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30 ABSTRACT

31 We are in the midst of unprecedented change—climate shifts and sustained, widespread 

32 habitat degradation have led to dramatic declines in biodiversity rivaling historical extinction 

33 events. At the same time, new approaches to publishing and integrating previously disconnected 

34 data resources promise to help provide the evidence needed for more efficient and effective 

35 conservation and management. Stakeholders have invested considerable resources to contribute 

36 to online databases of species occurrences and genetic barcodes. However, estimates suggest that 

37 only 10% of biocollections are available in digital form. The biocollections community must 

38 therefore continue to promote digitization efforts, which in part requires demonstrating 

39 compelling applications of the data. Our overarching goal is therefore to determine trends in use 

40 of mobilized species occurrence data since 2010, as online systems have grown and now provide 

41 over one billion records. To do this, we characterized 501 papers that use openly accessible 

42 biodiversity databases. Our standardized tagging protocol was based on key topics of interest, 

43 including: database(s) used, taxa addressed, general uses of data, other data types linked to 

44 species occurrence data, and data quality issues addressed. We found that the most common uses 

45 of online biodiversity databases have been to estimate species distribution and richness, to 

46 outline data compilation and publication, and to assist in developing species checklists or 

47 describing new species. Only 69% of papers in our dataset addressed one or more aspects of data 

48 quality, which is low considering common errors and biases known to exist in opportunistic 

49 datasets. Globally, we find that biodiversity databases are still in the initial stages of data 

50 compilation. Novel and integrative applications are restricted to certain taxonomic groups and 

51 regions with higher numbers of quality records. Continued data digitization, publication, 
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52 enhancement, and quality control efforts are necessary to make biodiversity science more 

53 efficient and relevant in our fast-changing world. 

54

55 Keywords: species occurrence data, open access data, data quality, plants, invertebrates, 

56 vertebrates, natural history collections, citizen science data, linked data
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59 I. INTRODUCTION

60 Online databases with detailed information on organism occurrences collectively contain 

61 well over one billion records, and the numbers continue to grow. The digitization of natural 

62 history specimens (1,2) and development of online platforms for citizen science (3) have driven 

63 a steady accumulation of species occurrence records over the past decade. Each data point 

64 provides details on the taxonomic identification, date collected or observed, location, and name 

65 of the collector or observer for an organism. Applications of these primary biodiversity data are 

66 varied—such data have historically helped determine harmful effects of pesticides, document 

67 spread of infectious disease and invasive species, monitor environmental change, and much more 

68 (4–9). The overall goal of this paper is to quantitatively determine how researchers are using 

69 open-access data in published work, focusing on the past decade, when growth of online 

70 biodiversity databases has been most rapid. As one illustration of that growth, the Global 

71 Biodiversity Information Facility (GBIF) has grown from provisioning just over 200 million 

72 records in 2010 to over 1.08 billion records today, a greater than fivefold increase (10).

73 Museums and funding agencies have invested considerable resources to digitize 

74 information from natural history specimens, make their data openly accessible (11,12), and 

75 sustain platforms to provide access to those data. Such efforts unlock previously inaccessible 

76 data and expand their availability to researchers around the world. However, the task of 

77 digitizing highly diverse groups, such as insects, has been particularly difficult. Estimates 

78 suggest that only 10% of biocollections worldwide are available in digital form (13), and it 

79 would take many decades to completely digitize estimated holdings at current rates (14). While 

80 efforts towards workflow optimization will undoubtedly improve efficiency in certain areas 

81 (12,15–18), it is critical that the biocollections community prioritize efforts; we must advocate 
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82 for continued digitization through production of innovative data products, tools, interdisciplinary 

83 collaborations, and by highlighting research that requires primary biodiversity data (3,19–21). 

84 The greatest returns on digitization investments will result from expanded use of collections data 

85 and by linking a wide array of biotic and abiotic data (1,11). Linked data environments are in 

86 high demand (22,23), are growing rapidly, and provide the greatest potential for data discovery 

87 and use (1).

88 The biggest obstacle for biodiversity data users is obtaining records of sufficient quantity 

89 and quality for the region and taxonomic group of interest (23,24). Many taxa and regions are 

90 still highly under-sampled or completely unrepresented (e.g. rare taxa, regions that are difficult 

91 to access) in online databases (25–27), particularly for less known and highly diverse 

92 invertebrates (28,29). When data are available, they must be checked for common errors and 

93 biases known to occur in opportunistic datasets that are often assembled over long time periods 

94 (e.g. 30)—a task that is labor-intensive (31). Species identity and locality are the most error-

95 prone aspects of collection information (7). Estimates for rates of collection misidentification 

96 range from 5-60% (11,32,33), but if specimens exist, this information can be verified or 

97 corrected by taxonomic experts. Specimen images, while not always useful for diagnosis, can 

98 often help—particularly when they meet the criteria for taxonomic-grade imaging. Even with 

99 correct identification, names in species occurrence repositories may still be incorrect and need 

100 validation (34). For many broad-scale studies, erroneous records primarily lead to overestimation 

101 of species richness in areas outside centers of diversity (31). Geographic errors may be more 

102 readily corrected and associated with appropriate uncertainty estimates using standardized 

103 methods (35) and online tools (i.e. GEOLocate, www.geo-locate.org). Digitization of species 

104 occurrence records makes it easier to identify questionable records by providing quick access to 
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105 data and identifying outliers. Further, data services are becoming more sophisticated in 

106 automatically addressing some data quality issues (36,37). However, it is possible that many 

107 studies simply use available data and may not appropriately evaluate data quality.

108 Sources of potential biases in opportunistic occurrence data have also been well-

109 documented in previous work and generally include variation in collection effort and taxonomic, 

110 spatial, and temporal biases (4,38–43). Some examples of variables contributing to bias include 

111 socioeconomic factors (42,43), the exclusion of common species over rare and flashy ones (44–

112 46), the selection of large and attractive specimens (47), seasonal bias (48), problematic 

113 distinction between living and dead-collected specimens and associated post-mortem 

114 transportation (49,50), and discarding worn specimens, which results in phenological bias or 

115 elimination of specimens with signs of disease (8). Traditional methods for dealing with these 

116 issues may include subsampling, data aggregation, and additional surveys (7). Effects of bias can 

117 be reduced for certain studies with higher numbers of records, by combining information from 

118 different institutions, and including observation records to supplement specimen data (8). Newer 

119 statistical and modeling approaches to deal with biases in biodiversity data have also been 

120 developed (41,46,51,52). However, it is unclear how often studies actually address issues of error 

121 and bias when using opportunistic records. 

