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Summary 

Aging is associated with progressive and site-specific changes in DNA methylation (DNAm). These             

global changes are captured by DNAm clocks that accurately predict chronological age in humans              

but relatively little is known about how clocks perform in vitro. Here we culture primary human                

fibroblasts across the cellular lifespan (~6 months) and use four different DNAm clocks to show that                

age-related DNAm signatures are conserved and accelerated in vitro. The Skin & Blood clock              

shows the best linear correlation with chronological time (r=0.90), including during replicative            

senescence. Although similar in nature, the rate of epigenetic aging is approximately 62x times              

faster in cultured cells than in the human body. Consistent with in vivo data, cells aged under                 

hyperglycemic conditions exhibit an approximately three years elevation in baseline DNAm age.            

Moreover, candidate gene-based analyses further corroborate the conserved but accelerated          

biological aging process in cultured fibroblasts. Fibroblasts mirror the established DNAm topology of             

the age-related ELOVL2 gene in human blood and the rapid hypermethylation of its promoter              

cg16867657, which correlates with a linear decrease in ELOVL2 mRNA levels across the lifespan.              

Using generalized additive modeling on twelve timepoints across the lifespan, we also show how              

single CpGs exhibit loci-specific, linear and nonlinear trajectories that reach rates up to -47%              

(hypomethylation) to +23% (hypermethylation) per month. Together, these high temporal resolution           

global, gene-specific, and single CpG data highlight the conserved and accelerated nature of             

epigenetic aging in cultured fibroblasts, which may constitute a system to evaluate age-modifying             

interventions across the lifespan. 
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Introduction 

As we attempt to develop increasingly precise and sensitive biological age indicators to             

detect and predict disease risk, a particular epigenetic marker that has gained interest is              

methylation of cytosine nucleotides in DNA (DNAm) (Horvath & Raj, 2018). DNAm is a stable               

epigenetic mark that serves to establish cell lineages during differentiation (Meissner et al., 2008)              

but rapid changes in DNAm are also known to occur on the time scale of days and weeks, including                   

circadian oscillations in cells and animals (Oh et al., 2018), and over years with cellular aging                

(Wilson & Jones, 1983). In human tissues, specific cytosine-guanine dinucleotides (CpGs) undergo            

stereotypic loss (hypomethylation) or gain (hypermethylation) of methylation with advancing          

chronological age. Notably, among the CpGs most consistently found to undergo hypermethylation            

with age is ELOVL2 cg16867657 (Garagnani et al., 2012; Gopalan et al., 2017; Johansson, Enroth,               

& Gyllensten, 2013; Wang et al., 2018), indicating the presence of site-specific alterations in DNAm               

with age in human populations. However, despite the availability of longitudinal DNAm datasets in              

human blood, it has remained challenging to track dynamic changes in DNAm across the entire               

human lifespan and to evaluate the effects of age-modifying genes or environmental perturbations             

without appropriate laboratory-based experimental systems. 

In human tissues, epigenetic biomarkers, or biological “clocks” have been developed that            

reliably track chronological age (Horvath & Raj, 2018). DNAm clocks use penalized linear             

regression models, such as elastic-net regression to select CpGs whose change in DNAm correlate              

(either positively or negatively) with chronological age. For example, the Horvath pan-tissue clock             

(Horvath, 2013) and the Hannum clock (Hannum et al., 2013) have been widely used in               

epidemiological studies. They provide moderate to excellent estimates of chronological age (r>0.90)            

in human tissues (Horvath & Raj, 2018). Subsequent minimalist algorithms have also shown that              

the methylation levels of only three to eleven CpGs from human blood can provide fairly accurate                

age predictions (mean absolute error 2.72 - 5.4 years) or predict mortality (Li, Li, & Xu, 2018;                 

Weidner et al., 2014; Zhang et al., 2017). However, little is known about the kinetics of DNAmAge                 
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and DNAm levels at single-CpG resolution across the human lifespan, in part because it is difficult                

to repeatedly obtain biological samples from a given individual across a sufficiently long period to               

robustly characterize DNAm kinetics. 

Primary human fibroblasts are derived from minimally invasive skin biopsies, can be grown             

in vitro, and have been used as an experimental model of aging (Tigges et al., 2014). Fibroblasts                 

divide at a regular rate and undergo a specific number of division (i.e., the Hayflick limit) before                 

reaching senescence, a state characterized by replicative arrest and metabolic remodeling (van            

Deursen, 2014). In this system, senescence can also be induced by genotoxic stress, such as               

irradiation and DNA damage (Correia-Melo et al., 2016), providing an appealing model to study              

factors that influence the biological aging process. Previous studies have identified CpGs whose             

methylation levels distinguish cultured senescent from younger cells (Franzen et al., 2017; Koch et              

al., 2012), and work has provided preliminary evidence that DNA methylation age (DNAmAge)             

algorithms may be sensitive to replicative and radiation-induced senescence (Horvath et al., 2018;             

Kabacik, Horvath, Cohen, & Raj, 2018; Lowe, Horvath, & Raj, 2016). Although fibroblasts from older               

donors show reproducible differences in metabolic function and transcriptional state (Braam et al.,             

2006; B. D. Johnson, Page, Narayanan, & Pieters, 1986), it is unclear whether age-related DNAm               

changes in primary cultured cells reflect a distinct state unique to in vitro conditions, or if they                 

replicate the ubiquitous molecular signatures that occur in aging human tissues. 

Here, we examine to which extent different human DNAm clocks and age indicators track              

cellular aging in primary cultured fibroblasts, and compare the rate of aging in vivo and in vitro. We                  

use repeated DNAm measurements across the cellular lifespan to define the spectrum and rate of               

both linear and nonlinear, hypo- and hypermethylation kinetics of individual CpGs. Overall, our             

findings reveal that DNAm aging signatures between primary cultured fibroblasts and human blood             

leukocytes are conserved and accelerated, suggesting that human fibroblast aging exhibits key            

molecular events that recapitulate human aging (Figure 1A). This study demonstrates that human             
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biological aging in the order of decades can be mimicked with in vitro laboratory experiments over a                 

few months. 

 

 

Results 

Primary human fibroblasts grown across the cellular lifespan 

To examine the kinetics of DNA methylation across the lifespan, primary fibroblasts from a              

29 year-old male were cultured and aged by continuous passaging until replicative senescence.             

