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Abstract 

Genome-scale CRISPR-Cas9 viability screens performed in cancer cell lines provide a systematic 

approach to identify cancer dependencies and new therapeutic targets. As multiple large-scale 

screens become available, a formal assessment of the reproducibility of these experiments 

becomes necessary. We analyzed data from recently published pan-cancer CRISPR-Cas9 screens 

performed at the Broad and Sanger institutes. Despite significant differences in experimental 

protocols and reagents, we found that the screen results are highly concordant across multiple 

metrics with both common and specific dependencies jointly identified across the two studies. 

Furthermore, robust biomarkers of gene dependency found in one dataset are recovered in the 

other. Through further analysis and replication experiments at each institute, we found that batch 

effects are driven principally by two key experimental parameters: the reagent library and the 

assay length. These results indicate that the Broad and Sanger CRISPR-Cas9 viability screens 

yield robust and reproducible findings. 

 

Introduction 

Despite recent advances in cancer science, most cancer patients still have no clinical indications for 

approved targeted therapies​1 ​. Expanding precision oncology to the general patient population will require 

identifying and exploiting many new genomic targets. To tackle this problem, large-scale 

pharmacogenomic screenings have been performed across panels of human cancer cell lines​2,3 ​. The 

advent of genome editing by CRISPR-Cas9 technology has allowed extending these studies beyond 

currently druggable targets with precision and scale ​4,5 ​. Pooled CRISPR-Cas9 screens employing 

genome-scale libraries of single guide RNAs (sgRNAs) are being performed on growing numbers of 

cancer ​in vitro​ models​6–12​. The output of these screens can be used to identify and prioritize new cancer 

therapeutic targets​13 ​. However, fully characterizing genetic vulnerabilities in cancers is estimated to 

require thousands of genome-scale screens​14 ​. 

 

We present a comparative analysis of datasets derived from the two largest independent CRISPR-Cas9 

based gene-dependency screening studies in cancer cell lines published to date ​13,15,16​, part of the ​Cancer 

Dependency Map​ effort​17,18 ​. The aim of this analysis was to assess the concordance of these datasets 

and that of the analytical outcomes they yield when investigated individually. To this aim, we designed a 

computational strategy including comparisons at different levels of data-processing and abstraction: from 

gene-level dependencies to molecular markers of dependencies, and genome-scale cell line profiles of 
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dependencies. Lastly, we shed light on the differences in the experimental settings that give rise to batch 

effects across independent studies of this kind, discerning between biological and technical confounding 

factors. 

 

Results 

Overview of datasets and comparison strategy 

We compared two sets of pooled genome-scale CRISPR-Cas9 drop out screens in cancer cell lines, 

generated at the Broad Institute and the Sanger Institute through experimental pipelines (detailed in ​Fig. 

1a​, ​Supplementary Table 1 ​​ and ​​Supplementary text​), considering 147 cell lines and 16,733 genes 

screened independently by both institutes (​Supplementary Table 2​). We performed comparisons of 

individual gene dependency scores, quantifying the reduction of cell viability upon gene inactivation via 

CRISPR-Cas9 targeting; of profiles of such scores across cell lines (gene dependency profiles); as well 

as of profiles of such scores across genes in individual cell lines (cell line dependency profiles).  

 

We calculated gene dependency scores using three different strategies. First, we considered fully 

processed gene scores, available for download from the Broad ​17 ​ and Sanger​13,18 ​ Cancer Dependency 

Map web-portals​17 ​13,18 ​ (​processed​ data). Because data processing pipelines vary significantly between the 

two datasets, we also examined minimally processed gene scores, generated by computing median 

sgRNA abundance fold changes for each gene (​unprocessed​ data). Lastly, we applied an established 

empirical Bayesian batch correction method (ComBat)​19 ​ to the unprocessed gene scores to remove 

experimental batch effects between the datasets. ComBat aligns gene means and variances between the 

datasets, thereby eliminating simple batch effects. We refer to this form of the data as the ​batch-corrected 

gene scores. 

