different CNN architectures, training strategies
and tested the impact of adding an additional feature - the mean
accessibility of a genomic bin across training cell types. After evaluating
the various models on our dataset, our best model achieves an AUPRC
= 0.76 and AUROC = 0.954, outperforming previously published model
architectures trained and tested on matching data (AUPRC =0.69, AUROC
= 0.937) (Fig. 1C).

3.2 Using mean accessibility as an input feature boosts
performance

A key difference between cell-type specific models and cross-cell type
models is that cross-cell type models can make use of statistics based on
the accessibility state of each genomic bin (locus) across the training cell
types. For each bin in the genome, we computed the mean of the binary
accessibility values across all cell types in the training set. Since binary
accessibility is 0 if the locus is closed and 1 if open, the mean accessibility
is a value in [0, 1] that is equivalent to the fraction of cell types in which
the bin is accessible.

We observed that mean accessibility is a strong baseline predictor
of chromatin accessibility across cell types (also recently reported by
Schreiber et al. (Schreiber et al., 2019)). Setting the predicted accessibility
of a locus equal to its mean accessibility across training cell types yielded
an AUPRC of 0.579 and an AUC of 0.902 on the test set. This method is
oblivious to the test cell type and in fact assigns the same values to all test
cell types for a given bin. A stronger baseline is achieved by computing
a weighted average of accessibility across training cell types, where the
weight is proportional to the similarity between RNA-seq profiles of the
training and test cell types. The resulting predictions yield an AUPRC of
0.587 and AUC of 0.903 which are marginally better than the unweighted
version.

All our multi-modal models that use sequence and expression
substantially outperform this strong baseline predictor (mean-baseline
AUPRC=0.579, weighted-mean baseline AUPRC=0.587, Basset+expr
AUPRC=0.656, FactorizedBasset+expr AUPRC=0.692, ResNet+expr
AUPRC=0.700). However, we decided to capitalize on the strong mean
baseline and decided to use it as an auxiliary input feature to the multi-
modal model. The single scalar mean accessibility value for each bin
is concatenated with the output of first feed forward layer. We observe
substantial improvements when the mean accessibility feature is provided
as an input to the model (Fig. 1 C,D). Across 3 different types of
architectures that we trained, incorporating the mean as an input feature
improves the performance of the model by as much as 0.09 AUPRC.

3.3 Residual network architecture outperforms previous
architectures

Residual neural networks (ResNets) (He et al., 2016) have been shown
to be highly effective for training deeper CNNs with a large number of
layers. ResNets provide added flexibility to CNNs by introducing skip
connections between blocks of convolution layers. In practice, while the
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Fig. 1: Improved training methods and new architecture design enhances model performance (a) Model architecture for the ResNet model. The
RNA-seq inputs and mean accessibility (if used) are concatenated after the convolutional layers. (b) The validation set loss over training steps for a model
(Basset architecture for sequence mode) with and without two-stage learning (without mean accessibility as an input feature). In two-stage learning the
weights of the convolutional layer of the model are initialized from a model first trained to map sequence to chromatin accessibility for all training cell
types. (c) The test set AUPRC of the original Basset model, Factorized model, and ResNet model under 4 training paradigms: with and without mean
accessibility as an input feature, and with (Tune) and without (Freeze) fine-tuning convolution layers in 2nd stage. Numbers reported on a fixed training,
validation and test split with 103 training, 10 validation and 10 test cell types. Models using mean accessibility as an input feature significantly outperform
models without mean accessibility. (d) 5-fold cross validation performance of the ResNet model compared to the Factorized model with and without
mean locus accessibility as an input to the model. Each fold contains a split over 123 cell types in the dataset. All models trained using 2-stage scheme
with all weights tunable in second stage. Wilcoxon signed rank test (single-tailed) was performed with n = 5, n.s. not significant, ∗P < 0.05. (e) Binned
AUPRC of Factorized model without mean accessibility, ResNet model without mean accessibility, and ResNet model with mean accessibility. Loci are
binned by the fraction of training cell types that are accessible, and AUPRC is computed for predictions on test cell types for each bin. Note that AUPRC
is computed for the minority class- when fraction of accessible cell types > 0.5, AUPRC is computed on non-accessible regions. Gray bars indicate the
fraction of loci having a certain fraction of accessible cell types. Numbers reported on a training, validation and test split same as for (c).

performance of ordinary CNNs saturates or even drops with increasing
layers (Srivastava et al., 2015), ResNets have made possible training
of CNNs often having more than 100 convolution layers. ResNets have
also recently been used to train high performance deep learning sequence
models of splicing (Jaganathan et al., 2019).