The maximal linear rate of cell division was 0.75 divisions/day. In total, cells doubled approximately               

56 times in 110 days, before reaching a plateau marking replicative senescence (Figure 1B). As               

expected, cellular senescence was associated with distinct cellular characteristics including loss of            

spindle-shaped cell morphology, appendage asymmetry, nuclear flatness, and reduced maximal          

confluency (Figure 1C).  

Whole methylome analysis across the cellular lifespan 

DNA methylation was quantified for 866,736 CpG sites using the Illumina MethylationEPIC            

array at twelve timepoints collected approximately every 11 days across the cellular lifespan. When              

considering global DNAm variation for all CpGs together in a principal component analysis (PCA)              

(Figure 1D), the methylome appeared to follow a biphasic trajectory from early life, mid-life, and               

senescence. Combined, the first two principal components explained 41.5% of the variance in the              

methylome. Whereas the first component can be described as a linear function of chronological              

time (i.e., the amount of time cells were aged in culture) (r2=0.94, p<0.0001) (Figure 1E), the                

second component describes a quadratic function (r2=0.46, p = 0.068) (Figure 1F). These data              

strongly suggest large-scale, time-dependent linear and non-linear changes in the methylome with            

cellular age. 
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We then leveraged the high-temporal density of DNAm measurements across the lifespan            

and computed the overall rate (slope) of change in % DNAm per month, for each CpG (Figure 1G).                  

Of the sites undergoing greater than 5% DNAm-change per month, 23% underwent            

hypermethylation, while 77% exhibited hypomethylation - yielding a skewed distribution towards           

hypomethylation. Consistent with previous work demonstrating age-related global hypomethylation         

(Unnikrishnan et al., 2018), a global analysis of the average DNAm values across all 867k CpGs                

also showed a linear decrease with age (r2=0.52, p = 0.0081), yielding a global 2.3% decrease in                 

methylation (Figure S1C). 

DNA methylation clocks track age in cultured fibroblasts 

To the extent that the age-related patterns of DNAm would be conserved between in vivo               

(i.e., human tissues) and in vitro (e.g., cultured human fibroblasts) (Horvath et al., 2018), we would                

expect algorithms trained on human tissues to also linearly capture the passage of time in cultured                

cells. On the other hand, if algorithms did not track cellular age in vitro, it would suggest that cell                   

aging and human aging involve epigenetically distinct processes. To test if DNAm based aging              

clocks accurately track aging in cultured cells, we tested four independent clocks, all of which were                

trained and validated in cross-sectional human studies of various tissue types.  

The four clocks are: (1) the Pan-Tissue clock developed as its name indicates on 51               

different tissues types including cancer samples and consisting of 353 CpGs (Horvath et al. 2013);               

(2) the Skin & Blood clock trained on fibroblasts, keratinocytes, buccal cells, endothelial cells,              

lymphoblastoid cells, skin, blood, and saliva, and comprising 391 CpGs (Horvath et al., 2018); (3)               

the PhenoAge clock trained on whole blood and consisting of 513 CpGs (Levine et al., 2018); and                 

(4) the Hannum clock also trained on whole blood and comprising 71 CpGs (Hannum et al., 2013).                 

See methods for full clock descriptions. All clocks are strongly correlated with chronological age              

when tested in human tissues (r2=0.91-0.99). 
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In our lifespan fibroblast model, the Pan-Tissue Clock captured a linear increase in             

DNAmAge of 14 years in 78 days of growth (r2=0.83), but failed to capture chronological aging past                 

110 days in late life where little to no cellular division occurs over a period of approximately two                  

weeks (i.e., replicative senescence) (Figure 2A). In contrast, the Skin & Blood clock returned a               

linear increase of 25 biological years over the entire lifespan of 152 days (r2=0.90) (Figure 2B).                

Other clocks trained solely on whole blood, the PhenoAge and Hannum clocks, were also able to                

predict a linear increase in biological age in cultured fibroblasts (r2=0.85, 0.76 respectively), but also               

failed to capture an increase in DNAmAge during replicative senescence (Figure S2A-B). The Skin              

& Blood clock was the only clock able to capture aging linearly through replicative senescence,               

suggesting that the Skin & Blood clock may be a better age estimator for in vitro aging (Horvath et                   

al., 2018).  

These different clocks have minimal overlap in their underlying CpGs (0-6% similarity,Figure            

S2H) and each of the clocks’ CpGs change relatively little over the lifespan (Figure S2G).               

Nevertheless, the consistent linear correlation between DNAmAge based on all four clocks and             

chronological age during early- and middle-age (r2=0.76-0.90) suggests that a human epigenetic            

aging signature is conserved between cultured cells and in vivo aging. 

Accelerated cellular aging in cultured human fibroblasts 

To test whether in vitro fibroblast DNAmAge is sensitive to metabolic perturbations as             

reported in previous studies (Horvath et al., 2014), cells of the same individual were grown in                

parallel in either normal or hyperglycemic (i.e., diabetic, 25mM) glucose levels and DNAm             

measured at the same timepoints. DNAmAge estimates from both the Pan-Tissue and Skin & Blood               

clocks (Figures 2C-D), but not other clocks (Figures S2D-E), showed that chronic hyperglycemic             

conditions caused a significant elevation in the predicted age by 2.4 and 3.4 years, respectively.               

However, the rate of aging, reflected in the slope of time and DNAmAge, was not significantly                

elevated in any of the clocks. This age-acceleration provides proof-of-concept evidence that            
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DNAmAge measured in primary human fibroblasts, as for some tissues in vivo, is also sensitive to                

environmental stressors. 

Because DNAmAge algorithms were originally trained to yield one year of biological aging             

for each year of chronological time, the slope of the regression between chronological time and               

DNAmAge reflects the actual rate of aging. Thus, the slope can be compared between in vivo                

(slope = 1) and in vitro conditions. Strikingly, compared to aging in the human body, regardless of                 

the clock used, cells grown in vitro showed a 60-65x (average = 62-fold) acceleration in the rate of                  

epigenetic aging (Figure 2E).  

Quantifying the association between the number of cell divisions and change in DNAmAge             

allows to back-calculate the rate of divisions expected to occur in the human body. We determined                

the number of cell divisions undergone during the linear growth phase (e.g., 30 population              

doublings) and divided that number by the epigenetics years elapsed (10 DNAmAge years),             

yielding the number of divisions that occur for each year. Based on this approach, we can estimate                 

that in the body, cells undergo 2.8-3.2 divisions/year (average = 3.0 divisions/year), although this              

estimate requires empirical validation. In comparison, proliferative cultured fibroblasts divide at a            

rate of 181.9 divisions/year, again highlighting the accelerated nature of DNAm aging in vitro. 