122 While several previous studies have reviewed uses of natural history collections data 

123 (4,6,8,53), and one study has analyzed field-specific usage for the GBIF index (54), to our 

124 knowledge no other study has quantitatively reviewed trends in how species occurrence 

125 databases are utilized in published research. Our overarching goal in this study is to determine 

126 how such usage has developed since 2010, during a time of unprecedented growth of online data 

127 resources. We also determine uses with the highest number of citations, how online occurrence 
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128 data are linked to other data types, and if/how data quality is addressed. Specifically, we address 

129 the following questions: 

130 1.) What primary biodiversity databases have been cited in published research, and which 

131       databases have been cited most often?

132 2.) Is the biodiversity research community citing databases appropriately, and are 

133       the cited databases currently accessible online? 

134 3.) What are the most common uses, general taxa addressed, and data linkages, and how   

135       have they changed over time? 

136 4.) What uses have the highest impact, as measured through the mean number of citations 

137       per year? 

138 5.) Are certain uses applied more often for plants/invertebrates/vertebrates? 

139 6.) Are links to specific data types associated more often with particular uses? 

140 7.) How often are major data quality issues addressed? 

141 8.) What data quality issues tend to be addressed for the top uses?  

142

143 II. LITERATURE SEARCH AND CHARACTERIZATION

144
145 We searched for papers that use online and openly accessible primary occurrence records 

146 or add data to an online database. Google Scholar (GS) provides full-text indexing, which was 

147 important for identifying data sources that often appear buried in the methods section of a paper. 

148 Our search was therefore restricted to GS and to the time period of 2010 through the date of the 

149 search (April 2017; note when looking at trends over time we remove 2017, as the year was not 

150 complete in our dataset). All authors discussed and agreed upon representative search terms, 

151 which were relatively broad to capture a variety of databases hosting primary occurrence records. 
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152 The terms included: “species occurrence” database (8,800 results), “natural history collection” 

153 database (634 results), herbarium database (16,500 results), “biodiversity database” (3,350 

154 results), “primary biodiversity data” database (483 results), “museum collection” database 

155 (4,480 results), “digital accessible information” database (10 results), and “digital accessible 

156 knowledge” database (52 results)--note that quotations are used as part of the search terms where 

157 specific phrases are needed in whole. We downloaded the first 500 records (or all if there were 

158 fewer than 500 results), which are presumably the most relevant search returns, for each search 

159 term into a Zotero reference management database (55). We obtained citation numbers for each 

160 paper from the GS search results at the time of downloading records (April 2017; ,56). After 

161 removing duplicates across search terms, the final database included 2,500 papers. We then 

162 randomly sorted papers into four separate sets of 500 to allow subsampling of the dataset.

163 For a study to be relevant in this assessment, there must be an indication that the database 

164 used is publicly accessible online in a searchable database of biodiversity records. The databases 

165 used may include specimen and/or observation-based records from biodiversity data aggregators, 

166 online natural history collection databases, websites devoted to capturing citizen science 

167 observation records, or newly compiled data that are made available in online databases. Studies 

168 were not relevant if they exclusively used data that are not available online or from systematic 

169 surveys, government monitoring programs, or field data collected explicitly for the study in 

170 question. However, papers are relevant if they use these other types of occurrence data in 

171 addition to online databases of primary occurrence records (see section on data linkages, below), 

172 or if they compile these types of occurrence records and deposit them into an existing online 

173 biodiversity data aggregator (e.g. GBIF). Twenty-six percent (n = 501; see Supplemental File 1 
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174 for citation information) of the papers in the final evaluated dataset (n = 1,934) were relevant 

175 according to these criteria. The full dataset is published and openly accessible (56).

176 Three of the authors with specialized knowledge of the field (J. Damerow, L. Brenskelle, 

177 and R. Guralnick) characterized relevant papers for the first 1000 papers using a standardized 

178 tagging protocol based on 14 key topics of interest with over 100 total tags. We developed a list 

179 of potential tags and descriptions for each topic; a full list with descriptions of tags is provided in 

180 Supplemental Table 1. J. Damerow subsequently checked each tagged paper from the first 1,000 

181 papers to maintain consistency and became the sole tagger for an additional 934 papers. This 

182 process allowed the development of a more standardized tagging protocol. The database of 

183 tagged papers was then downloaded from Zotero for further data checking and analysis. We used 

184 OpenRefine, an open source tool for data cleaning that aggregates similar records for efficient 

185 clean-up, to standardize tags from the final dataset. 

186

187 III. TRENDS IN USES OF PRIMARY BIODIVERSITY DATA

188
189 We characterize a variety of ways in which researchers are using species occurrence 

190 records by assessing the prevalence of individual tags corresponding to topics of interest. We 

191 identify the most commonly cited databases and most-studied taxa, number of taxa addressed, 

192 most common research uses, the types of data most often linked to species occurrence records, 

193 and aspects of data quality addressed in these papers. In addition, we determine prevalence of 

194 these tags over time to assess positive or negative trends. 