We implemented a ResNet architecture that uses 23 convolution layers
across 8 residual blocks. Following the Factorized model, we used
convolution filters with shorter widths. (Fig. 1D) shows the results of
a 5-fold cross validation performed on our dataset. We compared the
performance of the model with the Factorized Model with and without
passing mean locus accessibility as an input to the model. In both cases,
the ResNet architecture improved upon the performance of the Factorized
model. Overall, our best performing ResNet(+mean accessibility) model
achieves an AUPRC of 0.76 while the the previous best published model in
the literature i.e. the Factorized Basset model (Wnuk et al., 2017) achieves
0.69 (Fig. 1C) on a matched training/validation/test data split.

Next, in order to understand performance variation as a function of cell
type specificity of accessible sites, we grouped genomic bins based on the
fraction of cell types in which bins exhibit accessibility. For each group,
we compared the AUPRC of our best ResNet model that included mean

accessibility as auxiliary input with the previous best published model
i.e. Factorized Basset without mean accessibility (Fig. 1E). Our models
consistently outperform the previous state-of-the-art across all groups.

3.4 Model interpretation reveals cell type specific
cis-regulatory sequence features and associated
trans-regulators

Understanding what the model is utilizing in the DNA sequence input is
of interest, and previous work has successfully shown that CNNs learn
predictive motif-like patterns of cell-type relevant TFs from regulatory
DNA sequences (Kelley et al., 2016). However, the model learns a
distributed representation of the sequence features. Hence, interpreting
individual convolutional filters results in redundant and partially complete
motifs. Instead, we use TF-MoDISco, a new method we recently
developed, for distilling consolidated motifs from sequence-based deep
learning models (Shrikumar et al., 2018). First, we use a feature attribution
approach (gradient × input) to infer contribution scores attributed by
the model to each nucleotide in chromatin accessible sequences in each
cellular context, to the output prediction associated with the sequence.
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Fig. 2: Cell-type specific transcription factor motifs distilled from the ResNet model (a) Gradient x input contribution scores of each nucleotide
(columns) in an example genomic sequence (chr8:128929715-128931715) across different cellular contexts (tasks shown as rows). The obtained nucleotide
resolution contribution scores for the same genomic sequence can differ between cell-types reflecting differential chromatin accessibility and differences
in regulation of the sequence, as shown in this example locus. (b) Summary of motifs learned by the model for individual cell types. The TF-MoDISco
method is used to distill consolidated motifs learned by the model for each cell type using a subset of sequences which are accessible in the respective
cell type. The returned motifs are then matched to known motifs of TFs using Tomtom (Gupta et al., 2007).
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Fig. 3: Predictive cis-sequence features and trans-regulators inferred from the models: (a) TF-MoDISco motifs (left) and row-normalized log TPM
RNA-expression values (right) for each training cell type, where each row is a matching motif and TF. (b) t-SNE embedding of 250 additional cell
types (points) based on the RNA-seq profiles of 1630 TFs (left) compared to t-SNE embedding of the same cell types based on the predicted chromatin
accessibility profiles

Predictive nucleotides and motif instances get highlighted with high
positive contribution scores. The same sequence can have different
contribution score profiles across different cellular contexts representing
dynamic regulation of the region by different sequence motifs (Fig. 2A).
For each cellular context, we sample a subset of bins that are labeled
accessible, obtain contribution scores for corresponding input sequences
and extract motifs using TF-MoDISco with default parameters. The motifs
are matched against a database of known motifs of TFs using Tomtom
(Gupta et al., 2007). The sets of motifs retrieved for each cellular context
reflect the globally predictive TF motif patterns learned by the model for
that context (Fig. 2B).