Further leveraging the direct assessment of cell divisions in culture, we had the opportunity              

to validate the Mitotic Age (MiAge) calculator originally developed from tissues of different ages              

(Youn & Wang, 2018). The MiAge calculator estimates the number of cell divisions using the               

stochastic replication errors acquired at individual CpGs in the epigenetic inheritance process            

during cell divisions. Here we confirmed that the MiAge calculator directly correlates with the actual               

number of cell divisions in culture (r2=0.66, p value = 0.0014, Figure 2F). Given that the MiAge                 

calculator was built solely on DNAm datasets derived from tissues that have aged while in the                

organism, this finding further indicates that changes in the epigenetic landscape that occur during in               

vivo and in vitro aging are similar in nature.  
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Gene analysis of ELOVL2 age-dependent DNA methylation and expression 

To test the conservation of age-related DNAm at the gene level we then compared DNAm of                

candidate genes across the lifespan in both cultured fibroblasts and in blood from a longitudinal twin                

cohort study. The human blood cohort included 1,011 samples collected from 385 Swedish twins,              

with DNAm on the 450k array assessed up to five timepoints over a 20-year period.  

In particular, we focused our analysis on ELOVL2, a well-validated gene showing            

age-related hypermethylation in epigenome-wide association studies for cg1686757 (Garagnani et          

al., 2012; Gopalan et al., 2017; Johansson et al., 2013; Kananen et al., 2016; Wang et al., 2018).                  

cg1686757 is located ∽300bp from the transcription start site (TSS) in a CpG island within the                

ELOVL2 gene promoter (Figure 3A). Interestingly, we found that the topology of DNAm levels at               

different CpGs along ELOVL2 was nearly identical to that of fibroblasts (Figure 3B). Beyond these               

gene-wide similarities, the age-related changes in DNAm at single CpGs were also highly             

conserved in cultured fibroblasts. Specifically, cg1686757 was linearly hypermethylated by 21% in            

vivo (over 50 years), and correspondingly hypermethylated by 35% in vitro (over 98 days) followed               

by a plateau during replicative senescence (Figure 3C). To test whether changes in DNAm may               

regulate gene expression, we also performed RNA sequencing on cultured fibroblasts at three             

timepoints across early- and mid-life. The conserved age-related hypermethylation of ELOVL2           

cg1686757 was linearly correlated with a >80% reduction in ELOVL2 transcript levels with age              

(r2=0.87, Figure 3D). This combined transcriptomic and epigenomic data suggests that in this             

isolated fibroblast system where other confounding factors are avoided, hypermethylation of           

cg1686757 in promoter CpG island is associated with the expected gene repression. 

We then expanded this analysis to a broader set of genes including the top 29 significantly                

age-associated genes from the longitudinal Wang et al. 2018 blood dataset (Figure S6). Of these               

genes exhibiting significant age-related alterations in DNAm in vivo, compared to the 5% proportion              

of genes expected to replicate by chance, the pattern of methylation was replicated in 76% of genes                 

in vitro (p < 0.05, Figure 3E). Similarly, 50% of the CpG sites whose DNAm levels significantly                 
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correlated with age in human blood showed a similar pattern of change in cultured fibroblasts               

(Figure 3F). These conserved gene-wide topological DNAm signatures and age-related changes at            

single CpGs suggest a strong conservation of epigenetic signatures between human tissues and             

the cultured fibroblast system.  

To further evaluate the concordance between DNAm and gene expression with age across             

cell types and aging environments, we compared the overlap of significant age-related CpGs taken              

from three independent datasets (i) in vitro fibroblasts in this study (n = 64,686 CpGs), (ii) whole                 

blood from Wang et al. 2018 (n = 1,316 CpGs), and (iii) Horvath et al. (2018) in vivo fibroblasts                   

(n=28,744 CpGs). Thirty-five significant CpGs were shared amongst the three datasets (Figure S4A             

and Supplemental Table S1). Of these shared sites, 86% exhibited hypermethylation with age in              

cultured fibroblasts (Figure S4B), 87% were located in CpG islands (Figure S4C), and 49% were               

within 1500bp of the TSS (Figure S4D). Furthermore, of the 35 overlapping CpGs, seven were               

associated with significant age-related change in transcript level, six of which are located in CpG               

islands in proximity to the TSS. Accordingly, five of these genes were upregulated and two were                

downregulated with age, including ELOVL2 (Figure S4E), consistent with the notion that CpGs in              

islands near the TSS may influence gene expression.  

Single CpG kinetics for age-related changes in DNA methylation 

In cells aged in vitro, environmental conditions can be controlled while longitudinal repeated             

measures are serially collected. Thus, the effect of time (i.e., independent variable) can most              

directly be examined without the many confounding variables that naturally arise in humans. This              

system thus enable to map precisely DNAm changes of individual CpGs across the entire lifespan,               

which our gene-based analysis suggested were of substantial magnitude, non-linear across the            

lifespan, and possibly functionally significant.  

To examine and visualize the diversity of individual CpG site kinetics across the cellular              

lifespan, we first used a generalized additive model (GAM) to estimate the degree of freedom that                
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best characterizes the lifelong trajectory of each CpG on the EPIC array. We extracted the 1,000                

sites with the lowest p values (all p < 6.0 -45) (Figure 4A-B), classified them into degrees of freedom                  

1 (constant or linear change), 1-3 (quadratic), or 3-4 (cubic), and dichotomized sites by their               

direction of change with age, as either increasing (hypermethylation) or decreasing           

(hypomethylation). 

Consistent with our PCA results, this categorization revealed that more than 90% of the              

age-sensitive methylome varies non-linearly (degrees of freedom 2-4) across the lifespan (Figure            

4C). Moreover, fitting non-linear GAM models to each CpG provided accurate estimates for both the               

magnitude and rate of age-related DNAm changes (Figure 4D). Sigmoidal hypomethylated sites            

showed magnitude of changes reaching up to 81% (e.g., from 98% in early life to 17% in                 

senescence). The maximal rate of demethylation observed was as rapid as 47% per month (or               

more than 1.5% per day) compared to 15% per month for hypermethylated sites. Moreover,              

consistent with the fact that age-associated CpG sites from epigenome-wide association studies            

(EWAS) predominantly undergo hypomethylation (Day et al., 2013; Heyn et al., 2012), we found              

that the top 1,000 sites contained 2.7-fold more CpGs with hypomethylation relative to those              

undergoing hypermethylation. Thus, hypomethylation is both overrepresented across the         

methylome and occurs at a faster rate than hypermethylation during cellular aging. 

