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Abstract 10 

Most known cancer driver mutations are within protein coding regions of the genome, however, there are 11 

several important examples of oncogenic non-coding regulatory mutations. We developed a method to 12 

identify insertions and deletions (indels) in regulatory regions using aligned reads from chromatin 13 

immunoprecipitation followed by sequencing (ChIP-seq) or the assay for transposase-accessible 14 

chromatin (ATAC-seq). Our method, which we call BreakCA for Breaks in Chromatin Accessible 15 

regions, allows non-coding indels to be discovered in the absence of whole genome sequencing data, out-16 

performs popular variant callers such as the GATK-HaplotypeCaller and VarScan2, and detects known 17 

oncogenic regulatory mutations in T-cell acute lymphoblastic leukemia cell lines. We apply BreakCA to 18 

identify indels in H3K27ac ChIP-seq peaks in 23 neuroblastoma cell lines and, after removing common 19 

germline variants, we identify 23 rare germline or somatic indels that occur in multiple neuroblastoma 20 

cell lines. Among them, 4 indels are candidate oncogenic drivers that are present in 4 or 5 cell lines, 21 

absent from the genome aggregation database of over 15,000 whole genome sequences, and within the 22 

promoters or first introns of known genes (PHF21A, ADAMTS19, GPR85 and RALGDS). In addition, we 23 
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observe a rare 7bp germline deletion in two cell lines, which is associated with high expression of the 24 

histone demethylase KDM5B. Overexpression of KDM5B is prognostic for many cancers and further 25 

characterization of this indel as a potential oncogenic risk factor is therefore warranted. 26 

Introduction 27 

Several non-coding mutations are known to be important oncogenic drivers. For example, mutations 28 

within the promoter of TERT are extremely common and cause its overexpression in numerous cancers[1-29 

3] and 2-12bp insertions create new enhancer sequences that drive overexpression of TAL1 in 4-6% of T-30 

cell acute lymphoblastic leukemias (T-ALLs)[4]. Genome-wide scans for recurrent non-coding mutations 31 

have found a handful of additional candidates including recurrent mutations in regulatory regions 32 

upstream of PLEKHS1, WDR74, and SDHD[5]. A somatic mutation screen using WGS from chronic 33 

lymphocytic leukemia patients identified recurrent T>C mutations in the 3’UTR of NOTCH1 which cause 34 

it to be aberrantly spliced, as well as clustered mutations across multiple patients in an enhancer region 35 

for PAX5[6]. Non-coding variants can also reposition regulatory sequences so that they activate 36 

oncogenes[4, 7, 8] and some non-coding germline polymorphisms that disrupt factor binding motifs are 37 

associated with cancer risk. A single-nucleotide polymorphism (SNP) upstream of MYC impacts binding 38 

of the YY1 transcription factor and is associated prostate cancer[9], SNPs in OCT1/RUNX2 and C/EBPβ 39 

binding sites near FGFR2 modulate its expression and are associated with breast cancer[10], and a SNP 40 

that disrupts a GATA3 binding site in an LMO1 enhancer is associated with neuroblastoma[11]. 41 

While the cost of whole-genome sequencing (WGS) has decreased dramatically, it remains expensive for 42 

large panels of individuals and functional interpretation of non-coding mutations is difficult. One way to 43 

overcome these challenges is to identify genetic variants using data from experiments such as chromatin 44 

immunoprecipitation followed by sequencing (ChIP-seq) and the Assay for Transposase-Accessible 45 

Chromatin (ATAC-seq). These experiments generate sequence reads from regulatory regions of the 46 

genome, which can potentially be used to identify non-coding driver mutations in cancer samples.  47 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/605642doi: bioRxiv preprint 

https://doi.org/10.1101/605642
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Here we describe a new method to identify indels from ChIP-seq and ATAC-seq reads, which we call 48 

BreakCA, for “Breaks in Chromatin Accessible” regions. We assess the performance of BreakCA on 49 

ATAC-seq and ChIP-seq reads from the GM12878 lymphoblastoid cell line and the Jurkat T-ALL cell 50 

line and verify that BreakCA detects known oncogenic indels that create enhancers for the TAL1 and 51 

LMO2 genes[4, 12]. We then apply BreakCA to H3K27ac ChIP-seq data from 23 neuroblastoma cell 52 

lines. After filtering the indels using a large database of known germline variants, we identify recurrent 53 

rare germline or somatic indels that may be oncogenic drivers for neuroblastoma. 54 

Results 55 

Detecting indels with BreakCA 56 

We hypothesized that aligned sequences from ChIP-seq and ATAC-seq experiments can be used to 57 

identify indels in regulatory regions of the genome in the absence of whole-genome sequencing (WGS). 58 

To test this hypothesis, we developed a method to detect indels by exploiting properties of mapped reads 59 

such as gaps in alignments (i.e. insertions or deletions) and clipping at read ends (Fig 1a). Our method, 60 

which we call BreakCA for “Breaks in Chromatin Accessible” regions, collects 16 features from mapped 61 

reads and uses a random forest to identify 20bp windows that contain indels. 62 

 63 

To train BreakCA and assess its performance, we created separate training and test datasets from 50bp 64 

paired-end ATAC-seq data and 50bp single-end H3K27ac ChIP-seq data from the GM12878 65 

lymphoblastoid cell line[13, 14]. To label testable windows within ChIP-seq and ATAC-seq peaks as 66 

“true” or “false” we used indel calls from the Platinum Genomes (PG) project as known positives[15]. 67 

After training the random forest on the GM12878 training dataset, we evaluated its performance on the 68 

test dataset and compared it to two popular variant callers: VarScan2[16] and the GATK-69 

HaplotypeCaller[17].  70 

 71 
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We quantified overall performance using the area under precision-recall curves (Fig 1b,c) and found that 72 

BreakCA (prAUC=0.70) performs better than VarScan2 (prAUC=0.48) and comparably to the GATK-73 

HaplotypeCaller (prAUC=0.67) for paired-end ATAC-seq data. For single-end ChIP-seq data BreakCA 74 