195

196 a. Primary biodiversity databases and accessibility of data

197
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198 We identify 347 primary biodiversity databases used in papers from our dataset 

199 (Supplemental Table 2), the URL for each database, and the scale (institution, regional, global, 

200 taxa) and regional or taxonomic focus (e.g. Australia, fish) of each database. We then evaluate 

201 citation information provided in each paper, and assess whether the data are currently available 

202 online or not by visiting associated URLs. The most cited databases include: the Global 

203 Biodiversity Information Facility (GBIF), Barcode of Life Data System (BOLDSystem), 

204 SpeciesLink, Ocean Biogeographic Information System (OBIS), Australia’s Virtual Herbarium, 

205 Tropicos, FishBase, Fishes of Texas, and CONABIO (Table 1). 

Table 1. Top ten most used biodiversity 
databases (see Supplemental Table 2 for a 
comprehensive list). 
Database Name Number of Papers 

Citing
GBIF 155
BOLDSystems 27
SpeciesLink 21
OBIS 20
Australia's Virtual 
Herbarium

19

Tropicos 16
FishBase 14
Fishes of Texas 13
CONABIO 11

206

207 Our dataset includes 165 papers that involve compiling and publishing data online (117 

208 data papers and 60 papers that describe a new database, some of these papers overlap).  Previous 

209 work has outlined best practices for publication of biodiversity data (57–62) and scientific data 

210 more generally (e.g. 63). However data are published, primary biodiversity data should also be 

211 integrated into an aggregate system with similar data, such as GBIF, OBIS, VertNet, iDigBio, or 

212 BoldSystems (62). 
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213 Many researchers do not sufficiently cite databases used (64,65), and links to many 

214 databases become invalid over time (66–68). We found that 34 percent of papers (n =170) had 

215 insufficient citation information for one or more databases; this meant that there was either no 

216 URL provided to access the database, or the URL was broken. Twenty-six percent of databases 

217 (n =90) cited in one or more papers from our dataset were totally inaccessible at the time of this 

218 assessment. In some cases, researchers appropriately cited a database that is no longer in 

219 operation or has subsequently been integrated into an aggregate system. As a result of 

220 insufficient data citation practices and lack of data preservation, data are either completely lost or 

221 it is impossible to reproduce the dataset used and results. Study reproducibility, strongly linked 

222 to data persistence (66), is a key principle in the scientific process and a growing concern across 

223 scientific disciplines (e.g. 69).  Researchers who have compiled data from multiple sources for a 

224 particular analysis can better ensure that their data are accessible and get credit for the work 

225 involved in integrating datasets by formally publishing data with descriptive metadata and obtain 

226 a persistent DOI (63). The prevalence of inaccessible databases and incomplete database 

227 citations indicates that many biodiversity researchers lack the resources to manage and preserve 

228 data for the long term and/or are unaware of best practices. 

229 Guidance and infrastructure for citing online data sources have fairly recently emerged 

230 and are still evolving (64,70). One major problem is that many papers using biodiversity data 

231 have obtained data from an aggregator, such as GBIF, which has potentially drawn from 

232 thousands of original data sources. Up to this point, researchers have most often cited GBIF in 

233 this case (usually in-text, not in the reference section) and neglect to credit original data sources 

234 (65). Even for those who attempt to cite sources, many journals do not allow large numbers of 

235 citations in the reference section, and the only solution is to cite sources in a supplement or 
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236 appendix which does not provide citation credit (65). Data contributors who have submitted data 

237 to aggregators are not getting credit for the significant work spent on data management, 

238 standardization, and quality control. Ideally, data citations should include DOIs for datasets if 

239 they exist and citations of online databases both in text and in the reference section (64,65,71). 

240 We will address data citation practices more thoroughly in a separate paper. 

241

242 b. Research uses

243

244 A primary topic of interest for this work was to characterize research uses of the study 

245 databases. An initial list of use tags was developed based on usage outlined in (23), which 

246 surveyed needs of primary biodiversity data users. We subsequently split up certain aggregated 

247 topics and revised and added use categories based on important subject areas that arose during 

248 the tagging process. We ended with 31 potential research use tags, as listed and described in 

249 Supplemental Table 1. Most papers had multiple use tags assigned (mean=2.5, max=7). We then 

250 determined the average number of citations for papers involving each data use. Number of 

251 citations was extracted from the original web snapshots of the Google Scholar searches for each 

252 term in April 2017 (56).

253 Expected trends for research uses in published work include the following: H1) Data uses 

254 requiring large numbers of dispersed records, such as species distribution models and 

255 biodiversity studies, are the most common uses of online databases and have increased over 

256 time; H2) Data papers and papers describing a new database are likely to have increased in 

257 recent years as new venues have grown supporting such publications; and H3) Uses involving 
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258 other online data types (i.e. barcoding, citizen science, species interactions) that can be linked to 

259 species occurrence records are likely to increase. 

260 The top research uses for online species occurrence databases—from our dataset of 501 

261 relevant papers—were studies on species distribution (n=175), diversity/population studies that 

262 usually assess species richness (n=122), dataset description (i.e. data papers, n=117), taxonomy 

263 (n=95), conservation (n=68), data quality (n=68), invasive species (n=61), and that described a 

264 new database (n=60, Fig. 1); see Supplemental Table 1 for full descriptions of each category of 

265 research use. The prevalence of most uses did not change from 2010-2016, with the exception of 

266 data papers and taxonomy-related studies, which both increased (Fig. 2); taxonomy studies 

267 usually involved developing regional species checklists. In the aforementioned survey 

268 assessment of user needs for primary biodiversity data (22,23), these same categories of use were 

269 among the top ways in which people listed that they use primary biodiversity data. Some 

270 exceptions were that a relatively large number of survey respondents claimed that they use data 

271 for ecology/evolution studies, natural resources management, life history/phenology studies, and 

272 education/outreach, but relatively few published studies used occurrence data for these purposes 

273 in our dataset. It is possible that people use data for these purposes, but do not necessarily 

274 publish papers on the topic or may not cite databases for this work (72).

275

276 Figure 1. Frequency of major research uses in published papers (n = 501) that obtain data from 

277 species occurrence records available in online databases. See Supplemental Table 1 for detailed 

278 descriptions of each research type.  

279
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280 Figure 2. Change in the number of papers from 2010-2016 involving the top six research 

281 applications for online species occurrence databases. 

282

283

284 Some of the top research uses involved compiling and processing data, as reflected in the 

285 high numbers of data papers, papers describing new databases, and papers addressing data 

286 quality and data gaps (all of which were among the top ten uses, Fig. 1). The biodiversity 

287 community is still in an active stage of compiling existing biodiversity data and dealing with 

288 issues of data quality. Data papers and papers describing a new database have increased over 

289 time (Fig. 2), which is likely to be the result of the introduction and expansion of many data 

290 journals (57,73), online platforms for reporting species occurrence observations such as 

291 iNaturalist (74) and eBird (3,75), and efforts over the past decade to digitize specimen records 

292 (1,13). More journals accept papers or even focus on publishing high-quality data and recognize 

293 this as an important part of the scientific process (62,72,76,77). 