The model learned known DNA motifs of ubiquitous as well as cell-
type specific TFs that match the canonical roles of TFs in different lineages
(Fig. 2B). As reported in (Kelley et al., 2016), the model learns the CTCF
motif as a widely important sequence element for accessible regions across
cellular contexts (Ong and Corces, 2014). The HNF1A and HNF4A motifs
are more narrowly predictive of accessibility in hepatocyte-related, large
and small intestinal contexts (D’Angelo et al., 2010). The model discovers
SIX2 motif as a key predictor in kidney-related contexts (Kobayashi et al.,

2008). TWIST1 motif is retrieved for contexts of mesenchymal origin (Qin
et al., 2012), while RUNX1, ETS1 and IRF1 motifs are mainly discovered
only in specific hematopoietic cell types (Brien et al., 2011). GRHL2 motif
is discovered in the lung, epithelial cells, and kidneys, which matches
known differential expression patterns of GRHL family transcription
factors across cell types (Aue et al., 2015). No prior information about
sequence motifs is provided to the model, suggesting that the model is
effective at extracting cell context relevant cis-regulatory features from
the DNA sequence input.

Many of the discovered motifs are cell-type specific, which suggested
that intersecting these results with the dynamics of RNA expression profiles
of trans-regulators could potentially lead us to the TFs that potentially bind
these discovered motifs. For each discovered motif, we determined all the
TFs (often from the same family) that could potentially bind the motif.
We computed the binary vector of dynamic motif activity for each motif
across cell types (whether that motif was discovered by TF-MoDISco in the
cell type or not). We computed the Pearson correlation between the motif
activity vector and the vector of expression levels of matching TFs across
those cell types. We show the top 15 most correlated TFs in Fig. 3A. This
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analysis highlighted several known key regulators, both universal and cell-
type specific, across a variety of cell types. TWIST1 is a known regulator
in mesenchymal cell types and is highlighted as important in muscle cell
types and fibroblasts (Qin et al., 2012). RUNX3 and IRF1 are important
regulators in blood cell types (Brien et al., 2011), while HNF4A is a master
regulator in intestinal development (Babeu and Boudreau, 2014). HNF1A,
GRHL2, SIX2, and HOXA9 are all regulators known to be important in
kidney development (Kobayashi et al., 2008; Martovetsky et al., 2013; Aue
et al., 2015), and are highlighted here as important specifically in kidney
cell types. Interestingly, ASCL1 is highlighted as important in thymus and
spleen cell types, where the expression is also very specifically high in
these cell types - this suggests a role for ASCL1 in these cell types that
was not elucidated before, though further work is required to fully validate
this hypothesis. This analysis thus uncovers possible trans-regulators that
modulate cell context-specific chromatin accessibility profiles through
predictive cis-regulatory motifs.

3.5 Biologically relevant segregation of cell types based on
predicted chromatin accessibility

We used our cross-cell type, multi-modal models to impute genome-wide
binary chromatin accessibility profiles in 250 additional cellular contexts
(See Supp. Table 3) that were not seen in our original dataset and were
profiled only using RNA-seq. These new imputed samples were then
embedded into 2D visualization using t-SNE (Maaten and Hinton, 2008)
to determine how well the imputed accessibility profiles group distinct and
related cell types. Comparing an equivalent t-SNE visualization in RNA-
seq expression space (using the 1630 TFs as features) to the predicted
chromatin accessibility (Fig. 3B), we find that the t-SNE map from imputed
accessibility shows improved separation of distinct clusters of samples
grouped by cell type and disease state. E.g. the carcinoma cell types and the
adenocarcinoma cell types are embedded near each other in the t-SNE from
predicted accessibility. Further, the predicted accessibility t-SNE embeds
the adenocarcinomas as slightly offset from the carcinomas. While t-SNE
embeddings can be unstable and difficult to interpret, our visualizations
do suggest that the imputed accessibility profiles do capture biologically
meaningful differences and similarities between cell types and that these
differences are not simply reflecting differences in expression of the TFs
that were used as predictors. This ability to distinguish cell types through
imputed accessibility profiles is important because it suggests that given
a new expression profile, these models can produce distinct accessibility
profiles that may be granular enough to potentially reveal subtypes and
finer grained structure beyond the expression profile.