Analysis of genomic location for sites undergoing hypo- and hypermethylation showed that            

although hypermethylated sites were not enriched in any genomic location, the prevalence of             

hypomethylated sites differed across loci. When stratified by DoF and compared to all CpGs              

surveyed on the EPIC array, hypomethylating CpGs were enriched by 1.5-2.0-fold in unclassified             

intergenic regions and by 0.5-0.6-fold in open seas. On the other hand, there was a 95% and 92%                  

loss of enrichment for sites undergoing hypomethylation in CpG islands and gene promoters,             

respectively (Figure 4E-G), consistent with a relatively greater prevalence of hypermethylation in            

gene promoter CpGs - such as ELOVL2 cg1686757. This indicates the non-random distributions of              

age-related CpGs.  
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Interestingly, with the high temporal information in this system, the GAM model also             

identified some non-linear CpGs that showed multi-directional changes in methylation with age            

(Figures S5A-C). In these cases, a given CpG undergoes hypomethylation at one stage of the               

lifespan, followed by a change towards hypermethylation (i.e., biphasic), or vice versa. This finding              

demonstrates that although cellular aging can be successfully predicted on the basis of linear              

DNAm changes that constitute epigenetic clocks, this lifespan cellular system reveals the existence             

of nonlinear monotone and possibly bi-phasic DNAm trajectories at specific genomic locations.  

 

Discussion 

There is a need to develop experimental models where cellular aging in humans can be               

studied across the lifespan. In this study, the global clock-based findings, gene-based profiling, and              

single CpG methylation kinetics among in vitro and in vivo conditions collectively highlight the              

conserved but accelerated epigenetic aging in cultured primary human fibroblasts. In just five             

months of cellular growth, the Skin & Blood clock tracked 25 years of biological aging. Some                

epigenetics clocks were also sensitive to metabolic stress, resulting in accelerated DNAmAge under             

diabetic glucose conditions, and several clocks also distinguished senescence from proliferative           

stages of the cellular lifespan. In gene-based analyses, both DNAm topology across genes and              

age-related changes were highly conserved with the in vivo age-related DNAm patterns across             

several genes, including ELOVL2. Finally, this study provides proof-of-concept of the experimental            

utility of high temporal density of DNAm measures, revealing a broad range of age-associated              

DNAm profiles at the single CpG level. These kinetic profiles include linear, quadratic and cubic               

trajectories whose biological basis and functional significance remain to be established. The            

conserved and accelerated nature of epigenetic aging in this cultured fibroblast system opens the              

door for future studies to examine how age-related DNAm trajectories are influenced by genomic              

and environmental factors, and whether they can predict health outcomes. 
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Previous in vivo human and mouse studies have reported an overall global DNA             

hypomethylation with age. More recent and sensitive studies using next-generation sequencing           

have provided a more nuanced picture (Unnikrishnan et al., 2018), yet the global methylation of               

specific cell types, including senescent cells are still thought to decrease with age. Similarly we               

found that hypomethylation was both overrepresented and occurred at a greater rate during cellular              

aging in cultured human fibroblasts. This effect was observed in CpGs globally (-2% changes in               

mean methylation across all probes), and through an overrepresentation of CpGs undergoing            

hypomethylation defined either by a lenient cutoff based on rate of methylation (77%, >5% per               

month), and amongst CpGs with a stringent cutoff based upon significance (79%, 1,000 lowest p               

values, p < 5.98e-45). These data align with those of Cruickshanks et al. (Cruickshanks et al.,                

2013), who found by whole-genome single-nucleotide bisulfite sequencing a 7% decrease in global             

methylation in senescence human lung fibroblasts (IMR90) compared to younger cells.           

Furthermore, regional analyses revealed that hypomethylated sites tend to map to unclassified            

intergenic regions and open seas, and are less commonly found in CpG islands and gene               

promoters. These findings suggest that rather than regulating transcriptional activity, age-related           

hypomethylation may influence other aspects of the genome, such as genomic stability (Benayoun,             

Pollina, & Brunet, 2015; Hu, Li, & Duan, 2018). 

All four DNAmAge clocks successfully predicted an increase in epigenetic age correlating to             

various extent with the amount of time cells were grown in culture. Clocks trained on non-fibroblast                

tissues showed linear increases in the early and mid-life, but not during replicative senescence,              

while the Skin & Blood clock linearly captured aging throughout the lifespan, including during              

senescence. This divergence in clock capability likely stems from the source data on which the               

clocks were trained. The Skin & Blood clock was trained on fibroblasts at various ages, including                

senescent cells, which would allow the elastic-net regression models underlying the clock’s            

algorithm to select CpG sites that change continually through all cellular aging phases,             

independently of cellular division. More importantly, because the Skin & Blood clock accurately             

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/605295doi: bioRxiv preprint 

https://paperpile.com/c/Kgzdmj/ZfsR
https://paperpile.com/c/Kgzdmj/GvPz
https://paperpile.com/c/Kgzdmj/GvPz
https://paperpile.com/c/Kgzdmj/uQsG+qGPV
https://paperpile.com/c/Kgzdmj/uQsG+qGPV
https://doi.org/10.1101/605295
http://creativecommons.org/licenses/by-nc-nd/4.0/


captures DNAm aging signatures in human tissues, the successful linear prediction of age in vitro               

highlights the conservation of an epigenetic aging signature between in vivo and in vitro systems. 

Moreover, because the clocks provide accurate estimates of biological aging that predict            

one year of DNAm age per calendar year in human tissues (r>0.95), employing this system in                

cultured cells allowed us to the directly calculate and compare the rate of aging in vitro. In vivo,                  

algorithms are trained to have a slope of 1. The same clocks applied to cultured fibroblasts return                 

an average slope of about 62 DNAmAge years per calendar year, indicating that the rate of                

biological aging in culture is substantially faster than the aging process in the human body. Our                

confidence in these estimates are reinforced by the high temporal density of measures,             

approximately every 11 days, taken across the cellular lifespan. Both this repeated-measures            

design and the application of precise DNAm clocks trained on human tissues provide the necessary               

combination of approaches to measure the rate of aging in cellular cultures.  