294 Papers with the highest mean number of citations per year involved more applied studies 

295 in disease ecology (mean = 18, SD = 33), public health (mean = 8, SD = 7), documenting 

296 extinctions (mean = 7, SD = 7), developing a new analytical method to deal with species 

297 occurrence data (mean = 7, SD = 8), and citizen science (mean = 7, SD = 6; Table 2).  Papers 

298 with the highest maximum number of citations per year focused on disease ecology, species 

299 diversity, and publishing data (each with a maximum of 97 citations/year; Table 2); we did not 

300 account for self-citation here.  

301
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Table 2. Summary statistics for the number of citations per 
year for each use of primary biodiversity data. Note that 
not all papers had citation data available.  
Data Use n mean sd min max
Disease Ecology 8 18 33 2 97
Public Health 9 8 7 0 22
Extinction 6 8 7 1 17
Analytical Method 26 7 8 1 34
Citizen Science 7 7 6 1 17
Species Distribution 152 6 10 0 97
Climate 46 6 6 0 32
Niche 24 6 5 0 20
Data Quality 59 6 8 0 37
Diversity/Population 108 5 10 0 97
Data Paper 94 5 11 0 97
Other(Paleontological) 3 5 5 0 10
Other(Behavior) 1 5 NA 5 5
Data Gap 56 5 6 0 28
Agriculture 10 5 4 1 13
Invasive Species 55 5 5 0 32
Conservation 61 5 6 0 22
Endemism 23 5 5 0 20
Evolution 17 5 3 0 12
Barcoding 22 5 4 0 16
Biogeography 41 5 4 0 16
New Database 50 4 6 0 29
Species Occurrence 26 4 4 0 22
Interactions 7 3 3 1 9
Natural Resources 24 3 3 0 12
Environmental Impact 18 3 2 0 7
Other(Movement) 3 3 2 2 5
Life History 10 3 2 1 8
Taxonomy 72 2 3 0 16
Other(Ethnobotany) 1 2 NA 2 2
Education 5 2 2 0 5
Social 14 2 1 0 5
Other(Reference) 1 1 NA 1 1

302

303
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304 c.  Taxa addressed

305

306 The third major topic for this work was to determine how often different taxonomic 

307 groups are represented in papers utilizing biodiversity databases. Taxa in relevant papers were 

308 coarsely characterized as plants, vertebrates, invertebrates, fungi, paleo, and/or all taxa; note that 

309 we addressed only macro-organisms because they are the focus of non-sequence-based species 

310 occurrence databases. These general taxonomic categories also correspond to common divisions 

311 for the organization of natural history collections and associated databases. Many papers include 

312 more than one taxon, and we use an “all taxa” categorization for studies that use all available 

313 data within the species occurrence database(s), such as GBIF. We further categorized taxa 

314 addressed in each paper by adding one or more tag(s) for more specific taxonomic classifications 

315 (e.g. butterflies, Danaus plexippus). While an in-depth assessment of specific taxa is beyond the 

316 scope of the current paper, we did tag the number of taxa addressed in each paper, if that number 

317 was apparent. Our goals here were to characterize the most commonly studied taxonomic groups, 

318 the number of taxa addressed, and to determine uses associated with the three most common 

319 organismal groupings (plants, vertebrates, and invertebrates). 

320 Expected trends for taxonomic groups addressed in published work include the 

321 following: H1) Papers involving plants will be the most common, given work by Tydecks et al. 

322 (2018); H2) Vertebrate data are generally more often applied towards species distribution and 

323 conservation studies; H3) Invertebrate studies are the least common of the three major groups 

324 and are more likely to be the subject of taxonomy, species richness, and barcoding studies; and 

325 H4) The number of species addressed is likely to increase over time as data for more species 

326 become available online and more ambitious projects are undertaken leveraging broad-scale data. 
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327 The most commonly studied taxa were plants (n=232 papers, 46%), followed by 

328 invertebrates (n=125, 25%), vertebrates (n=124, 25%), “all taxa” (n=40, 8%), fungi (n=16, 3%), 

329 and paleontological specimens (n=14, 3%; Table 3). However, the gap between number of 

330 papers addressing plants, vertebrates, and invertebrates closed in recent years (2014–2016, Fig. 

331 3). The overall prevalence of plants in this work corroborated a recent bibliometric study, which 

332 found that 56% of biodiversity-related papers addressed plants, compared to 29% for vertebrates 

333 and 23% for invertebrates (78). The prevalence of plants in the field of biodiversity research may 

334 be the result of several factors. Plants are far more diverse than vertebrates (known to be 

335 relatively well-studied) and therefore generally require more taxonomic work. Herbarium sheets 

336 have also been the easiest historically to digitize, as sheets can be scanned and imaged using 

337 more automated processes (11,15). The current prevalence of plants may also partially be the 

338 result of a strong history of plant research in Europe; this tendency is known as the “Matthew 

339 principle” whereby research concentrates on already well-studied subjects (78). The total number 

340 of invertebrate studies was equivalent to the total number of vertebrate studies (Fig. 3). However, 

341 invertebrates are much more diverse in terms of species (estimated at 6,755,830 species, see 79), 

342 and vertebrates are unquestionably more studied on a per-species basis. The numbers of papers 

343 addressing vertebrates and invertebrates has increased slightly and were roughly equivalent over 

344 time (Fig. 3). The frequency of papers addressing “all taxa” from online databases has not 

345 changed significantly over time (Fig. 3). 

346

347 Figure 3. Number of papers addressing the major taxonomic groups and paleontological records.

348

349
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Table 3. Total number of papers 
from dataset (501) addressing 
the major taxonomic groups and 
paleontological specimens. 
Taxa Number of 

papers
Plants 232
Invertebrates 125
Vertebrates 124
All 40
Fungi 16
Paleo 14

350

351 The most common data uses associated with the major taxonomic groups reflect the 

352 general maturity of data products associated with the respective group. Over 50% of vertebrate 

353 studies involved investigating species distribution (Fig. 5); vertebrate data are generally more 

354 suitable for distribution studies because vertebrates are less diverse, many collections are 

355 completely digitized, and data for individual species are likely to contain sufficient numbers of 

356 records. Birds in particular have relatively good data available, in part because of online citizen 

357 science efforts and associated open data platforms such as eBird (3). While distribution studies 

358 were still the most common application for plants and invertebrates, only 33% and 41%, 

359 respectively, of plant and invertebrate studies dealt with species distribution. Plants and 

360 especially invertebrates are much more diverse, and the average species in these groups are less 

361 likely to have data of sufficient quantity and quality to estimate species distribution, although 

362 growth in resources especially for plants is closing the gap. Data on insect distributions, in 

363 particular, are less complete (or non-existent) for most species and hence may not be suitable for 

364 distribution and conservation studies (80,81). 