4 Discussion
We present an optimized multi-modal residual network architecture that
can integrate cis-regulatory DNA sequence and expression of trans-
regulators to predict genome-wide binary chromatin accessibility profiles
across cellular contexts. The model can be used to predict genome-wide
chromatin accessibility in cellular contexts that are only profiled with
RNA-seq. This is particularly useful given the large number of profiled
transcriptomes that do not have corresponding experimentally profiled
epigenomes. We demonstrate that accessibility profiles predicted from
sequence and TF expression do not simply recapitulate the landscape of
expression profiles across cell types but rather provides a complementary
feature space that can discriminate between related and distinct cellular
contexts.

Using enhanced training strategies, we achieve a new state of the art
in terms of prediction performance across cellular contexts. We show that
a two-stage training strategy that pre-trains using only sequence before
integrating the expression data improves performance and training time.

This method of transfer learning is common in applications in computer
vision and natural language processing (Chen et al., 2015; Oquab et al.,
2014). In two-stage model learning, we show that tuning the convolution
layers in the second stage offers a benefit over freezing the weights
of the layers, however at an increased computational cost. In addition,
adding the mean accessibility of a given locus significantly improves
performance. Mean accessibility by itself is a surprisingly strong predictor
of chromatin accessibility. Combining the mean accessibility with cis-
regulatory sequence and trans-regulator RNA expression allows improved
prediction performance. Notably, we find that adding mean accessibility
as a feature improves performance across all types of accessible sites
including the cell type specific and ubiquitously active.

We demonstrate that using a residual CNN architecture for chromatin
accessibility prediction results in superior performance compared to
previous architectures. Recent related work (Wnuk et al., 2017) showed
that increasing the number of convolution layers while reducing the width
of each convolution layer increases the model performance. Residual
neural networks (He et al., 2016) allows for connections between non-
adjacent layers and have been shown to confer performance gains in
deep networks. We observe and confirm similar improvements in model
performance for predicting chromatin accessibility models.

Recently developed imputation methods such as ChromImpute(Ernst
and Kellis, 2015), PREDICTD (Durham et al., 2018) and Avocado
(Schreiber et al., 2018) also tackle the problem of predicting regulatory
profiles in new cellular contexts. However, these frameworks are based on
capturing and modeling the local correlation structure between profiles
of multiple biochemical markers such as RNA, histone modifications
and chromatin accessibility within and across diverse cell types. In our
framework, we instead use only one widely available auxiliary modality,
the gene expression of trans-regulators. Moreover, the above mentioned
imputation methods do not model cis-regulatory DNA sequence and hence
lack the ability to interpret biologically meaningful predictive sequence
features from the models. Our models enable interpretation of predictive
cis-sequence features learned by the models. Using model interpretation
methods, we show that our models learn motifs of ubiquitous and lineage
specific TFs. Correlating the RNA profiles of TFs with the dynamic
predictive activity of motifs discovered by the model provides insights
into the TFs that might bind these motifs and the relationship between cis
and trans regulatory features.

Our current models predict genome-wide binary chromatin
accessibility profiles instead of continuous, quantitative profiles. However,
our models can be easily adapted to predict continuous, quantitative
profiles at finer resolutions by using regression loss functions Kelley
et al. (2018). Our models can also be extended to include additional input
data modalities or predict other types of genome-wide regulatory profiles
such as histone modification profiles. Finally, improved approaches for
interpreting multi-modal neural networks will provide significantly more
nuanced insights into the complex interactions between cis-regulatory
sequence features and trans-regulatory features. More transparent
encodings of the gene expression space (e.g. using latent variables
that directly model modules of functionally related genes or pathway
annotations) would also improve interpretability. Our study highlights
the promise of integrative multi-modal deep learning models for learning
predictive models that generalize across cellular contexts and obtaining
insight into the dynamics of gene regulation.
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