The basis for the observed accelerated aging remains to be established but three lines of               

evidence indicate that in vitro age acceleration is not solely due to a higher division rate of cultured                  

cells. First, the Skin & Blood clock linearly predict an increase in DNAmAge even during replicative                

senescence when cells are undergoing minimal divisions. This finding aligns with recent work by              

Kabacik et al. (2018) showing that DNAmAge continues to increase indefinitely if cultured cells are               

immortalized by overexpressing the telomerase reverse transcriptase hTERT. Second, it is possible            

to reset epigenetic age to zero in induced pluripotent stem cells, even after extensive cell divisions                

(Horvath, 2013; Olova, Simpson, Marioni, & Chandra, 2019), thus uncoupling association between            

division and DNAmAge. Third, in human tissues epigenetic clocks accurately predict increasing            

DNAm age with good precision in a range of cell types that vary in their division rates by several                   

orders of magnitudes - such as fast dividing white blood cells, and non-dividing brain neurons               

(Horvath, 2013). Combined, these studies suggest that the accelerated aging process captured by             

DNAmAge in culture can not be explained solely by a faster rate of cellular division in vitro.  
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Moreover, because we directly monitored the number of cell divisions in cultured cells and              

validated the use of the clocks in this system, it is possible to extrapolate the number of cell                  

divisions per DNAmAge. This yields an estimated rate of cell division of ~3.0 cell divisions/year.               

Quantifying the rate of cell division or the lifespan of different cells in the human body is challenging                  

(Spalding, Bhardwaj, Buchholz, Druid, & Frisén, 2005). Although our approach represents the            

closest estimation of fibroblast division rate yet reported, this estimate is derived exclusively from              

the proliferative portion of the cellular lifespan where cell division rate is stable, it reflects cell                

populations rather than single cells, and several other factors could influence this in vitro-to-in vivo               

conversion, suggesting caution in the interpretation of this metric. 

There is a need to be able to examine biological functions across human lifespan for two                

main reasons. First, aging-modifying interventions must be tested across the lifespan. But this is              

challenging in long-lived humans, which age at a rate too slow enable life-long longitudinal studies               

of individuals yet. Second, there is the need to test the influence of disease-causing and               

lifespan-shortening exposures – such as environmental toxicants, chronic psychosocial stress,          

chronic hyperglycemia. The general scientific approach has mostly relied on model organisms with             

shorter lifespan, such as rodents, fish, flies, or worms (Mitchell, Scheibye-Knudsen, Longo, & de              

Cabo, 2015). But there are limitations associated with the study of non-human organisms, which              

exhibit several genetic and biochemical features not shared with humans and may yield results that               

ultimately do not translate to human populations (de Magalhães, 2014; Hunter, 2008). The current              

study presents a potential solution to overcome these limitations. Primary fibroblasts are grown             

under controlled laboratory conditions where exposures can be precisely controlled both in time and              

magnitude, and exhibit DNAmAge signatures reflecting decades of biological aging within just a few              

months. These conditions could allow for rapid testing of age-modifying interventions with frequent             

longitudinal measurements in a human genetic system. For example, metabolic stress, which            

results in obesity and metabolic syndrome with shortened lifespan, has been associated with             

accelerated epigenetic aging in the liver, with an average 3.3 years of increased epigenetic age for                

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/605295doi: bioRxiv preprint 

https://paperpile.com/c/Kgzdmj/q2xR
https://paperpile.com/c/Kgzdmj/SZjq
https://paperpile.com/c/Kgzdmj/SZjq
https://paperpile.com/c/Kgzdmj/EpCj+mby4
https://doi.org/10.1101/605295
http://creativecommons.org/licenses/by-nc-nd/4.0/


every 10 body mass index (BMI) units (Horvath et al., 2014). Here, chronic diabetic glucose levels                

caused a stepwise increase in DNAmAge of ~2.9 years in fibroblasts, without changing the rate of                

aging. This form of age acceleration previously referred to as epigenetic age acceleration (EAA)              

(Chen et al., 2016) reflects an acute shifts in age position (i.e., intercept of linear function) and                 

should be distinguished from changes in the rate of aging (i.e., the slope) affecting lifelong               

trajectories. In future studies, this experimental system could be used to predict the effect of               

metabolic or chemical stressors, or the effectiveness of senolytic and therapeutic interventions on             

human aging trajectories over a shortened time scale. It also remains to be determined how much                

the rate of aging varies between individuals, and whether it is predictive of future health outcomes. 

Three independent findings indicated that cellular aging in vitro and in vivo are conserved              

biological process: (i) DNAmAge clocks trained in vivo track aging in vitro; (ii) both systems show                

global hypomethylation across lifespan, (iii) cell replication-based methylation errors (MiAge) are           

conserved. We then further examined the likelihood that in vitro cellular aging follows the same               

patterns as tissue-based human aging signatures through a candidate gene approach focusing on             

ELOVL2 and its associated promoter CpG cg16867657, previously validated across multiple cohort            

and longitudinal studies from human blood (Wang et al., 2018). Under most circumstances, DNAm              

of promoter-associated CpG islands generally decreases the expression of its downstream gene            

through recruitment of repressor elements (Schübeler, 2015). In relation to ELOVL2, we found that              

the topology of DNAm across the entire gene was highly conserved, and the age-related              

hypermethylation of cg16867657. The linear hypermethylation of cg16867657 was associated with           

robust downregulation of ELOVL2 transcript levels, consistent with the functional significance of this             

age-related DNAm change. Specifically, a 25% increase in methylation levels in cg16867657 was             

associated with an 83% decreased expression over a period corresponding to ~10 years of human               

life. In contrast to previous studies in human tissues, this level DNAm-to-gene expression             

correlation is remarkably strong, possibly owing to the influence on environmental factors on             
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ELOVL2 expression in humans, compared to the absence of these factors in vitro, which may               

reduce noise and facilitate the detection of meaningful genomic-epigenomic interactions.  

In relation to lifespan kinetics at single CpG resolution, a notable finding is the non-linear               

behavior of hypomethylated and hypermethylated CpGs. In longitudinal human aging studies,           

researchers often rely on linear models to identify age-related associations, and have access to a               

limited number of timepoints stemming from the considerable challenge that following participants            

over decades represents (Alisch et al., 2012; N. D. Johnson et al., 2017). Here using high-temporal                

resolution data, we highlight the variety of aging kinetics in the methylome across the cellular               

lifespan. Whereas the vast majority of CpGs did not change with age, our analysis indicates that of                 

the sites that do undergo hypo- or hypermethylation, most (>90%) behave non-linearly, with their              

age-related patterns being best described with 2 to 4 degrees of freedom. As expected, we also                

found that most CpG methylation trajectories are monotone functions of time (increasing or             

decreasing), although some CpGs may exhibit non-monotone trajectories (e.g., increase during           

early life, then decrease during mid-life and senescence). With twelve timepoints across age we              

could detect up to three directional inflection points over time, and more frequent measurements              

could allow to discover with still greater confidence more complex age-related kinetics. The             

multi-directional changes in DNA methylation in some sites is consistent with previously described             

short-lived oscillations in DNAm (circadian and seasonal) (Lim et al., 2017, 2014; Oh et al., 2018,                

2019). These data highlight the value model systems that enable high-temporal resolution sampling             

and statistical models that accommodate non-linear DNAm dynamics. 

