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Abstract 

We present a method for the stoichiometric labelling of expressed protein tags (SNAP tag and Halo 
tag) with single DNA docking strands, allowing the application of single molecule localisation 
microscopy via DNA-PAINT, termed tagPAINT. tagPAINT in then utilised for multiplexed and 
quantitative imaging of T-cell receptor signalling proteins. 

Main Text 

An important challenge for single molecule localization microscopy for quantitative measurements is 
control over the stoichiometry of the label to the molecule of interest. Lack of such control can 
confound or alter the observed biological behaviour and states of single molecules, complexes and 
structures due to suboptimal labelling1, 2, crosslinking due to multivalency, or label-exchange3. To 
address these challenges approaches have been developed that allow a chemically versatile 
stoichiometric covalent linkage to be formed between biological molecule and fluorescent probes, in 
structurally defined positions4, 5. For example, stable and stoichiometric coupling of fluorescent labels 
to proteins of interest has been achieved through genetically encoded affinity tags6, 7, non-canonical 
amino acid (ncAA) labelling8, 9, and orthogonal chemistry10, 11. Such approaches have then been used 
to observe proteins at the single molecule level10, 12.  

Recently, Jungmann et al. demonstrated a SMLM approach using the binding/unbinding of short 
fluorescently conjugated DNA probes to antibodies labelled with complementary target strands, 
known as DNA PAINT13-16. This approach was extended to determine the number of proteins/targets 
present in sub-diffraction structures, termed qPAINT17. This method abrogates the uncertainty 
associated with the stochastic nature of fluorophore blinking and exploits a priori knowledge of the 
binding/unbinding behaviour of the probes. With this approach good agreement was achieved 
between the theoretical binding/unbinding rate and the observed number of proteins. However this 
approach relied on the use of probes labelled with multiple DNA target strands.  Thus, multivalent 
interactions between proteins,and multiple target strands per protein, and incomplete labelling are still 
challenges that need to be addressed. More recently approaches to address this aim to minimise the 
linkage error, and include ncAA incorporation8, affimers18, and SOMAmers19 which all allow 1:1 
functionalization. However, although SOMAmers spend a long time bound, they still rely on a non-
covalent interaction, and can potentially dissociate during long imaging times. Similarly, affimers are 
non-covalent, and sometimes require post-fixation, which may lead to off-target labelling. Also these 
reagents are only available for a few protein targets to date. Finally, while ncAA incorporation does 
allow a covalent stoichiometric linkage, it suffers from low expression and efficiency for labelling. 
New approaches which allow covalent and stoichiometric labelling of a protein of interest, while 
maintaining a low linkage error, would thus allow robust counting of protein numbers within cell, and 
thus full sampling of the heterogeneity therein16.  

At present there are a variety of methods to label proteins of interest covalently. One approach is 
incorporation of an enzymatically active tag, such as SNAP/CLIP-tag20 and Halo Tag21 technology. 
The Halo tag makes use of a chemical reaction orthogonal to eukaryotes, i.e., the dehalogenation of 
haloalkane ligands, thus, leading to highly specific covalent labelling of the tag, and therefore 
protein21, in both live and fixed cells.  Haloalkanes can be modified to bear fluorescent labels, and has 
been demonstrated before for single molecule localisation microscopy (SMLM) in live cells using 
ATTO dye modified ligands10.  Similarly, SNAP tag, a mutant of DNA repair protein O6-
alkylguanine-DNA alkyltransferase, can be covalently modified using O6-benzylguanine substrates 
(BG), and has also been demonstrated to be suitable for SMLM imaging22. Combining such tagging 
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systems with DNA-PAINT imaging opens up the possibility for robust quantitative imaging of 
proteins within cells with certainty that the stoichiometry of ligand:tag is 1:1, and, simultaneously 
reducing the linkage error (size of tags c.a. < 5 nm). 

Here, SNAP-tag and Halo Tag technologies are exploited to allow stoichiometric labelling of single 
proteins with a DNA PAINT target strand (i.e., 1 protein: 1 target strand). Amine-bearing DNA target 
strands are modified by a one-step covalent conjugation reaction to bear either a O6-benzylguanine or 
Halo ligand, thus generating SNAP and Halo PAINT substrates. The specificity of the approach is 
demonstrated by targeting α-tubulin.  The multiplexing potential of tagPAINT is then applied to cells 
co-expressing Halo-tagged CD3ζ and SNAP-tagged LAT in Jurkat T-cells. Finally, the stoichiometric 
nature of this method is exploited to enable quantitative imaging, and thus counting, of single SNAP 
tag-labelled CD3ζ -chains of the T-cell receptor (TCR) at synapse of activated Jurkat T-cells. 