(prAUC=0.54) performs better than VarScan2 (prAUC=0.33) but worse than the GATK-HaplotypeCaller 75 

(prAUC=0.60). An important advantage of BreakCA is that additional features, including output from 76 

other variant callers, can be easily added to improve its performance. We added the Quality Depth (QD) 77 

reported by the GATK-HaplotypeCaller as a feature for BreakCA and observed substantial improvements 78 

in the prAUC for both the ChIP-seq (prAUC=0.69) and ATAC-seq (prAUC=0.79) datasets such that its 79 

performance was substantially better than both GATK and VarScan2. We call this version of our method 80 

BreakCA+QD. 81 

 82 

To test the performance of BreakCA on a cancer cell line that was not used for training, we used paired-83 

end ATAC-seq and H3K27ac ChIP-seq data from the Jurkat T-ALL cell line and obtained WGS data for 84 

the same cell line from a published study[18]. Since there is no gold-standard set of indel calls for this cell 85 

line, we used indels identified by the GATK-HaplotypeCaller run on WGS data as our “ground truth”. 86 

The performance of BreakCA (prAUC= 0.58) on the Jurkat ATAC-seq data was better than both 87 

VarScan2 (prAUC=0.41) and GATK-HaplotypeCaller (prAUC=0.53) and improves further when 88 

information from GATK is included (prAUC=0.62). For single-end ChIP-seq, while BreakCA 89 

(prAUC=0.50) out-performed VarScan2 (prAUC=0.34), its overall performance was comparable to 90 

GATK-HaplotypeCaller (prAUC= 0.46) and we observed an improvement in prAUC after adding QD 91 

from GATK (prAUC=0.54). While all methods appear to perform worse on the Jurkat datasets compared 92 

to the GM12878 datasets (Fig 1c), it is important to note that the performance is greatly underestimated 93 

due to inaccuracies in the Jurkat “ground truth” dataset (high false-negative rates) compared to the high-94 

quality platinum genomes dataset. 95 

 96 
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We compared BreakCA to an orthogonal method that was recently developed by Abraham et al. to 97 

identify small insertions from ChIP-seq reads[12]. This method, which we refer to as Abraham’s Insertion 98 

Detection Pipeline (AIDP), assembles contigs from ChIP-seq reads that fail to map the reference genome. 99 

AIDP was previously applied to H3K27ac ChIP-seq data from the Jurkat Cell line and we ran BreakCA 100 

on the same dataset. We compared the insertion calls from AIDP and BreakCA to those from the GATK-101 

HaplotypeCaller, which was run on WGS data (Fig 1f). While BreakCA detects a much smaller number 102 

of insertions (n=1372 for BreakCA compared to n=4726 for AIDP), BreakCA’s overlap with the WGS-103 

identified indels is far higher (62% for BreakCA compared to 28% for AIDP). Of the 515 BreakCA 104 

insertions that are not detected by GATK, most (75%) are also detected by AIDP. Only 9% of BreakCA-105 

identified indels are not called by either GATK or AIDP, suggesting that the accuracy of BreakCA is 106 

high. In contrast, most of the insertions detected by AIDP (64%), are only detected by AIDP, suggesting 107 

that a large proportion of them may be false-positives. 108 

 109 

Our performance evaluations on GM12878 and Jurkat T-cells indicate that BreakCA+QD offers the best 110 

balance of precision and recall for both ATAC-seq and ChIP-seq datasets and we used this approach for 111 

all subsequent analyses. We selected score thresholds based on the precision-recall curves for the 112 

GM12878 dataset. Specifically, we used a score threshold of ≥0.60 corresponding to ~86% precision and 113 

~75% recall for paired-end ATAC-seq and a score threshold of ≥0.33 corresponding to ~0.91% precision 114 

and ~69% recall for single-end ChIP-seq data.  115 

 116 

To test whether BreakCA detects known oncogenic mutations, we applied it to ATAC-seq from four T-117 

ALL cell lines (Jurkat, MOLT-4, CCRF-CEM and RPMI-8402) and one CML cell line (K-562). Two of 118 

these cell lines (Jurkat and MOLT-4) are known to harbor oncogenic insertions 8kb upstream of the 119 

TAL1 promoter[4] and BreakCA successfully detects both of them (Fig 2). In addition, we verify that 120 

BreakCA detects an insertion that is known to be associated with allele-specific expression of the LMO2 121 

oncogene in MOLT-4 cells[12] (Supplementary Fig 1). These results indicate that BreakCA can detect 122 
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oncogenic indels in regulatory regions of the genome using ATAC-seq or ChIP-seq reads. We next 123 

applied BreakCA to characterize the non-coding regulatory landscape of neuroblastoma. 124 

 125 

Discovery of indels in neuroblastoma cell lines 126 

Neuroblastoma (NB) is a childhood cancer of the peripheral nervous system with low mutation rates and 127 

few recurrently mutated genes[19-22]. Many neuroblastoma tumors harbor no known oncogenic 128 

mutations and it has been hypothesized that many high-risk neuroblastomas are driven by rare germline 129 

variants, copy number alterations or epigenetic modifications that occur during tumor evolution[19]. We 130 

hypothesized that recurrent indels in regulatory regions may also be important drivers of NB. To test this 131 

hypothesis, we obtained H3K27ac ChIP-seq from 26 NB cell lines and 2 normal human neural crest cells 132 

(hNCCs)[23] and ran BreakCA on these samples to identify indels within regulatory regions defined by 133 

H3K27ac peaks. 134 

 135 

The SH-EP and SH-SY5Y cell lines are subclones of the SK-N-SH cell line, so we assigned variant 136 

windows identified in these lines to SK-N-SH and treated the combined set of indels as a single cell line. 137 

We noticed that the genotypes for the GICAN cell line are nearly identical to those of the GIMEN cell 138 

line and that the SRY expression of the GICAN cell line is inconsistent with the reported sex (annotated 139 

male with no SRY expression). We concluded that the GICAN cell line is probably mislabeled and 140 

excluded it from further analyses. Our final set of analyzed cell lines consisted of 23 NB cell lines and 2 141 

hNCCs.  142 

 143 

We implemented a filtering pipeline to remove potential artefacts and common germline indels (Fig 3a). 144 