365

366
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367 Figure 5. Percentage of papers involving each of the major taxonomic groups 

368 (invertebrates, plants, and vertebrates) that use species occurrence databases 

369 for certain research applications: species distribution, diversity/population, 

370 data paper, taxonomy, invasive species, biogeography, climate change, and

371 barcoding.

372

373 A higher percentage of data papers, taxonomy, and barcoding papers involved 

374 invertebrates (Fig. 5), reflecting in part the high taxonomic diversity for this group and need for 

375 more data. There are around 60,000 species of vertebrates, an estimated 400,000 plants, and an 

376 estimated 5–6 million species of insects—about one million insect species are currently 

377 described, which highlights the need for more taxonomic work in this group (19,82). Other 

378 invertebrate phyla, such as Mollusca, are highly diverse as well (estimated 70,000–76,000 living 

379 species; ,83). Digitizing efforts for invertebrates have been particularly challenging, because 

380 many clades are so diverse, collections have much larger numbers of specimens, and the 

381 typically small specimens are difficult to digitize (84). Automating digitization of such 

382 specimens, especially pinned insects and fluid-preserved invertebrates, faces significant 

383 obstacles (12,17,85–88). 

384 The use of species occurrence data for conservation followed predicted trends. Vertebrate 

385 studies were more likely to address conservation; 23% of papers using vertebrate biodiversity 

386 records involved conservation, as compared to 14% of papers using plant records and 12% of 

387 papers using invertebrate records (Fig. 5). Twenty percent of vertebrate species are currently 

388 classified as threatened, and that number is increasing (89). While vertebrates have more data, 

389 they are by no means complete (90); less-studied vertebrates (i.e. fish) are also the least digitized, 
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390 as compared to birds (91). Large species tend to receive more research focus and conservation 

391 funding, and very few conservation assessments exist for invertebrate taxa; most insect species 

392 are classified as “data deficient” (e.g. 92). There is much need and potential for using primary 

393 biodiversity data to help determine conservation status of insects—perhaps starting with taxa 

394 known to be biological indicators of ecosystem health (e.g. 93,94) and insects that provide 

395 important ecosystem services (e.g. 95). However, identifying decline requires large numbers of 

396 records along with systematically collected surveys over time, which often do not exist for rare 

397 and potentially threatened species (96). Opportunistic species occurrence records may therefore 

398 be best used to identify data gaps and promising areas for resurveys or standardized long-term 

399 monitoring studies when dealing with species decline (46). 

400 Contrary to expectations, we found that studies addressing “all taxa” remained fairly 

401 consistent over time (Fig. 3), and the maximum number of taxa addressed did not increase (Fig. 

402 4). However, this may simply be an effect of small sample sizes. Only four papers involved 

403 numbers of species in the hundreds of thousands over the period of 2010-2017 (Table 4). Most 

404 papers focused on numbers of species in the single or double digits (Table 4). We found that the 

405 top data uses for papers that addressed “all taxa” involved data compilation and data quality 

406 (data quality assessments, data gap studies, data papers, and reporting on new databases, 

407 respectively). We argue that the scale of data that needs processing, along with issues of often 

408 sparse data, data obsolescence (97), and data of uncertain quality, make large-scale analyses 

409 challenging for anyone but a small group of data sciences-savvy end users. Additionally, 

410 effective large-scale assessments are often impossible without significant investments and active 

411 collaboration across study domains (e.g. taxonomy, ecology, biodiversity informatics) and 

412 geographical regions (98). 
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413

414 Figure 4. Maximum number of taxa addressed in papers (n=501) from 2010-2016.

Table 4. Number of taxa addressed 
by papers using online species 
occurrence records. 

Number of taxa 
addressed

Number of 
papers

1-9 113
10-99 106
100-999 82
1,000-9,999 68
10,000-99,999 22
100,000-999,999 4

415
416

417 d. Links to other data types

418

419 We determine how studies link primary biodiversity data to other data types by 

420 characterizing the variety of data compiled and used in each study (see Supplemental Table 1 for 

421 full descriptions of 28 data linkage tags). We searched for information regarding other data types 

422 used within the methods section of each paper. Data link tags fall under four general categories 

423 of data types, including 1.) other types of occurrence data (i.e. data from literature, field surveys, 

424 species catalogues, private data); 2.) attributes of species occurrence data (e.g. information about 

425 the holding collections of specimens, species traits, conservation status, genetic data, associated 

426 image(s), species interactions, population data); 3.) environmental data (e.g. climate, geographic 

427 information, habitat, ecoregion, etc.); and 4.) data that can be used to determine biases or gaps 

428 (socioeconomic data, expert knowledge, and accessibility of sites—with the last usually 

429 evaluated through proximity to roads or research institutions). We then determine the average 
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430 number of data link tags associated with the six top uses, and the most common data type 

431 associated with each of these top uses. 

432 Expected trends for studies using other data types linked to species occurrence records:  

433 H1) Climate data are likely to be the most common environmental variable linked to species 

434 occurrence records; and H2) Other types of occurrence data are also commonly used, as studies 

435 often need more data records than are currently available.

436 Data types that were most often used in association with online species occurrence 

437 databases (out of 501 relevant papers) included occurrence records from previously published 

438 literature (n=189), climate (n=149), occurrence records from surveys (n=143), collection 

439 information (n=135), habitat (n=118), traits (n=111), and geographic data (n=106, Fig. 6). 

440 Three data types increased from 2010–2016, including collection, genetic, and phylogenetic data 

441 (Fig. 6). The average number of data linkages per paper was four (ranging from one to 11). 