First, to demonstrate the specificity of the approach we targeted SNAP and Halo tagged-α-tubulin 
(Fig. 1). Halo and SNAP tagged proteins bind covalently to their ligands, thus functionalisation of 
these ligands with single DNA target strands makes them amenable to DNA-PAINT imaging. To this 
end we used 5’-amine functionalised DNA target strands and reacted them either with excess of O6-
benzylguanine -NHS or Halo ligand-NHS ligands in a single step reaction (Supplementary Scheme 1 
and 2). The product was then purified by size exclusion chromatography to remove the excess 
unreacted ligands, and used to label tag-expressing cells (Fig. 1a and b). NIH-3T3 cells, expressing 
both SNAP (Fig. 1a) and Halo-tagged (Fig. 1b) α-tubulin were labelled with the respective ligands 
and imaged using a complementary imaging strand labelled with Cy3B. It is clearly observed for both 
of the tags that the imager strand is directed to tubulin fibres. However, breaks in the fibre structure 
are observed (Fig. 1a and b, i-iv). This likely arises due to the fact that we express only one of the 
tubulin subunits, α-tubulin, and the presence of endogenous α-tubulin.  

Having achieved specific targeting of the both SNAP and Halo-tagged proteins for DNA-PAINT in 
isolation, we sought to demonstrate the potential for multiplexed imaging with these two tags for 
DNA-PAINT. We used CD3ζ-knockout Jurkat T-cells and expressed both a Halo-tagged CD3ζ chain 
and SNAP-tagged LAT protein (Fig. 2a).  These proteins are involved in the early signalling of T-cell 
activation and have been shown to associate and co-cluster upon engagement of the TCR23. Here, 
each protein was labelled with a ligand bearing different target sequences (P03 and P01), with SNAP-
LAT being imaged with 2 nM of Cy3B labelled P03 imager and Halo-tagged CD3ζ imaged with 2nM 
ATTO655 conjugated P01 imager. DNA-PAINT signal is observed from both SNAP-LAT and Halo-
CD3ζ proteins within the cell membrane (Fig.2b, i-ii). Thus, it is possible to orthogonally target and 
image different proteins within cells by employing the two tagging methods simultaneously. 

Given that the stoichiometry of docking strand to protein target is 1:1, we used our approach to 
measure the stoichiometry of tagged CD3ζ within the membrane using quantitative DNA-PAINT 
(qPAINT). Quantitative tagPAINT data were acquired in CD3ζ-knockout Jurkat T-cells transfected 
with SNAP tag-labelled CD3ζ on activating antibody coated coverslips (Fig 3a and 3b) using 5 nM 
ATTO655 imaging strand. Implementation of such analysis relies heavily on the ability to calibrate 
the association rate to obtain the characteristic dark time (τd), of the imager strand with the target 
strand17. Previously, Jungmann et al. employed DNA origami structures with target stands at specific 
positions on the origami to calibrate the association of DNA imaging strands with the target for a 
given experimental imager concentration17. By observing repeated binding events at these sites within 
the origami, it was then possible to measure the τd for a single target site, which was then used as a 
standard for calculating the number of sites within an unknown sample. Using a similar calibration 
method, within the same sample, we used a DNA origami block bearing a single target strand, 
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complementary to the imager strand, which were dispersed on the coverslip and anchored using 
avidin-biotin chemistry. It is evident from the images that single punctate features could be observed 
within the membrane of the cell (Fig 3a; zoomed regions i-iv). For quantitative analysis, the 
pointillistic tagPAINT data were automatically segmented using clustering algorithm (DBSCAN24), 
thus generating regions of interest for quantitative analysis.  The points within the clusters were then 
used in conjunction with their time of appearance to calculate the characteristic dark time for that 
cluster, τd (Fig.3b). This was done for both the single site origami and the SNAP-tagged CD3ζ.  The 
mean dark times for the single site origami calibration and the SNAP-tagged CD3ζ were 110.0 ± 4.1 s 
and 112.2 ± 4.2 s, respectively (mean ratio = 1.0 ± 0.1). Thus, population SNAP-tagged CD3ζ is 
largely monomeric, given its similarity to the dark time distribution for the single site calibration. 
CD3ζ chains are a dimer within the TCR-CD3 complex (Fig. 3b), however, when the chain is 
stretched out (approximately 35 nm in length, with the added diameter of the SNAP-tag) it is possible 
that the SNAP-tagged C-termini of a CD3ζ chains could lay far enough apart to be resolved, given 
that the linkage error of this approach is inherently smaller than conventional labelling. These data 
show that it is possible to detect individual SNAP-tagged proteins even though the overall distribution 
of receptor in activated T cells is non-random25. 