Overall, this proof-of-concept work establishes the conserved yet accelerated DNAm aging           

of cultured fibroblasts at the global, gene, and single CpG levels. Using this system and its                

high-temporal resolution, we propose that it is possible to leverage both integrative clocks that              

capture human aging signatures, as well as non-linear modeling methods to capture the full              

spectrum of age-related DNAm changes. Although our work suggests that aging signatures are             

largely conserved between whole blood and cultured fibroblasts, future work is needed to fully              
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define the epigenomic overlap among various human tissues and cell types (Slieker, Relton, Gaunt,              

Slagboom, & Heijmans, 2018) and across individuals. Longitudinally quantifying the rate of aging in              

primary human cells may also enable to rapidly assess the effectiveness of age-modifying             

interventions across the lifespan.  
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Experimental Procedures 

The detailed version of the Experimental Procedures is available in Appendix 1. 

Cell culture 

Primary human dermal fibroblasts were obtained with informed consent from a healthy            

29-year-old male donor (IRB #AAAB0483). Cells were maintained in standard 5% CO2 and             

atmospheric O2 at 37°C in T75 flasks. Cells were passaged approximately every five days, which               

corresponded to ~90% confluency, with 500,000 cells replated each passage. Brightfield           

microscopy images (20x magnification) were taken using inverted phase-contrast microscope. The           

starting passage numbers was three, and cells were terminated after exhibiting less than one              

population doubling over a 30-day period. 

DNA methylation sample preparation 

Twelve normal glucose (5.5mM) timepoints and fourteen high glucose (25mM) timepoints           

were collected approximately every 11 days were selected for DNA Methylation measurements.            

DNA was extracted using a DNeasy kit (Qiagen cat#69506) according to the manufacturer's             

protocol. At least 150 ng of DNA was submitted in 50 µl of ddH2O to the New York Genome Center                    

for bisulfite conversion and hybridization using the Infinium Methylation EPIC BeadChip kit.            

Samples were randomly distributed across two plates. DNA Methylation levels were measured for             

866,836 CpG Sites. 

Data preprocessing and quality control 

All DNA methylation data was processed in R (Version 3.5.0). Quality control preprocessing             

was applied by checking for correct sex prediction, probe quality, sample intensities, and excluding              

SNPs and non-CpG probes. All samples passed our quality control and no samples were excluded.               

Data was then normalized using Functional Normalization. Using the R package SVA, both RCP              

and ComBat adjustments were applied for probe-type and plate bias, respectively. These            

adjustments excluded 68 out of the 866,836 CpG probes for a final of 866,768 probes for further                 
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analysis. On average, probes had a coefficient of variation of 10.08% with a bias in technical error                 

towards demethylated sites (Figure S1B).  

PCA analysis 

Principal Component Analysis was performed using ‘prcomp’ with zero centering and unit            

scaling. PCA was applied on normal glucose samples, high glucose samples, and then on all               

samples together. All three analyses showed similar components and age-related effects           

regardless of glucose treatment or number of samples included.  

Rate of methylation change 

For global rates of methylation change over time, we applied a linear regression model to               

each CpG site across the lifespan and then transformed the slope to percent change per month.                

Sites were designated as hyper- or hypo- methylated with age based of the sign of the regression                 

slope, as plotted in Figure 1. 

DNAmAge clocks and quantification of the rate of DNAm aging 

The four DNAmAge clocks predicted epigenetic age was predicted using linear coefficients            

detailed in the respective clock’s source paper (Appendix S1 Table 1). 

For the Hannum clock, six of 71 clock sites are not present in the EPIC array used in our                   

study. These missing sites explain why the reported DNAmAge is not in recognizable units of time.                

The rate of aging is determined by the first derivative (i.e., slope) of the linear regression between                 

chronological time and DNAmAge. All algorithms are trained to accurately predict age and thus              

have a slope of 1 in human tissues. To assess age-acceleration, we compared the measured slope                

of DNAmAge across lifespan and compared it to the theoretical value of 1, or to other slopes                 

(normal vs high glucose). Stepwise age-increase is defined as increase in the y intercept of               

DNAmAge across the lifespan without a change in slope.  
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Mitotic Age calculator 

MiAge estimations were calculated using the previously described calculator (Youn & Wang,            

2018). Briefly, using the stochastic replication errors accumulated in the epigenetic inheritance            

process during cell divisions, the MiAge calculator was trained on 4,020 tumor and adjacent normal               

tissue samples from eight TCGA cancer types, which consists of a panel of 268 CpGs together with                 

their estimated site-specific parameters.  

GAM model and single site analysis 

To assess the range of kinetic complexity across the cellular lifespan, we fitted each of the                

866,736 CpGs with generalized additive models (GAM) using the MGCV package. We then used              

each GAM model to estimate the change in methylation (beta values) and the rate of change across                 

the cellular lifespan. The top 1,000 most significant CpGs were selected and classified according to               

their degree of freedom (DoF). The maximum DoF determined to be biologically meaningful was 4,               

as increasing DoF up to 10 did not identify additional significant CpG hypo- or hyper-methylation               

trajectories. We then assessed the prevalence of CpGs at different genomic loci grouped based on               

their estimated DoF. CpGs were annotated with gene location and related regulatory features using              

the manufacturer’s (Illumina EPIC array) annotation.  