442

443 Figure 6. Number of papers that incorporate other data types to supplement or associate with 

444 online species occurrence records. Data types fall within one of four categories, including 1.) 

445 attributes of occurrence information, 2.) data types that may help address bias in the data, 3.) 

446 environmental variables, and 4.) other kinds of occurrence data. 

447

448 Table 5 summarizes top data linkages for different key uses. As predicted, climate is 

449 often a critical data linkage, especially for species distribution where it is the most common 

450 linkage, and for diversity/population studies where it is a close second. For data papers and 

451 taxonomy studies, both collection data and literature data were often the most common data 

452 linkages. Conservation-focused studies that included species occurrences from databases also 
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453 linked conservation status, habitat, literature, and climatic data. Data quality studies often 

454 included a variety of data linkages, with little sorting of top linkages likely representing the high 

455 dimensionality of data quality issues.

Table 5. Percentage of papers that associate online occurrence data with other data types— 
separated by the six top uses of these databases. Nine data types with the lowest percentages 
were removed from table. The top data type for each research use is bolded, and percentage 
values above 10% are highlighted yellow, orange, and red*. 

Data Type Species 
Distribution

Diversity/ 
Population

Data 
Paper

Taxonomy Conservation Data 
Quality

Climate 58 37 7 2 32 26
Literature 41 40 29 52 40 26
Geographic 37 31 11 2 34 21
Surveys 36 36 29 32 32 13
Habitat 30 34 18 11 43 21
Collection 28 23 44 53 18 22
Traits 25 25 15 26 25 13
Conservation 20 29 9 15 75 15
Expert 15 7 9 3 22 7
Private 15 13 8 5 10 7
Range 14 12 6 5 22 13
Catalogues 11 18 20 25 19 22
Hydrography 11 12 3 2 16 1
Soil 11 11 2 0 10 3
Ecoregion 10 24 8 6 19 7
Genetic 10 13 24 26 6 6
Social 10 7 4 1 13 7
Interaction 9 5 4 8 6 0
Paleo Climate 7 5 1 0 1 0
Image 5 4 21 23 1 7
Phylogenetic 5 11 12 16 1 4

*% of Papers: > 50 30-49 10-29
456

457 The high prevalence of studies compiling occurrence records from other sources indicates 

458 a continued demand for more and continued specimen sampling and the need for more progress 

459 in getting these data digitally captured and into online databases (i.e. data papers and new 

460 database development). Three of the top five data types linked to online occurrence records were 
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461 other types of occurrence data, including literature-based occurrence data, surveys, and specimen 

462 data from natural history collections (n=189, n=145, and n=135 papers used these data types, 

463 respectively). Sometimes the compiled data eventually make it into online data aggregators, such 

464 as GBIF, and sometimes they do not. Continued advocacy for data publication will be important 

465 to maximize the potential use of all biodiversity data.

466 Environmental data used in conjunction with online biodiversity records are usually 

467 applied in studies of species distribution. Specific environmental parameters used to predict 

468 distribution should be informed by expert knowledge of the requirements of a given species. 

469 Among environmental variables, climate data are perhaps the most readily available, relevant for 

470 the distribution of organisms on a global scale, and provide essential information for determining 

471 impacts of climate change on distribution (99,100). Our data show that climate is indeed the 

472 most common environmental variable used in association with occurrence records (Fig. 6; also 

473 documented in 54). The second and third most common environmental data types used were 

474 geographic and habitat, which usually included GIS layers for elevation and land use and/or 

475 vegetation (see Supplemental Table 1). Elevation, land use, and vegetation data are also among 

476 the most readily available environmental data types, and are often relevant for evaluating species 

477 distribution at smaller spatial scales (101). Despite increasing calls for incorporating relevant 

478 biotic interactions into models, only nine distribution studies incorporated data on interactions 

479 (i.e. competitive, consumptive, symbiotic, or pathogenic relationships), and 30 studies overall 

480 involved species interactions. The relatively low prevalence of species interaction information in 

481 these studies is thought to be primarily due to the large spatial scales usually considered in 

482 distribution models. Biotic interactions are often studied on a smaller scale by community 

483 ecologists, while distribution modeling is often done by macroecologists (102). Primary species 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/605071doi: bioRxiv preprint 

https://doi.org/10.1101/605071
http://creativecommons.org/licenses/by/4.0/


25

484 occurrences may provide needed data for studying biotic interactions on a larger scale, but these 

485 data are often not digitized, even if they exist in collections, and compiling data of sufficient 

486 quantity and quality for a given taxon remains an obstacle due to lack of automated data capture 

487 options for invertebrate collections.     

488 The only data types that have increased over time were specimen collection, genetic, and 

489 phylogenetic data (Fig. 7). We expected to see an increase in use of genetic data in particular, as 

490 these data are known to have expanded with the growth of databases such as the Barcode of Life 

491 Data System (BOLDSystems), linking molecular, morphological, and distribution data (103); the 

492 number of records in BOLDSystems increased from about 0.5 million in 2007 to 1.5 million 

493 today (104). Further, large-scale phylogenetic resources such as Open Tree of Life (105), 

494 launched in 2015, have made it easier than ever before to assemble those resources with other 

495 species data. The increasingly available collections, genetic, and phylogenetic data are highly 

496 relevant in taxonomy-related studies and data papers, which increased over time (Fig. 2). 

497

498 Figure 7. Data types that increased over the period from 2010 through 2016. These include data 

499 needed for taxonomic/phylogenetic studies, namely those from natural history specimens, 

500 genetic data, and phylogenetic data.

501

502 Both taxonomy and data papers used collection data most frequently in addition to data 

503 already available in online databases. Taxonomy uses of online species occurrence databases 

504 sometimes involve describing new species, but more commonly involve compilation of regional 

505 species checklists. The most traditional use of collections data is for taxonomy, so it is not 

506 surprising that over 50% of taxonomy papers also involve collections and literature data. The 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/605071doi: bioRxiv preprint 

https://doi.org/10.1101/605071
http://creativecommons.org/licenses/by/4.0/


26

507 relatively high percentage of data papers that involve collections data (44%) reflects recent 

508 digitization efforts for natural history collections (1,9,13,106). 