First, we removed windows overlapping regions that were previously-identified as problematic for ChIP-145 

seq analysis based on their high ratio of multi-mapping to unique mapping reads[24]. Second, we 146 

removed indel-containing windows that were detected in the two hNCCs as these are likely to be common 147 

germline variants. Third, we conservatively removed 16,234 windows that contained short tandem repeat 148 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/605642doi: bioRxiv preprint 

https://doi.org/10.1101/605642
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

(STR) sequences (Supplementary Fig 2). While STRs have very high mutation rates and contain many 149 

true indels, they are also prone to a high rate of variant-calling artifacts caused by polymerase slippage 150 

during PCR[25-27].  151 

 152 

Since there are no matched normal tissues for the NB cell lines, germline variants cannot be distinguished 153 

from somatic mutations. To eliminate common germline indels and focus on those that are either rare 154 

germline variants or somatic mutations, we filtered indels based on their allele frequency in samples from 155 

the Genotype-Tissue Expression Project (GTEx) and the genome aggregation database (gnomAD) of 156 

15,708 whole genome sequences[28, 29]. We found 1,180 out of 17,834 windows contained indels that 157 

were completely absent from GTEx and gnomAD or present with an allele frequency of less than 0.1% 158 

(Fig 3a). Additionally, we ran BreakCA on WGS data from 300 GTEx samples and removed indels that 159 

we detected in greater than 0.5% of samples. The 990 indel windows that remained after these filtering 160 

steps contain either rare germline or somatic indels, which we refer to as RS indels. 161 

 162 

Recurrent rare germline or somatic indels 163 

RS indels that occur in multiple cell lines are more likely to be oncogenic drivers. To ask how many of 164 

the 20bp windows contained recurrent RS indels, we focused on the 742 windows that contained at least 165 

one such indel and that were testable by BreakCA (i.e. windows with at least 10 ChIP-seq reads) in 5 or 166 

more cell lines. In total, 23 windows contained RS indels in two or more NB cell lines. Remarkably, 4 167 

windows contained an RS indel that is present in 4 or 5 cell lines. RS indels are very unlikely to occur in 168 

4 or more cell lines due to random inheritance of rare genetic variants (P < 1.8x10-9 by Poisson test; Fig 169 

3c) and therefore these indels may be highly-recurrent oncogenic driver mutations. Recurrent indels can 170 

also arise due to high mutation rates, however this scenario is unlikely given that (1) the total number of 171 

RS indels that we observe in each cell line is low (Fig 3b) and (2) we have removed windows that overlap 172 

annotated STRs, which are typically the most mutagenic sequences. Recurrent rare variants could also be 173 

observed if some of the cell lines were derived from close relatives, however, none of the cell lines appear 174 
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to be closely related because the total number of RS indels shared between them is low, and the 4 highly-175 

recurrent RS indels are present in different subsets of cells (Table 1). 176 

 177 

All of the RS indels in the highly recurrent windows (i.e. windows containing RS indels in at least 4 cell 178 

lines) are not observed in gnomAD, and are close to transcription start sites (TSSs) of protein-coding 179 

genes (Table 1). The first window contains a 1bp insertion that is 295bp upstream of the TSS of PHF21A 180 

and is observed in 4 cell lines. The second window is in the first intron of RALGDS and contains an 181 

insertion that is present in 4 cell lines. The third window is within the first intron of ADAMTS19 and 182 

contains 2 insertions that are 5bp apart: a C insertion (present in 3 cell lines) and a T insertion (present in 183 

1 cell line). Finally, the fourth window is within the first intron of GPR85 and contains a complex event 184 

consisting of a 1bp insertion and multiple mismatches to the reference sequence (Supplementary Fig 5). 185 

Since this complex event appears to be the same in the 5 cell lines where it is detected it may be a rare 186 

germline haplotype. 187 

 188 

An intronic germline deletion associated with KDM5B expression 189 

We hypothesized that recurrent RS indels might be associated with the expression of nearby genes and we 190 

therefore tested all genes located within 100kb of RS indels for differences in expression using Student’s 191 

t-test (assuming equal variances). The p-values from these tests show a clear departure from the null 192 

expectation (Fig 3d), however our power to detect associations is limited by the fact that each indel is 193 

only present in 2-5 cell lines. Under a stringent false-discovery rate threshold of 5%, a single test, 194 

between an indel and the expression of the H3K4me3/me2 Lysine Demethylase 5B (KDM5B), is 195 

significant (nominal p-value=4.110-4; Benjamini-Hochberg adjusted p-value=0.021).  196 

 197 

The indel associated with KDM5B expression is a 7bp deletion (GCCTCGG/-), which is located in its first 198 

intron and is present only in the SJNB1 and NB-EBc1 cell lines (Fig 4a & Supplementary Fig 4). This 199 

deletion is a germline variant that occurs at a very low minor allele frequency in both gnomAD (1.310-4) 200 
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and GTEx (7.910-4). The expression of KDM5B is very high in the SJNB1 and NB-EBc1 cell lines 201 

compared to cell lines that do not contain the indel (with exception of SJNB12) as well as tissues that may 202 

resemble the cell-type of origin for NB including hNCCs and adrenal and spinal tissues from GTEx (Fig 203 

4b). We performed a motif analysis (see methods) for the 40bp region centered on the indel and found 204 

binding motifs for Transcription Factor AP-2 Beta (TFAP2B) and Gamma (TFAP2C) in the reference 205 

sequence, which co-localize with the deletion. The indel disrupts the TFAP2B/2C motif and creates a 206 

ZNF263 motif in its place (Fig 4c). TFAP2B is highly expressed in many NB cell lines (including SJNB1 207 

and NB-EBc1), whereas ZNF263 appears to be expressed across both normal hNCC and NB cells 208 