In conclusion, we demonstrate the covalent conjugation of DNA target strands to SNAP and Halo tag-
labelled proteins stoichiometrically (1 protein: 1 DNA target), termed tag-PAINT. Firstly, we 
demonstrated the specificity of the approach by targeting tubulin in transfected cells. Further the 
potential for multiplexed imaging (both tags in the same cell) of CD3ζ and LAT in activated CD3ζ 
knockout Jurkat T-cells was achieved. Finally, exploiting the stoichiometry of conjugation we 
quantified the number of CD3ζ within the membrane of the same knockout Jurkat T-cells, and were 
able to observe largely single copies of the protein. 
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Main Figures 

 
Fig. 1. Specific labelling and DNA-PAINT imaging of α-tubulin via tagPAINT. a. DNA-PAINT 
imaging of NIH-3T3 cell expressing SNAP-tagged α-tubulin (orange), labelled with SNAP-PAINT 
ligand (top, blue box).  Images were acquired using Cy3B labelled imaging strand. b. DNA-PAINT 
imaging of NIH-3T3 cell expressing Halo tagged α-tubulin (green), labelled with Halo-PAINT ligand 
(top, blue box). Images were acquired using Cy3B labelled imaging strand at 2 nM. Scale bars are 5 
µm (top left panels) and 50 nm zoomed regions (i-iii). 
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Fig. 2. Multiplexed tagPAINT imaging of CD3ζ and LAT in CD3ζ knockout Jurkat T-cells. a.  
CD3ζ knockout Jurkat T-cells were co-transfected with SNAP-tagged LAT and Halo tagged CD3ζ. 
Cells were labelled with both SNAP-PAINT (P03 docking strand) and Halo-PAINT (P01 docking 
strand) ligands.  Cells were imaged sequentially with two different imaging strands, a Cy3B labelled 
imager (2 nM) directed to the SNAP-LAT and an ATTO655 imager (also 2 nM) for the Halo-CD3ζ. 
b. Overlayed tagPAINT images (left) of SNAP-LAT (magenta) and Halo-CD3ζ (green). Scale bars 
are 2 µM and 500 nm for zoomed images. 
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Fig. 3. Quantitative tagPAINT imaging of SNAP-CD3ζ. a. CD3ζ-knockout Jurkat T-cells were 
reconstituted with SNAP-tagged CD3ζ. Cells were labelled with SNAP-PAINT (P01 docking strand) 
and imaged with ATTO655 imager (5 nM). Scale bars 2 µM and 500 nm for zoomed images (i-iv). b. 
Dark-time distributions for single site origami calibration (purple) and SNAP-tagged CD3ζ (cyan). 
Both have been fit by a single Gaussian (origami calibration – red; SNAP-tagged CD3ζ - blue). 
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Online Methods and Materials 

Plasmids. Tubulin-C-18 and were a gift from Michael Davidson (Addgene plasmid # 58197; 
http://n2t.net/addgene:58197 ; RRID:Addgene_58197). TUBB5-Halo was a gift from Yasushi Okada 
(Addgene plasmid # 64691; http://n2t.net/addgene:64691; RRID:Addgene_64691). For the expression 
of Halo Tag-labelled human CD3ζ, the EGFP gene in the vector pEGFP-N1 was exchanged with the 
Halo Tag gene after restriction digest, generating an empty back bone where human CD3ζ could be 
inserted. For SNAP-CD3ζ the Halo tag was subsequently replaced with SNAP gene, using the AgeI 
and NotI sites. For SNAP-LAT, human CD3ζ of the SNAP-CD3ζ construct was replaced with human 
LAT 

Dye conjugated DNA imaging strands. P03Cy3B: 5’-GTAATGAAGA-Cy3B-3’ (Fig.1 and Fig.2, 
both at 2 nM), P01ATTO655: 5’- CTAGATGTAT-ATTO655-3’ (Fig.2; 2nM, and Fig.3; 5nM). 
 
Single site calibration DNA origami synthesis. A 115 helix DNA nano-cuboid was synthesised by 
annealing an m13mp19 genome back bone with 276 complementary staple strands (Supplementary 
Table 1). Four  staple  extensions  (5’-TGCGCAACTTGTGAAGTGTC-3’)  that  were  
complementary     to     20     nt  biotinylated     DNA     strands     (5’- 
biotin/GACACTTCACAAGTTGCGCA-3’)  were  incorporated  on the bottom side of the cube to 
immobilise the nanotubes on streptavidin-coated surfaces. A further eleven 20 nucleotide staple 
extensions (5’-GTCACCATGTACCAATAGCG-3’) were placed on the upper surface of the nano-
cuboid to bind to complementary fluorescent  oligos  labelled  with Alexa488 (5’-
CGCTATTGGTACATGGTGAC-3’). Finally, the staple on helix 16 was extended to bear a single 
DNA-PAINT target sequence (P03; TTTCTTCATTA).  The mixture was annealed for 24 hours 
(details) and subsequently gel purified for use. 
 