In vivo whole blood data 

The longitudinal in vivo DNA methylation data were from Swedish Adoption/Twin Study of             

Aging (SATSA), part of the Swedish Twin Registry, which is a national register of twins born                

between 1886-2000, as previously described in details in Wang et al. (2018). This in vivo dataset                

contains DNA methylation levels measured using the 450k array on whole blood DNA from 385               

participants (including 85 monozygotic and 116 dizygotic twin pairs). The longitudinal component            

included up to 5 timepoints approximately every 3 years, for a total of 1,011 samples after quality                 

control. Data was processed as described previously (Wang et al. 2018) and both gene DNAm               

topology and single-CpG trajectories were compared with data from human fibroblasts.  
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In vivo fibroblast data 

Age-related CpGs of In Vivo fibroblasts were obtained from Horvath et al. 2018. Briefly,              

fibroblasts were collected from 147 donors ranging from 0 to 100 years old and DNAm               

measurements were obtained using Illumina 450k array. 28,744 age-related CpGs were identified            

using Standard screening for numeric traits with a biweight midcorrelation using the R package              

WGCNA v1.66 and corrected for multiple comparisons using bonferroni correction. 

Gene-based DNA methylation topology 

Age-related CpGs were selected from the top 29 genes identified by Wang et al. 2018 using                

mixed-effects models across in vivo lifespan. The overlap of in vitro and in vivo methylation for                

individual genes was assessed using the EPIC Illumina array annotation. After selecting CpG sites              

of a given gene, sites were ordered by gene position and then annotated with related related-gene                

regions and CpG islands. The positions of CpGs were visualized using the UCSC genome browser               

(https://genome.ucsc.edu/). 

RNAseq 

Total genomic RNA was isolated at three timepoints across the cellular lifespan. At each              

timepoint, ~2 million cells were stored in 1ml trysol (Invitrogen cat#15596026), RNA was extracted              

on-column DNAse treated according to the manufacturer’s instructions, and quantified using the            

QUBIT high sensitivity kit (Thermo Fisher Scientific cat#Q32852). RNA was submitted to the             

Columbia Genome Center and sequenced (Illumina NovaSeq 6000), yielding approximately 30           

million 100 bp single-end reads. Transcript levels are shown as fragments per kilobase of transcript               

per million mapped reads (FPKM) expressed relative to the youngest timepoint.  
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Figure Legends 

Figure 1. Primary human fibroblasts undergo global DNA methylation changes across the 

cellular lifespan. (A) Overview of study design, which includes 12 timepoints for a longitudinal 

assessment of DNAm across the cellular lifespan, and comparison with longitudinal data from 

human blood (Wang et al. 2018). (B) Cumulative population doublings for cultured primary dermal 

human fibroblasts. (C) Fibroblasts across different stages of the lifespan imaged by phase contrast 

microscopy after 5 days of growth at each respective passage. (D) Principal component analysis 

(PCA) of all CpG sites across the cellular lifespan; the first two components are plotted and each 

timepoint is indicated by the number of days in culture. (E) Correlation between the first and (F) 

second principal components and chronological age. (G) Frequency distribution of all CpG sites 

ordered by their rate of methylation change per month across the lifespan. Dotted lines indicate an 

arbitrary methylation rate threshold of 5%. Inset: Proportion of sites >5% per month that undergo 

age-related decrease (hypomethylation) or increase (hypermethylation) in DNAm. 

 

Figure 2. DNAm clocks track aging across the cellular lifespan, are sensitive to glucose              

levels, and reveal accelerated aging in vitro. (A) Linear regression of chronological age (e.g.,              

days in culture) and predicted DNAmAge in primary human fibroblasts using the Pan tissue              

(Horvath et al., 2013) and (B) Skin & Blood (Horvath et al., 2018) clocks. Cells were cultured either                  

in normal glucose (n = 12 timepoints, 5.5mM) and high “diabetic" levels of glucose (n = 14                 

timepoints, 25mM). The dotted line indicates the estimated point at which division rate substantially              

decreases (i.e., replicative senescence). Note that the Skin & Blood clock remains linear throughout              

the lifespan. (C-D) Box plots of the residuals from regressions in A and B, comparing normal and                 

high glucose cells across lifespan. Each datapoint reflects the residual score for each timepoint              

assesses; non-parametric unpaired Mann-Whitney test. (E) The rate of epigenetic aging measured            
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as the slope of DNAmAge and chronological time in years over the linear portion of the regressions                 

in A and B. For the regression of the Pan Tissue Clock, only timepoints in early- and middle-life are                   

used. (F) Regression of MiAge estimated cell divisions to actual population doublings calculated             

from cell counts performed at each passage. 

 

Figure 3. ELOVL2 DNAm topology and age-related hypermethylation and expression are           

conserved between human blood and cultured fibroblasts. (A) Overview of the ELOVL2 gene             

with 8 exons, 7 introns, and 1 CpG Island (green box) located in the promoter region. All EPIC array                   

CpG sites are mapped as vertical light-blue lines. CpGs with >75% (red) or <25% (blue) methylation                

levels are color coded, and CpGs exhibiting significant DNAm changes in human blood across the               

cellular lifespan are indicated by an arrow with their % change in DNAm level. (B) DNAm topology                 

graph of ELOVL2 CpG sites within the promoter, first exon, and gene body present in both the EPIC                  

(in vitro, fibroblasts) and 450k (in vivo, blood) arrays. Methylation levels from whole blood (top,,               

Wang et al. 2018) and cultured human fibroblasts (bottom) are juxtaposed, highlighting their similar              

topology. In both datasets, each line represents a different individual (in vivo) or timepoint of the                

same individual’s cells (in vitro), color-coded by age. (C) Sigmoidal fit line of the DNAm levels for                 

cg1686657 in vivo (top) and in vitro (bottom) across the lifespan.. (D) ELOVL2 transcript levels               

quantified by RNA sequencing across the early- and mid-life portions of the cellular lifespan (linear               

regression, n = 3 timepoints, r2 = 0.98, p value = 0.012). (E) Analysis of topological similarity,                 

quantified as the correlation across all CpGs that map to a given gene between in vivo and in vitro                   

systems. Each datapoint is the average methylation values across all ages/passages, plotted for             

each of the top 29 age-associated genes reported in Wang et al. (2018). Significant correlations (p                

< 0.05) are shown as thick regression lines, with 95% confidence interval (shaded area). Inset:               

proportion of in vivo - in vitro correlations that are significant correlations (p < 0.01). (F) Same as E                   

but for 46 single CpGs whose methylation levels are positively correlated (p < 0.05) with age (Wang                 

et al. 2018). Each graph is for a single CpG and each datapoint (n=12) reflects time in culture (x                   
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axis) and corresponding human ages (y axis). Full size correlation graphs can be found in               

Supplemental Figure S4. 