(Supplementary Fig 3).  209 

 210 

Discussion 211 

 212 

We used BreakCA to identify indels in 23 neuroblastoma cell lines. One of the most interesting events we 213 

detected is a 7bp deletion which replaces a TFAP2B binding motif with a ZNF263 motif within the first 214 

intron of KDM5B in the SJNB1 and NB-EBc1 cell lines (Fig 4). This indel appears to be germline, as an 215 

identical event is detected in 4 out of 31,266 chromosomes surveyed by gnomAD. The presence of this 216 

deletion is not associated with a difference in H3K27ac levels but is associated with overexpression of 217 

KDM5B in these cells, most likely through disruption of the TFAP2B motif. KDM5B has known 218 

functions in NB and its knockdown results in a 5-fold decrease in cell motility and suppresses the 219 

epithelial-mesenchymal transition via downregulation of NOTCH1 expression in NB cells[30]. 220 

Furthermore, NB cells that overexpress KDM5B form spheroids that are more resistant to in vitro 221 

treatment with doxorubicin, etoposide and cisplatin[30]. Finally, KDM5B overexpression is associated 222 

with poor outcomes in several other cancers including glioma, hepatocellular carcinoma, non-small cell 223 

lung cancer, and prostate cancer[31-34].  224 

 225 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/605642doi: bioRxiv preprint 

https://doi.org/10.1101/605642
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

The disruption of the TFAP2B motif is also interesting because the TFAP2B transcription factor is highly 226 

expressed in migrating neural crest cells which are involved in the development of the sympathetic 227 

nervous system and are likely cells of origin for NB[35]. In addition, low TFAP2B expression is 228 

associated with poor survival and prevents neuronal differentiation of NB cells in vitro via 229 

downregulation of MYCN and REST[36]. Our results indicate that TFAP2B may also downregulate 230 

KDM5B. 231 

 232 

The recurrent RS indels that are present in 4 or 5 cell lines may be oncogenic mutations or rare germline 233 

predisposition variants. One of the indels is upstream of PHF21A, which encodes a subunit of the BRAF-234 

histone deacetylase complex that is recruited by REST to silence neuronal-specific genes[37]. Another 235 

indel is in the first intron of RALGDS, which is a guanine exchange factor in a Ras signaling pathway[38]. 236 

REST is known to inhibit neuronal differentiation of neuroblastoma cells[39, 40] and members of Ras 237 

signaling pathways are frequently mutated in relapsed neuroblastoma[41], so both of these indels are 238 

excellent candidates for further functional characterization. 239 

 240 

In conclusion, BreakCA allows ATAC-seq and ChIP-seq experiments to be treated as “exome capture” 241 

for the regulatory genome and enables the discovery of oncogenic regulatory indels in the absence of 242 

WGS data.  While we focused only on short indels in this study, future studies could combine indels 243 

called by BreakCA with single nucleotide variants and larger events such as chromosome translocations 244 

and copy number alterations. A caveat of BreakCA is that it cannot detect variants outside of ChIP-seq or 245 

ATAC-seq peaks or variants that cause a complete loss of these peaks. However, despite this limitation, 246 

BreakCA paired with rigorous filtering of common germline events, can identify potential cancer driver 247 

mutations and germline risk variants that increase or at least maintain the regulatory activity of a 248 

sequence. As a proof-of-principal we used BreakCA to identify recurrent indels in NB cell lines that may 249 

be important for neuroblastoma progression, metastasis and drug resistance. 250 

 251 
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Methods 252 

ATAC-seq and ChIP-seq data 253 

ATAC-seq for the GM12878 lymphoblastoid cell was obtained from Buenrostro et al. 2013 (GEO: 254 

GSE47753)[13]. H3K27ac ChIP-seq for the GM12878 lymphoblastoid cell line was obtained from Ernst 255 

et al. 2011 (GEO: GSE26320)[14]. H3K27ac ChIP-seq and RNA-seq data from 26 Neuroblastoma (NB) 256 

cell lines was obtained from Boeva et al. 2017 (GEO: GSE90683)[23]. H3K27ac ChIP-seq (75bp single-257 

end) for the Kelly NB cell line was obtained from Zeid et al. 2018 (GEO: GSE80151)[42]. ATAC-seq 258 

experiments for the Jurkat, CCRF-CEM, RPMI-8402 and MOLT-4 T-ALL cell lines and the K-562 259 

chronic myelogenous leukemia cell line were performed in our lab. 260 

 261 

ATAC-seq experiments 262 

ATAC-seq experiments for the Jurkat, MOLT-4, CCRF-CEM, RPMI-8402 and K-562 cell lines were 263 

performed using the Omni-ATAC-seq method as described[43], with minor modifications. In each 264 

experiment, 1105 cells were centrifuged at 1000  g for 10 min at 4 ºC. Following aspiration, a cell 265 

count of the supernatant was performed, the remaining cell number was calculated, and all further 266 

reagents in the protocol were titrated to this cell number. For every 5104 cells, nuclei were isolated in 50 267 

μl cold ATAC-Resuspension Buffer (RSB) (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2) 268 

containing 0.1% NP40, 0.1% Tween-20, and 0.01% Digitonin, and pipet-mixed up-and-down at least 5 269 

times. Nuclei isolation mix was incubated on ice for 3 exactly minutes, washed in 1 ml of cold ATAC-270 

RSB containing 0.1% Tween-20 (but no NP40 or Digitonin) and centrifuged at 1000  g for 10 min at 4 271 

ºC. Nuclear DNA was tagmented in 50 μl Transposition mix (25 μl 2 × TD buffer, 2.5 μl transposase 272 

(100nM final), 0.5 μl 1% digitonin, 0.5 μl 10% Tween-20, 16.5 μl PBS and 5 μl diH2O), and incubated in 273 

a thermomixer at 37 °C, 1000  g for 30 min. Tagmented DNA was purified with Zymo DNA Clean and 274 

Concentrator-5 Kit (cat# D4014). Library amplification was performed using custom indexing Nextera 275 

primers from IDT in a 50 μl Kapa Hi Fi Hot Start PCR reaction (cat# KK2602). Following 3 initial 276 
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cycles, 1 μl of PCR reaction was used in a quantitative PCR (Kapa qPCR Library Quantitation Kit cat# 277 