509

510 e. Data quality

511

512 We characterize papers that address major data quality issues known to be associated 

513 with species occurrence data, including both common errors and biases. Data quality tags 

514 involve improving data quality for a particular purpose addressed in the paper. Taxonomic 

515 nomenclature, species identification, spatial, and temporal data quality tags represent 

516 adjustments to the dataset used in a study that at least partially corrects the associated errors (see 

517 Supplemental Table 1). We also characterize studies that exclude certain inappropriate records, 

518 remove records with high georeferencing uncertainty, remove outliers, and those that address 

519 collection effort—see Supplemental Table 1). In addition to errors, some studies address specific 

520 biases known to be a problem in opportunistic datasets, including taxonomic, spatial, temporal, 

521 and environmental biases. Finally, we have a “detection” tag to represent use of statistical 

522 methods to estimate detection probability (51). We assess the average number of quality tags 

523 associated with papers overall, and the most common data quality issues addressed within each 

524 of the top uses. We hypothesize that the most common data quality issues addressed are likely to 

525 be checks for correct taxonomic nomenclature and correct georeferences.

526 Overall, 69% of studies from our dataset that used online species occurrence records 

527 addressed one or more aspects of data quality. The biggest data quality concerns cited by users of 

528 primary biodiversity data in a recent survey (23) were georeference quality and taxonomic 

529 quality—we found that studies addressed these issues in 24% (spatial error in georeferences), 
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530 39% (taxonomic nomenclature), and 19% (species identifications) of published papers from our 

531 dataset (Table 6). Two data quality checks increased from 2010 to 2016: correcting taxonomic 

532 nomenclature and specimen identification (Fig. 8), reflecting also the increase in taxonomy-

533 related and data papers. 

534

535 Figure 8. Number of papers that address identification errors and/or update taxonomic 

536 nomenclature over the period of 2010-2016. 

Table 6. Papers from dataset (n = 501) that 
addressed data quality issues associated with 
species occurrence records. 
Quality Tag Number 

of Papers
Percentage

Taxonomic 193 39%
Spatial 121 24%
Identification 94 19%
Spatial Bias 59 12%
Exclusion 57 11%
Effort 50 10%
Precision 30 6%
Temporal 18 4%
Outliers 17 3%
Temporal Bias 11 2%
Taxonomic Bias 9 2%
Environmental 
Bias 6 1%
Detection 4 1%

537
538

539 Spatial errors and taxonomic nomenclature are generally the easiest data quality errors to 

540 correct. Non-experts can check for spatial outliers or incorrect georeferences using standardized 

541 methods and online georeferencing tools (35,107). Depending on data needs, one may also use 

542 existing error radii associated with georeferenced coordinates to select appropriate records for a 
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543 study. However, most records in GBIF, for example, still do not have error radii; in a recent 

544 assessment of GBIF records for Odonata, Ephemeroptera, Plecoptera, and Trichoptera from the 

545 U.S.A., we found that the percentage of records with error radii associated with them was only 7-

546 36% for these aquatic insect groups (as of April 2017). Of the 6.2 million catalogued molluscan 

547 lots in U.S. and Canadian collections, 4.5 million have undergone some form of data digitization. 

548 Of these, about 1.1 million (24%) of digitized records have been georeferenced, which represents 

549 18% of all catalogued lots (47). However, only a subset of these have error radii associated. 

550 Many digitization efforts for insects in particular have prioritized transcribing and publishing 

551 specimen label information and have not yet begun or completed georeferencing. 

552  Online taxonomic catalogues and tools to check records against updated catalogues are 

553 available for correcting taxonomic nomenclature (108,109). However, we still have not reached 

554 the major goal of having online taxonomic data sources that are consistently updated by 

555 taxonomic experts for all species, although community-supported resources such as FishBase 

556 (110), WoRMS (111), and the latter’s affiliated databases such as MilliBase (112), and 

557 MolluscaBase (113) are approaching that goal for many taxonomic groups. Other groups may 

558 lack online sources or have sources that are significantly out of date (114). Unfortunately, the 

559 decline in resources devoted to the field of taxonomy does not bode well for achieving a unified 

560 taxonomic backbone usable for resolving all taxonomic issues (115,116). Given the speed of 

561 taxonomic concept changes (117), lack of updated resources is a significant impediment to 

562 proper data integration. The best way for taxonomic experts to help ensure that nomenclature for 

563 their group is current is to engage with the community-supported and specialist-edited taxonomic 

564 database projects in their respective fields. The combined data of massive authority file efforts 
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565 spanning multiple taxon groups, such as those covered by WoRMS, allow for novel approaches 

566 to data analysis (118).      

567 Correcting species identifications requires taxonomic expertise for many organisms, 

568 particularly high-diversity groups such as insects. Many users outside of the community of 

569 trained collection scientists may not understand or be interested in taxonomic concepts (1). 

570 Therefore, despite misidentification being a well-known problem, this issue is less often directly 

571 addressed in papers. For those who are not taxonomic experts, some possible approaches to 

572 address misidentifications include: choosing taxonomic groups that are relatively easy to identify 

573 and less likely to have identification error, or including only records identified by reliable 

574 experts. For broad-scale biodiversity studies it may be appropriate to check occurrence locations 

575 against known ranges (where those exist); one may then identify outliers in the data where 

576 species are found in regions where they are not known to occur.  Such efforts require both 

577 taxonomic and geospatial skills, although some automation may be possible (119).

578 Biases that result from variation in collection effort across space, time, taxonomic groups, 

579 and environments are also well-known problems in opportunistic biodiversity records 

580 (30,39,40,80). The most commonly addressed bias in our dataset was spatial (addressed in 12% 

581 of papers, Table 7), as it is important for accurate species distribution modeling, and some 

582 methods to deal with spatial bias have been developed (39). Other forms of bias were rarely 

583 addressed in only 1–2% of papers and include temporal bias (usually seasonal bias for certain 

584 times of year, or bias for certain years where specialists are active), taxonomic bias (e.g. 