 

Figure 4. Lifespan trajectories of single CpGs reveal rapid linear and non-linear age-related             

changes in DNA methylation. (A) Heatmap of the top 1,000 age-related CpGs with the lowest P                

values from the generalized additive models (GAM) analysis across the lifespan (see methods for              

details). Hierarchical clustering using complete linkage and Euclidean distance [sqrt(sum((xi -           

yi)^2)))]. (B) P values for all EPIC CpG sites arranged by degree of freedom (DoF). Coloring                

scheme indicates datapoint density (log scale). (C) Proportion of the top 1,000 age-related CpGs              

that decrease (Hypo) or increase (Hyper) in DNAm levels with age, organized by DoF. (D) Example                

of lifespan trajectories (fitted models) using the top 20 most significant CpG sites undergoing              

hypermethylation (top) and hypomethylation (bottom), for DoF 1-4. Bolded lines represent the            

average of all sites with similar trajectories. (E) Distribution of the top 1,000 sites by gene regions                 

(F), relative to CpG islands, and (G) promoter region by DoF categories. The label “All sites”                

corresponds to all sites included in the EPIC array and is used as reference to evaluate the                 

enrichment in specific genomic locations. 
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Global

Figure 1

B

Figure 1. Primary human fibroblasts undergo global DNA methylation changes across the cellular lifespan. 

(A) Overview of study design, which includes 12 timepoints for a longitudinal assessment of DNAm across the cellular lifespan, and comparison 
with longitudinal data from human blood (Wang et al. 2018). (B) Cumulative population doublings for cultured primary dermal human fibroblasts. 

(C) Fibroblasts across different stages of the lifespan imaged by phase contrast microscopy after 5 days of growth at each respective passage. 

(D) Principal component analysis (PCA) of all CpG sites across the cellular lifespan; the first two components are plotted and each timepoint is 

indicated by the number of days in culture. (E) Correlation between the first and (F) second principal components and chronological age. (G) 

Frequency distribution of all CpG sites ordered by their rate of methylation change per month across the lifespan. Dotted lines indicate an 
arbitrary methylation rate threshold of 5%. Inset: Proportion of sites >5% per month that undergo age-related decrease (hypomethylation) or 

increase (hypermethylation) in DNAm.
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Figure 2. DNAm clocks track aging across the cellular lifespan, are sensitive to glucose levels, and reveal accelerated aging in vitro. 

(A) Linear regression of chronological age (e.g., days in culture) and predicted DNAmAge in primary human fibroblasts using the Pan tissue 

(Horvath et al., 2013) and (B) Skin & Blood (Horvath et al., 2018) clocks. Cells were cultured either in normal glucose (n = 12 timepoints, 5.5mM) 

and high “diabetic" levels of glucose (n = 14 timepoints, 25mM). The dotted line indicates the estimated point at which division rate substantially 

decreases (i.e., replicative senescence). Note that the Skin & Blood clock remains linear throughout the lifespan. (C-D) Box plots of the residuals 

from regressions in A and B, comparing normal and high glucose cells across lifespan. Each datapoint reflects the residual score for each timepoint 
assesses; non-parametric unpaired Mann-Whitney test. (E) The rate of epigenetic aging measured as the slope of DNAmAge and chronological 

time in years over the linear portion of the regressions in A and B. For the regression of the Pan Tissue Clock, only timepoints in early- and middle-

life are used. (F) Regression of MiAge estimated cell divisions to actual population doublings calculated from cell counts performed at each 

passage.
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Figure 3. ELOVL2 DNAm topology and age-related hypermethylation and expression are conserved between human blood and cultured fibroblasts. 

(A) Overview of the ELOVL2 gene with 8 exons, 7 introns, and 1 CpG Island (green box) located in the promoter region. All EPIC array CpG sites are mapped 
as vertical light-blue lines. CpGs with >75% (red) or <25% (blue) methylation levels are color coded, and CpGs exhibiting significant DNAm changes in human 

blood across the cellular lifespan are indicated by an arrow with their % change in DNAm level. (B) DNAm topology graph of ELOVL2 CpG sites within the 

promoter, first exon, and gene body present in both the EPIC (in vitro, fibroblasts) and 450k (in vivo, blood) arrays. Methylation levels from whole blood (top,, 

Wang et al. 2018) and cultured human fibroblasts (bottom) are juxtaposed, highlighting their similar topology. In both datasets, each line represents a different 
individual (in vivo) or timepoint of the same individual’s cells (in vitro), color-coded by age. (C) Sigmoidal fit line of the DNAm levels for cg1686657 in vivo (top) 

and in vitro (bottom) across the lifespan.. (D) ELOVL2 transcript levels quantified by RNA sequencing across the early- and mid-life portions of the cellular 

lifespan (linear regression, n = 3 timepoints, r2 = 0.98, p value = 0.012). (E) Analysis of topological similarity, quantified as the correlation across all CpGs that 

map to a given gene between in vivo and in vitro systems. Each datapoint is the average methylation values across all ages/passages, plotted for each of the 

top 29 age-associated genes reported in Wang et al. (2018). Significant correlations (p < 0.05) are shown as thick regression lines, with 95% confidence interval 
(shaded area). Inset: proportion of in vivo - in vitro correlations that are significant correlations (p < 0.01). (F) Same as E but for 46 single CpGs whose 

methylation levels are positively correlated (p < 0.05) with age (Wang et al. 2018). Each graph is for a single CpG and each datapoint (n=12) reflects time in 

culture (x axis) and corresponding human ages (y axis). Full size correlation graphs can be found in Supplementary Figure S4.
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Figure 4

Figure 4. Lifespan trajectories of single CpGs reveal rapid linear and non-linear age-related changes in DNA methylation. 

(A) Heatmap of the top 1,000 age-related CpGs with the lowest P values from the generalized additive models (GAM) analysis across the lifespan (see 

methods for details). Hierarchical clustering using complete linkage and Euclidean distance [sqrt(sum((xi - yi)^2)))]. (B) P values for all EPIC CpG sites 
arranged by degree of freedom (DoF). Coloring scheme indicates datapoint density (log scale). (C) Proportion of the top 1,000 age-related CpGs that 

decrease (Hypo) or increase (Hyper) in DNAm levels with age, organized by DoF. (D) Example of lifespan trajectories (fitted models) using the top 20 

most significant CpG sites undergoing hypermethylation (top) and hypomethylation (bottom), for DoF 1-4. Bolded lines represent the average of all sites 

with similar trajectories. (E) Distribution of the top 1,000 sites by gene regions (F), relative to CpG islands, and (G) promoter region by DoF categories. 
The label “All sites” corresponds to all sites included in the EPIC array and is used as reference to evaluate the enrichment in specific genomic locations.
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