KK4824) to calculate the optimum number of final amplification cycles. Library amplification was 278 

followed by SPRI size selection with Kapa Pure Beads (cat# KK8002) to retain only fragments between 279 

80-1,200bp. Library size was obtained on an Aglient Bio-Analyzer or TapeStation using a High 280 

Sensitivity DNA kit and factored into final Kapa qPCR results to calculate the final size-adjusted molarity 281 

of each library. Libraries were pooled and sequenced on an Illumina NextSeq500 in Paired-End 42 base 282 

pair configuration at the Salk Next Generation Sequencing Core. ATAC-seq data quality was assessed 283 

using the fraction of reads within peaks (FRiP) and fraction of mitochondrial reads (Fmito) metrics 284 

(Supplementary Table 1). 285 

 286 

Aligning reads to the genome and calling peaks 287 

ChIP-seq and ATAC-seq reads were aligned to the hg19/GRCh37 reference genome using BWA-MEM 288 

(version 0.7.15-r1140)[44] with default parameters. BWA-MEM performs local alignment and retains 289 

reads that only partially map to the genome as soft-clipped alignments, which are useful for identifying 290 

indels. Reads were filtered using samtools (version=0.1.19)[45] and only non-duplicated reads with 291 

mapping quality (MAPQ ≥ 30) were kept for downstream analysis. ChIP-seq and ATAC-seq peak regions 292 

were identified using MACS2 (version 2.1.1)[46] with default parameters.  293 

 294 

RNA-seq and gene expression 295 

RNA-seq reads were aligned to the hg19/GRCh37 reference genome using STAR (version 296 

STAR_2.5.3a). Mapped reads were filtered using samtools (version 0.1.19) and only non-duplicated reads 297 

with mapping quality (MAPQ ≥ 20) were kept for expression analysis. Read counts per gene were 298 

calculated with featureCounts (version 1.6.3)[47] using the GENCODE v19 GTF file in paired-end mode 299 

and converted to RPKM using edgeR[48]. 300 

 301 

Obtaining features for indel prediction 302 
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We divided the genome into non-overlapping 20bp windows and collected 16 features from each window 303 

that could help predict the presence of an indel (Supplementary Table 2). Many of the features are based on 304 

the proportion of read alignments that contain characteristics such as insertions, deletions, or clipping. For 305 

example, one of the features that we consider is the proportion of reads that contain an insertion starting at 306 

one base position. We obtain posterior estimates of these proportions using an empirical Bayesian approach, 307 

which prevents over-estimation of the proportion when the number of aligned reads at a position is small 308 

(i.e. this is a Bayesian alternative to using a pseudocount). We assume that the count of reads with a given 309 

characteristic (e.g. insertion) at genomic position i, is a binomially-distributed random variable, Xi with 310 

proportion parameter pi: 311 

𝑋𝑖  ~Binom(𝑛𝑖, 𝑝𝑖) 312 

where, ni is the total number of reads overlapping genomic position i. We place a Beta prior on pi: 313 

𝑝𝑖  ~Beta(𝛼, 𝛽) 314 

with α and β hyperparameters that describe the shape of the distribution. We estimate α and β empirically 315 

using the estimated proportion mean (𝜇̂) and variance (𝜎̂2) computed across all positions within peaks: 316 

μ̂ =
1

𝑁
∑

x𝑖

𝑛𝑖

𝑁

𝑖=1

 317 

     σ̂2 =  
1

𝑁
∑ (

x𝑖

𝑛𝑖
− μ̂)2𝑁

𝑖=1  318 

where N is the total number of positions, ni is the number of reads overlapping position i, and xi is the 319 

number of reads with a characteristic at that position (e.g. insertion). The α and β hyperparameters are 320 

then calculated as: 321 

𝛼 = (
1 − μ̂

δ̂2
−

1

μ̂
) 𝜇̂2 322 

𝛽 = 𝛼 (
1

μ̂
− 1) 323 

The Beta prior distribution is conjugate with the Binomial likelihood and the corresponding posterior 324 

distribution for the proportion is: 325 
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𝑝𝑖  ~Beta(𝑥𝑖 + 𝛼, 𝑛𝑖 − 𝑥𝑖 + 𝛽) 326 

Using this distribution, we calculate the posterior mean and posterior standard deviation at each site, i, for 327 

the following proportions: (1) insertion reads, (2) deletion reads, (3) reads with clipping on the left side, 328 

(4) reads with clipping on the right side. We only perform posterior calculations for base positions 329 

covered by at least 10 reads. 330 

 331 

For positions with left-clipped or right-clipped reads we collect additional clipping features including (1) 332 

the mean clipping length, (2) the standard deviation in clipping length, and (3) the information content of 333 

the clipped sequences (see below). 334 

 335 

We compute the above features for each site, but we perform predictions on windows containing 20 sites. 336 

To assign features to 20bp windows we use the sites with the highest posterior means for each of the 4 337 

proportion types. Additional features related to clipped reads, such as the mean right clipping length, are 338 

taken from the sites with the highest posterior mean clipping proportions.  339 

 340 

Information content of clipped reads 341 

We compute an information content (IC) for clipped reads, which is defined so that highly similar clipped 342 

sequences have high IC, and dissimilar clipped sequences (perhaps arising from multiple genomic 343 

locations) have low IC. To compute the IC of overlapping clipped reads that start clipping at the same 344 

position (i=1), we define si,j as the nucleotide at position i in clipped sequence j. We also define Ti as the 345 

total number of overlapping clipped sequences at position i. We assume the first clipped position is i=1, 346 

and the last position with at least two clipped reads (Ti > 1) is i=S. We first compute the proportion of 347 

each nucleotide m (A, C, T, G) at each position i as: 348 

𝑝𝑖,𝑚 =
1

𝑇𝑖 + 𝑐𝑇𝑖
∑ 𝑔(𝑠𝑖,𝑗, 𝑚) + 𝑐

𝑇𝑖

𝑗=1

 349 
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where c = 0.1 is a small pseudocount and g returns 1 if two nucleotides are equal: 350 