Synthesis of Halo tag-DNA ligands. 5’amino modified DNA-docking strands were diluted in 10 mM 
sodium phosphate buffer pH 6.8, supplemented with 5 mM EDTA, to a final concentration of 1 mM.  
N-hydroxysuccinimidyl ester functionalised Halo tag ligand (NHS-HL) was freshly reconstituted in 
dry DMSO to a final concentration of 50 mM (unused NHS-HL was aliquoted and stored at -80°C).  
NHS-HL was diluted 10 times by adding 5’amino modified DNA-docking strands and mixing 
thoroughly. The reaction was left for 1 h at room temperature. The reaction product, HL 
functionalised with a DNA-docking strand was purified from excess unreacted NHS-HL by size 
exclusion chromatography, with 10 mM Tris supplemented with 1 mM EDTA as the mobile phase. 
Purified HL-DNA-docking strands were aliquoted and stored at -20°C until use (final concentration 
approximately 100-200 µM). 

Synthesis of SNAP tag-DNA ligands. 5’amino modified DNA-docking strands were diluted in 
10 mM sodium phosphate buffer pH 6.8, supplemented with 5 mM EDTA, to a final concentration of 
1 mM.  N-hydroxysuccinimidyl ester functionalised SNAP ligand (O6-benzylguanine) was freshly 
reconstituted in dry DMSO to a final concentration of 50 mM (unused NHS- O6-benzylguanine was 
aliquoted and stored at -80°C).  NHS- O6-benzylguanine was diluted 10 times by adding 5’amino 
modified DNA-docking strands and mixing thoroughly.  The reaction was left for 1 hour at room 
temperature. The reaction product, O6-benzylguanine functionalised with a DNA-docking strand was 
purified from excess unreacted NHS- O6-benzylguanine by size exclusion chromatography, with 10 
mM Tris supplemented with 1 mM EDTA as the mobile phase. Purified HL-DNA-docking strands 
were aliquoted and stored at -20°C until use (final concentration approximately 100-200 µM). 

Transfection and fixation of NIH-3T3 cells.  NIH-3T3 cells were transfected with Halo or SNAP 
constructs using Lipofectamine-3000 (ThermoFisher) following the manufacturers guidance. Briefly 
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cells were seeded to 50% confluency on clean glass coverslips. Cells in DMEM were incubated with a 
mix of 5 µg SNAP or Halo tagged alpha tubulin with Lipofectamine 300 and P300 reagent in 
Optimem for 24 h.  Cells were then washed and pre-extracted using a microtubule stabilising buffer 
(BRB80+ 4mM EGTA) supplemented with Tween-20 0.5% (v/v) for 30 s and then fixed by adding an 
equal volume of 8% (v/v) PFA in microtubule stabilising buffer. 

Transfection and fixation of Jurkat T-cells.  E6.1 Jurkat T cells were transfected with Halo or 
SNAP constructs using an Invitrogen Neon Electroporation Transfection System (Life Technologies 
Pty Ltd.), using 3 pulses of 1350 V lasting 10 ms. The cells were left to recover after transfection in 
RPMI medium without Phenol Red (6040, GIBCO) supplemented 20 % (v/v) fetal bovine serum. 
Before seeding cells were pelleted by centrifugation, washed once with PBS and then resuspended in 
PBS. Cells we then used for seeding onto coverslips coated with 10 µg/mL anti-human CD3ε 
(activating) for 10 min at 37°C with 5% CO2, after which non-adherent cells were washed away with 
PBS and then fixed with freshly prepared warm 4% (w/v) PFA in PBS for 10 mins.  Fixative was then 
washed away with PBS and then cells were permeabilised for labelling with 0.1% (v/v) Triton X-100 
in PBS for 3 min.  