585 preference for endangered species, charismatic taxa, avoiding common species or 

586 pests)(45), and environmental bias (e.g. preference for collecting in certain habitats or climates) 

587 (39).
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Table 7. Percentage of papers that check aspects of data quality for online occurrence data— 
separated by the six top uses of these databases. Nine data types with the lowest percentages were 
removed from table. The top data type for each research use is bolded, and percentage values 
above 10% are highlighted yellow, orange, and red*. 
Data Quality 
Check

Species 
Distribution

Diversity/ 
Population

Data 
Paper

Taxonomy Conservation Data 
Quality

Spatial 28 27 26 9 29 40
Taxonomic 27 48 48 56 40 40
Spatial Bias 24 15 4 2 16 29
Identification 21 14 38 40 9 18
Exclusion 19 20 5 1 15 9
Effort 14 19 9 2 12 25
Precision 9 7 3 0 12 15
Outliers 5 1 1 1 3 10
Temporal Bias 4 3 2 1 1 4
Temporal 3 2 5 1 1 13
Environmental 
Bias 2 1 1 1 0 6
Taxonomic Bias 2 4 2 0 1 4
Detection 1 0 0 0 1 1

*% of Papers: > 50 30-49 10-29
588

589 Data quality issues addressed are often dictated by the specific use. The most commonly 

590 checked data quality issues for papers involving species distribution were spatial errors (28% of 

591 distribution studies), taxonomic nomenclature (27%), spatial bias (24%), specimen identification 

592 (21%), and excluding inappropriate records (19%; Table 6). Taxonomic nomenclature was the 

593 most commonly checked data quality issue for all other top uses, ranging from 40% of papers 

594 (conservation and data quality uses) to 56% (taxonomy). In general, taxonomy papers only check 

595 issues related to nomenclature and identification. Data quality papers tend to focus evenly on the 

596 two most easily corrected issues (spatial and taxonomic, each 40% of data quality papers), 

597 followed by accounting for spatial bias (29% of data quality papers), effort (25%), and correcting 

598 specimen identification (18%). Diversity/population and conservation papers both also address 

599 taxonomic nomenclature and spatial errors most frequently (Table 7). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/605071doi: bioRxiv preprint 

https://doi.org/10.1101/605071
http://creativecommons.org/licenses/by/4.0/


31

600 Automated data quality annotations are growing within the major online data aggregators 

601 (e.g. GBIF, iDigBio), but there is still much room to improve upon methods to easily tag data 

602 and highlight errors, biases, and uncertainty levels in the data. We need better methods to 

603 document confidence in data at a record and dataset level (22). When data quality is addressed, it 

604 is usually done manually, and workflows are difficult to document, extend, and share. More 

605 recently, programs to automate and document data cleaning workflows have been developed, 

606 such as Kurator, a Kepler data curation package (36), but are not yet widely used due to the 

607 highly technical user interface, and have uncertain future support. Biodiversity databases allow 

608 efficient access to data that can expedite work, but care is still needed when using these 

609 resources. Data quality improvements on a large scale will require additional investment in data 

610 enhancements (e.g. collaborative georeferencing using standardized point-radius method) and 

611 quality control (e.g. efficiently identifying records that may need correction or attention from 

612 taxonomic experts). 

613

614 IV. CONCLUSIONS AND NEXT STEPS

615 (1) A high proportion of studies did not sufficiently cite databases, and many databases were 

616 no longer accessible at the time of this study; in most cases it was unclear whether the 

617 data were lost or moved to an aggregator. Continued efforts in data preservation and 

618 promoting best practices in data citation are essential for advancing scientific 

619 reproducibility, sustaining data resources, and encouraging publication of high-quality 

620 biodiversity data. 

621 (2) The increasing number of data papers over time reflects progress in digitization and 

622 online platforms for reporting observations through citizen science, as well as increases 
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623 in journals that support data publication. Continued growth of data publications will 

624 enhance the efficiency and relevance of the field in addressing biodiversity conservation 

625 and environmental management. 

626 (3) Our study corroborated a recent bibliometric analysis of the larger field of biodiversity 

627 research, finding that more studies address plants (46% of studies using biodiversity 

628 databases) than vertebrates (25%) and invertebrates (25%). The prevalence of plants in 

629 studies that use online biodiversity databases may be due to a strong history of plant 

630 diversity work in Europe in particular, and the relative ease with which herbarium records 

631 can be digitized by scanning herbarium sheets.  

632 (4) While studies overall were less common for vertebrates than for plants, vertebrates may 

633 generally be more suitable for distribution studies because the group is less diverse, many 

634 collections are completely digitized, there are prolific citizen science communities 

635 reporting bird observations in particular, and data for individual species are more likely to 

636 contain sufficient numbers of records. Conservation studies are also more common for 

637 vertebrates, likely because they are disproportionately represented in threat assessments. 

638 In contrast, highly diverse invertebrates are more likely to be the subject of foundational 

639 biodiversity studies, such as taxonomy, barcoding, and data papers. 

640 (5) It is concerning that a relatively large proportion of studies does not explicitly address 

641 data quality—only 69% of studies in our dataset reported addressing one or more aspects 

642 of data quality. Authors who do address data quality are most likely to standardize 

643 nomenclature using online resources or to correct spatial errors. For nearly all uses of 

644 these data, there are errors and biases that can compromise results when using 

645 opportunistic records. Improving upon automated solutions to flag errors, and efficient 
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646 mechanisms to report and correct data quality issues is critical in advancing the relevance 

647 and broadest use of this type of biodiversity data (120). 

648 (6) Significant investments in data enhancement and quality control are needed. This may be 

649 one limiting factor holding back studies that utilize all data currently held within 

650 biodiversity databases and studies that address very large numbers of taxa within clades. 

651 We found only four studies since 2010 that address hundreds of thousands of taxa, and 

652 most papers address numbers of taxa in the single or double digits. Large-scale 

653 improvements in data availability and fitness will require interdisciplinary effort and 

654 collaboration. 

655 (7) To limit the scope of the present paper, we focused efforts here on data citation, research 

656 uses, general taxa addressed, data linkages, and data quality issues addressed. However, 

657 we are also utilizing the dataset of tagged papers to address additional questions 

658 regarding author connectedness and collaboration across institutions, countries, and 

659 disciplines. Such next-step efforts will provide additional context about the nature and 

660 scope of collaborations and resources that coalesce around digitally accessible primary 

661 biodiversity data.  

662
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