𝑔(𝑚, 𝑛) = {
1 if 𝑚 == 𝑛
0 otherwise

 351 

The Shannon entropy of a set of overlapping clipped sequences is then: 352 

𝐻 = ∑ ∑ −𝑝𝑖,𝑚 log2(𝑝𝑖,𝑚)

𝑚∈(𝐴,𝐶,𝑇,𝐺)

𝑆

𝑖=1

 353 

We define the information content of a set of clipped sequences as the difference between the observed 354 

entropy and the maximum possible entropy: 355 

𝐼𝐶 = 𝐻max − 𝐻 356 

The maximum possible entropy, Hmax, is computed assuming that the nucleotides are evenly distributed 357 

across the four possible nucleotides at each site, taking into account that the number of sequences may not 358 

be divisible by 4. For example, if there are 6 clipped reads overlapping a position, the maximum possible 359 

entropy occurs when the four nucleotide proportions are 2/6, 2/6, 1/6, and 1/6. 360 

 361 

Training and testing BreakCA. 362 

BreakCA uses a random forest to predict whether a given 20bp window contains an indel using 16 features 363 

described in Supplementary Table 2. We created training and test datasets for the GM12878 lymphoblastoid 364 

cell line using ATAC-seq (50bp paired-end reads) data[13], H3K27ac ChIP-seq (50bp single-end reads) 365 

data[14] and indel genotypes from the Platinum Genomes Project[15]. We labeled 20bp windows centered 366 

around the start and end positions of indels within ChIP-seq or ATAC-seq peaks as “true” windows and 367 

20bp windows located within peaks and not co-localizing with indels as “false” windows. We used 50% 368 

of the windows to create a training dataset and the remaining to create a test dataset. In total there were 369 

2980 true (indel-containing) and 842,739 false (non indel-containing) windows in the training dataset and 370 

2980 true and 842,738 false windows in the test dataset for paired-end ATAC-seq. For single-end ChIP-371 

seq, there were 623 true and 254,328 false windows in the training dataset and 623 true and 254,327 false 372 

windows in the test dataset. 373 
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 374 

To implement the random forest model, we used the mlr package in R and tuned three hyperparameters by 375 

performing a grid search of reasonable hyperparameter values and choosing the values that yielded the 376 

highest accuracy (defined as mean (response == truth)) in 5-fold cross-validation. The 3 hyperparameters 377 

were ntree (number of trees to grow), mtry (number of predictors to use for node-split) and node-size 378 

(number of observations in the terminal node which is associated with the depth of the decision trees). After 379 

choosing hyperparameter values, we trained the random forest on the complete training dataset and applied 380 

it to the test dataset, using the fraction of true votes from the decision trees as the prediction score. 381 

 382 

We compared the performance of BreakCA to two popular variant callers: VarScan2[16] and the GATK-383 

HaplotypeCaller[17]. For VarScan2 and the GATK-HaplotypeCaller we extracted the start and end position 384 

of the indels using VariantAnnotation[49] and overlapped them with true and false windows in the test 385 

dataset. For VarScan2, we used 1.0 - p-value as the score and assigned the highest score to each window. 386 

For the GATK-HaplotypeCaller we used QD (phred-scaled variant call confidence normalized by allele 387 

depth) as the score and assigned the highest score to overlapping windows. For true and false windows 388 

with insufficient coverage to call variants, we set the prediction output to 0 for BreakCA, VarScan2, and 389 

GATK. To draw precision-recall curves and compute the area under them, we interpolated between 390 

datapoints by setting the precision at each recall level, r, to 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) = max(𝑝(𝑟′)), where 𝑟′ ≥ 𝑟 (see 391 

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html). We did 392 

not evaluate the performance of popular indel callers MANTA[50], pindel[51], or Delly[52] because all 393 

of these methods require paired-end reads and/or rely on the distribution of insert sizes from mapped 394 

reads, which limits the number of ChIP-seq and ATAC-seq datasets these callers can be applied to. In 395 

addition, the use of insert sizes is unlikely to work well for ATAC-seq reads, which have a multimodal 396 

distribution that changes depending on whether the reads are from nucleosome-free or nucleosome-397 

containing genomic regions[13]. 398 
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 399 

We further evaluated the performance of BreakCA using ATAC-seq from the Jurkat T-ALL cancer cell line. 400 

For this cell line we used indel genotypes from the GATK-HaplotypeCaller applied to WGS as “ground 401 

truth”[18]. In total, there were 5020 true and 1,023,159 false windows in the Jurkat ATAC-seq dataset and 402 

6403 true and 1,267,161 false windows for the Jurkat H3K27ac ChIP-seq dataset. For these windows, we 403 

made predictions using the model trained on the GM12878 ATAC-seq training set and evaluated the 404 

precision-recall as described above. 405 

 406 

Overlapping variant windows with repeat regions. 407 

Genomic positions of known repeat sequences in the hg19 genome were downloaded from the UCSC 408 

Genome Browser’s RepeatMasker track. Short Tandem Repeat (STR) locations were obtained from 409 

Willems et al. 2017[53]. We used GenomicRanges (version 1.24.3)[54] to overlap indel windows with 410 

known repeat positions in the human genome and removed indel windows which overlapped STRs. 411 

 412 

Frequency of indels in gnomAD and GTEx 413 

To filter indels that are likely to be common germline variants we overlapped our 20bp variant windows 414 

with indel calls from two large datasets: (1) 15,708 whole genomes from v2.1 of the genome aggregation 415 

database (gnomAD)[55] and (2) 635 whole genomes from V7 of the genotype-tissue expression project 416 