Labelling with SNAP and Halo DNA ligands.  Both DNA-functionalised SNAP and Halo ligands 
were incubated with fixed cell samples at a final concentration of 5 µM in PBS supplemented with 
0.2% Tween-20 (PBST) for 10 min.  The samples were then vigorously washed with 1 mL of PBST, 
several times to remove any non-specifically adsorbed ligand. Finally, the samples were incubated 
with gold nanorods (Nanopartz) in PBST for 10 mins before mounting for tagPAINT imaging. 

tagPAINT imaging.  Prior to imaging labelled cells, glass coverslips were mounted into a chamlide 
chamber and freshly prepared imaging strands (Fig. 1: 1 nM Cy3B P03, Fig. 2: 2nM Cy3B P03, 2nM 
ATTO655 P01, Fig. 3: 5nM ATTO655 P01) in PBST supplemented with 500 mM NaCl were added 
to the chamber. For tagPAINT imaging, Cy3B and ATTO655 imager binding was acquired with the 
561 nm (0.100 kW/cm2) and 642 nm (0.075 kW/cm2) laser lines, respectively. For standard tagPAINT 
imaging (Fig. 1-2) an integration time of 80 ms was used, with a TIRF angle of 66.90°, with 50,000-
10,0000 frames acquired.  For quantitative tagPAINT imaging (Fig. 3) the integration time 300 ms for 
50,000 frames with a TIRF angle of 66.90°. Images were acquired either as 256x256 (Fig. 1) of 
512x512 (Fig. 2-3) sized images with a pixel size of 97 nm. 

tagPAINT processing and quantitative analysis.  tagPAINT images were processed using Zeiss 
Zen Black software. The position of bound imaging strands in the acquisition was determined by 
Gaussian fitting, using a peak mask radius size of 6 pixels and a signal to noise ratio cut-off of 8. The 
localisation data was then drift corrected using the point patterns generated from the localisation of 
gold nanorod fiducials within the field of view using the Zeiss Zen Black software drift correction. 
The resulting localisation table was used for further analysis without modification. DBSCAN was 

used to group x,y localisation data of DNA imaging strands into clusters, with minPts = 20 and ε = 
15 nm. Localisations assigned to clusters were then analysed for the frequency of events from 
binding/unbinding of detected DNA imaging strands. Firstly, time traces for events in each cluster 
over time were generated and the time between events, i.e., the dark time, was extracted. The 
exponential CDF of the dark times was fitted to a single exponential, and the dark time corresponding 
to 1-1/e extracted. For DNA origamis calibration samples, this number was used to deduce the dark 
time for a single site, τd. For the number of molecules per cluster from Halo-PAINT data characteristic 
dark time for a cluster, τdC, was extracted and divided by τd. 
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Supplementary Information 
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Supplementary Scheme 1. Synthesis of SNAP-PAINT ligand. N-hydroxysuccinimidyl ester 
functionalised SNAP ligand (NHS-O6-benzylguanine, 1.) was freshly reconstituted in dry DMSO to a 
final concentration of 50 mM (unused NHS-O6-benzylguanine was aliquoted and stored at -80°C). 
5’amino modified DNA-docking strands (2.) were diluted in 10 mM sodium phosphate buffer pH 6.8, 
supplemented with 5 mM EDTA, to a final concentration of 1 mM.  .  NHS-O6-benzylguanine was 
diluted 10 times by adding 5’amino modified DNA-docking strands and mixing thoroughly (giving a 
5:1 ratio of NHS-O6-benzylguanine:5’amino DNA).  The reaction was left for 1 hour at room 
temperature. The reaction product (3.), BG functionalised with a DNA-docking strand was purified 
from excess unreacted NHS-O6-benzylguanine by size exclusion chromatography, with 10 mM Tris 
supplemented with 1 mM EDTA as the mobile phase. Purified HL-DNA-docking strands were 
aliquoted and stored at -20°C until use (final concentration approximately 100-200 µM). 
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Supplementary Scheme 2. Synthesis of Halo-PAINT ligand. N-hydroxysuccinimidyl ester 
functionalised Halo tag ligand (NHS-HL, 1.) was freshly reconstituted in dry DMSO to a final 
concentration of 50 mM (unused NHS-HL was aliquoted and stored at -80°C). 5’amino modified 
DNA-docking strands (2.) were diluted in 10 mM sodium phosphate buffer pH 6.8, supplemented 
with 5 mM EDTA, to a final concentration of 1 mM.  .  NHS-HL was diluted 10 times by adding 
5’amino modified DNA-docking strands and mixing thoroughly (giving a 5:1 ratio of NHS-
HL:5’amino DNA). The reaction was left for 1 h at room temperature. The reaction product (3.), HL 
functionalised with a DNA-docking strand was purified from excess unreacted NHS-HL by size 
exclusion chromatography, with 10 mM Tris supplemented with 1 mM EDTA as the mobile phase. 
Purified HL-DNA-docking strands were aliquoted and stored at -20°C until use (final concentration 
approximately 100-200 µM).  
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