(GTEx)[29]. We used GATK-SelectVariants to identify gnomAD and GTEx indels overlapping our 20bp 417 

variant windows and used SNPSift to extract genomic position, reference and alternate allele and allele 418 

frequency (AF) fields from the VCF file[56]. We also required indels to have high coverage across 419 

gnomAD samples, removing those with a median coverage of less than 20 reads. For our analysis of rare 420 

germline/somatic indels, we retained variant windows with MAF ≤ 510-3. 421 

 422 

Running BreakCA on GTEx samples 423 
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In addition to filtering based on indels identified by the gnomAD and GTEx variant calling pipelines, we 424 

added a filter for indels identified by BreakCA on 300 GTEx WGS samples[29]. This purpose of this 425 

filter is to remove common germline variants (or artefacts) that are detected by BreakCA, but that are not 426 

detected by GATK. We ran BreakCA on 300 GTEX WGS samples, using the same α and β prior 427 

distribution hyperparameters values that we estimated from the GM12878 ATAC-seq dataset. After 428 

running BreakCA, we calculated the fraction of samples (SF) with a predicted indel in each window (only 429 

considering samples with ≥10 reads overlapping a window as ‘testable’). (We use SF rather than MAF 430 

here because BreakCA calls indels as present/absent and does not distinguish between heterozygotes and 431 

homozygotes). For our analysis of rare germline/somatic indels, we retained variant windows with SF ≤ 432 

510-3. 433 

 434 

Estimating the expected frequency of recurrent indels 435 

To create Fig 3C, we calculate the expected number of windows, Tx, that would contain RS indels in x 436 

cell lines, conditional on seeing an indel in one cell line: 437 

𝑋~Binom(𝑛, 𝑝) 438 

𝐸[𝑇𝑥|𝒑] = ∑(1 + Pr(𝑋 = 𝑥|𝑛𝑖 − 1, 𝑝𝑖))

𝑊

𝑖=1

 439 

where W is the total number of windows, and p is a vector of length W, with elements pi that give the 440 

expected proportion of cells with an indel. We define ni is the total number of testable cell lines for 441 

window i (i.e. those with sufficient read depth), and subtract 1 from ni to account for the fact that we have 442 

conditioned on seeing an indel in one cell line already. We assume Hardy-Weinberg equilibrium and set 443 

pi=2fi(1-fi) + fi
2, where fi is the allele frequency of the indel in window i. We set the allele frequency to 444 

either fi=210-3 for all windows, fi=110-3 for all windows, or fi=max(gi, 110-4), where gi is the observed 445 

allele frequency of the indel in gnomAD. For windows that contained multiple gnomAD indels, we used 446 

the one with the highest allele frequency. We use fi=110-3, because this is the gnomAD allele frequency 447 
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cutoff used to identify RS indels. We use fi=210-3 as a conservative assumption that gnomAD 448 

underestimates some allele frequencies. We use fi=max(gi, 110-4) to match observed allele frequencies in 449 

gnomAD (which are typically much lower than 110-3). 450 

 451 

To calculate a p-value for the number of observed windows with RS indels in 4 or more cell lines we 452 

calculate the probability of observing 4 or more indels using the Poisson cumulative distribution function:  453 

𝑍~Pois(𝜆) 454 

𝑝𝑣𝑎𝑙 = Pr(𝑍 ≥ 4|𝜆 = ∑ E[𝑇𝑥|𝒑]𝑀=23
𝑥=4 ) 455 

Where  is the expected rate of windows containing 4 or more RS indels and M=23 is the number of cell 456 

lines in our study.  457 

 458 

RS indels could also be observed due to elevated mutation rates within some windows or due to false 459 

positive indel calls. The former possibility is only likely if the window mutation rate is substantially 460 

exceeds the allele frequencies that we assume above. Even if we assume an allele frequency of 0.05% 461 

(equivalent to a window indel mutation rate of approximately 2p=0.001), the expected number of 462 

windows with 4 or more RS indels is 0.38, far lower than the observed 4 (p=6.410-4 by Poisson test). 463 

This number of windows with RS indels is also unlikely to result from indel call errors (assuming the 464 

errors occur independently) because we estimate the per-window false discovery rate for BreakCA on 465 

ChIP-seq data to be 1.710-4—an order of magnitude lower than the allele frequencies we assume above.  466 

 467 

Testing recurrent indels for association with gene expression 468 

We used GenomicRanges (version 1.34.0) to find promoters of genes located within 100kb of recurrent 469 

rare germline or somatic (RS) indels and used Student’s t-test to test for differences in mean expression 470 

between the indel and non-indel groups. To test if the association with expression is expected by chance 471 

we permuted the sample labels for each test and compared the signals with quantile-quantile plots. 472 
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 473 

Transcription factor motif discovery 474 

We obtained the reference sequence (hg19/GRCh37) for 40bp regions centered around predicted indels 475 

and introduced the indel to create a non-reference sequence. We used TFBSTools[57] to search the 476 

JASPAR2016 database[58] for known transcription factor binding motifs located within the reference and 477 

the non-reference sequences. We filtered the motifs using p-value ≤ 0.001 (computed by TFMPvalue[59]) 478 

and kept only the top 10% of the motifs found uniquely in either reference or non-reference sequences as 479 

our most-reliable hits. 480 

 481 

Data and source code availability 482 

ATAC-seq data from the Jurkat, RPMI-8402, MOLT-4, CCRF-CEM and K-562 cell lines has been 483 

submitted to GEO under accession GSE129086. The BreakCA source code is available from 484 

https://github.com/Arkosen/BreakCA. 485 
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Figures 665 

 666 

Figure 1: a) BreakCA detects insertions and deletions (indels) in cancer genomes using mapped ATAC-667 

seq or ChIP-seq reads. b) Precision-recall curves for indels scored by four callers: BreakCA, 668 

BreakCA+QD (BreakCA with GATK Quality Depth), the GATK-HaplotypeCaller and VarScan2. Each 669 

panel shows precision recall curves for a different test dataset: 50bp paired-end ATAC-seq from 670 

GM12878 (2980 true and 842,738 false windows); 50bp single-end H3K27ac ChIP-seq from GM12878 671 

(623 true and 254,328 false windows); 42bp paired-end ATAC-seq from Jurkat (5020 true and 1,023,159 672 

false windows) and 40bp single-end H3K27ac from Jurkat (6403 true and 1,267,161 false windows). Indels 673 

called by Platinum Genomes are used as the “ground truth” for GM12878 and indels called by the 674 
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GATK-HaplotypeCaller applied to whole-genome sequence (WGS) data are used as the “ground truth” 675 

for Jurkat. c) Area under the precision recall curves for each of the test datasets and indel callers. d) 676 

Comparison of insertions identified in the Jurkat cell line from: GATK-HaplotypeCaller applied to WGS 677 

and then filtered for ChIP-seq peaks; BreakCA applied to H3K27ac ChIP-seq; Abraham’s Insertion  678 

Detection Pipeline (AIDP) applied to H3K27ac ChIP-seq. 679 
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 681 

 682 

Figure 2: BreakCA detects known oncogenic insertions upstream of TAL1 in the Jurkat and MOLT-4 cell 683 

lines. The insertion is well-covered by both clipped and insertion-containing reads and inspection of the 684 

read pileup reveals a CCGTTTCCTAAC insertion in Jurkat and an AC insertion in MOLT-4 cell lines 685 

(bottom panel). Mapped reads per base position are in grey and soft-clipped bases and insertion positions 686 

are colored in blue.  687 
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 688 

 689 

Figure 3: a) Filtering pipeline for identifying rare germline or somatic (RS) indels in 23 neuroblastoma 690 

cell-lines. b) The number of rare germline or somatic indel windows detected in each neuroblastoma cell-691 

line after filtering, divided into those that are present/absent in gnomAD+GTEx  c) The expected number 692 

of windows containing RS indels in one or more cell lines (blue bars), assuming that they are inherited 693 

germline variants with given allele frequencies (AFs). The plots are conditional on seeing the indel in at 694 

least one cell line, and on the number of testable cell lines being at least 5. The red bars are the observed 695 

number of windows with one or more RS indels. d) Quantile-quantile plot of expected and observed -696 

log10 p-values for RS indel-gene pairs. Each RS indel was tested for association with the expression of 697 

all genes within 100kb. 698 
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  699 

Figure 4: a) H3K27ac read depth for two indel-containing neuroblastoma cell lines (in red), 2 human 700 

neural crest cell lines, and two non-indel neuroblastoma cell lines. The germline deletion is located within 701 

the first intron of KDM5B and is covered by both soft-clipped and deletion reads in both cell lines where 702 

it is detected. Soft-clipped and deletion base positions are colored in blue. b) KDM5B gene expression in 703 

Reads Per Kilobase Per Million mapped reads (RPKM) in neuroblastoma (NB) cell-lines (from Boeva et 704 

al. 2017), human neural crest cells (hNCCs), and in adrenal and spinal tissues from the GTEx project c) 705 

The GCCTCGG/- 7bp deletion disrupts a TFAP2B motif (top panel) and creates a new ZNF263 motif.  706 
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Tables 708 

Window Testable 
cell lines 

Cell lines with 
indel 

gnomAD AF Gene Location Alleles Notes 

chr11: 
46,144,281-
46,144,300 

21 CLB-GA, 

SJNB12, 

SJNB6, 

SK-N-BE (2)-C 

0 PHF21A Promoter C/CG Insertion in all 
cell-lines 

chr5: 
128,796,561-
128,796,580 

16 CLB-CAR, 

CLB-GA, 

CLB-PE, 

SJNB6 

0 ADAMTS19 First Intron T/TC (CLB-
CAR, CLB-
GA,CLB-PE), 
C/CT (SJNB6) 

Insertion in all 
cell lines but 
insertion 
position differs 

chr7: 
112,726,881-
112,726,900 

19 CLB-GA, 

CLB-PE, 

SJNB6, 

SK-N-AS, 

TR14 

0 GPR85 First Intron Complex event 1bp insertion 
and multiple 
mismatches to 
reference 

chr9: 
135,994,681-
135,994,700 

22 CLB-PE, 

SJNB1,  
SK-N-AS, 

TR14 

0 RALGDS First Intron T/TC Insertion in all 
cell lines 

 Table 1: Rare germline or somatic (RS) indels that are observed in at least 4 cell lines.  709 
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Supplementary Figures 711 

 712 

Supplementary Figure 1: BreakCA detects a known 8bp CGGTTTAA insertion upstream of the LMO2 713 

oncogene in the MOLT-4 cell line. Mapped read alignments are grey with soft-clipped bases and insertion 714 

positions indicated in blue.  715 
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 716 

Supplementary Figure 2: Overlap of indel windows with repeats regions from RepeatMasker or short 717 

tandem repeats (STRs). Indel windows overlapping STRs are not included in our analyses. 718 
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 719 

Supplementary Figure 3: Gene expression of the TFAP2B, TFAP2C and ZNF263 transcription factors in 720 

neuroblastoma cell lines and human neural crest cells (hNCCs) demonstrating that TFAP2B and ZNF263 721 

are expressed in the SJNB1 and NB-EBc1 cell lines, while TFAP2C is not expressed in NB cell-lines. 722 
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 723 

Supplementary Figure 4: The count of aligned reads that contain deletions at position chr1:202777149. 724 

Only the SJNB1 and NB-EBc1 cell lines have any deletion reads at this position. 725 
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 727 

Supplementary Figure 5: Read plots from the Integrative Genomics Viewer[60] for two of the 728 

neuroblastoma cell lines containing the complex event in the GPR85 intron. Reads are colored when they 729 

are clipped or have a base mismatch from the reference. Insertions are indicated with a small purple “I”. 730 

Supplementary Tables 731 

Supplementary Table 1: Read statistics including the fraction of reads in peaks (FRiP) for ATAC-seq 732 

datasets generated from the Jurkat, CCRF-CEM, RPMI-8402, MOLT-4, and K-562 cell lines. 733 

Supplementary Table 2: Description of prediction features used by the BreakCA random forest. 734 

SK-N-AS

SJNB6

GPR85

Indel window

read plot for region surrounding chr7: 112726881-112726900 indel window 

Mismatches from

reference

112,726,800 112,726,900
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Supplementary Table 3: List of rare-germline and somatic indels detected in 23 NB cell-lines with 735 

features used for BreakCA prediction. 736 
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