 

Agreement of gene dependency scores 

We found concordant gene scores across all genes and cell lines with Pearson correlation = 0.658, 0.627, 

and 0.765, respectively for processed, unprocessed and batch-corrected data (​p ​values below machine 

precision in all cases, ​N​ = ​2,465,631, ​Fig. 1b ​). ​The reproducibility of gene scores between the two 

datasets can be considered a function of two variables: the mean dependency across all cell lines for 

each gene (relevant to infer common dependencies), and the patterns of scores across cell lines for each 

gene (relevant to predict selective oncology therapeutic targets). ​Mean gene scores among all cell lines 
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showed excellent agreement (​Supplementary​ ​Fig. 1a ​), with Pearson correlation = 0.784, 0.818, and 

0.9997 respectively for processed, unprocessed and batch-corrected data (​p​ below machine precision in 

all cases; ​N = ​16,773). 

 

We further tested whether it was possible to recover consistent sets of common dependencies. To this 

end, we defined as “common dependencies” those genes that rank among the top dependencies when 

considering only their 90th percentile of least dependent cell lines, with the score threshold for “top” 

dependencies determined by the local minimum in the data (​Fig. 1c​). For the unprocessed data, the 

Broad and Sanger jointly identify 1,031 common dependency genes (​Supplementary Table 3​). 260 

putative common dependencies were only identified by the Sanger and 397 were only identified by the 

Broad (Cohen’s kappa = 0.737, Fisher’s exact test ​p​ below machine precision, ​N​ = 16,773, ​Fig. 1d ​). 
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Figure 1: Comparison of experimental protocols and gene score results ​. ​(a) ​ Comparison of experimental settings and 

reagents used in the experimental pipelines underlying the two compared datasets. ​(b)​ Densities of individual gene scores in the 

Broad and Sanger datasets, across processing levels. The distributions scores for previously identified essential genes​20​ are 

shown in red. ​(c)​ Examples of the relationship between a gene’s score rank in a cell line and the cell line’s rank for that gene 

using Broad unprocessed gene scores, with gene ranks in their 90th percentile least dependent lines highlighted. For the 

common dependency RPS8, even its 90th percentile least dependent cell line still ranks the gene among the strongest of its 

dependencies. ​(d)​ Distribution of gene ranks for the 90th-percentile of least dependent cell lines for each gene in both datasets. 

Black dotted lines indicate natural thresholds at the minimum gene density along each axis.  

 

 ​Agreement of selective gene dependency profiles across cell lines 

In both studies, most genes show little variation in their dependency scores across cell lines. Thus we 

expect low shared variance even if most scores are numerically similar between the datasets​21 ​. 

Accordingly, we focused on a group of genes for which the score variance across lines is of potential 

biological interest. These are genes whose dependency profile suggests a strong biological selectivity in 

at least one of the two unprocessed datasets, identified using the NormLRT test introduced in McDonald 

et al​22​. We call these 49 genes ​Strongly Selective Dependencies​ (SSDs) (​Supplementary Table 4 ​). We 

evaluated the agreement between gene score patterns using Pearson’s correlations to test the 

reproducibility of selective viability phenotypes. ​Fig. 2a​ illustrates the score patterns for the example 

cancer genes MDM4 (​R​ = 0.820, ​p ​ = 6.91 x 10 ​-37 ​), KRAS (​R ​ = 0.765, ​p ​ = 1.66 x 10 ​-29 ​), CTNNB1 (​R​ = 

0.803, ​p​ = 1.92 x 10 ​-34 ​), and SMARCA4 (​R​ = 0.664, ​p ​ = 4.61 x 10 ​-20 ​) with unprocessed data (​N​ = 147). For 

SSDs and unprocessed data, the median correlation was 0.633 and 84% of SSDs showed a correlation 

greater than 0.4. Five SSDs showed a correlation below 0.2 (ABHD2, CDC62, HIF1A, HSPA5, C17orf64), 

which are discussed further below. As expected, correlation across datasets for all genes was lower 

(median ​R​ = 0.187, 8.34% genes with ​R​ > 0.4 ). 

 

One important use of these screens is to consistently classify cells as dependent or not dependent on 

selective dependencies. Therefore, we evaluated the agreement of the Broad and Sanger datasets on 

identifying cell lines that are dependent on each SSD gene. We classified cell lines as dependent on a 

given gene in the case of a dependency score < -0.7. Genes with larger scores are dominated by a single 

large group at zero (​Fig. 2c​). The area under the receiver-operator characteristic (AUROC) for recovering 

binary Sanger dependency on SSDs using Broad dependency scores was 0.940 in processed data, 0.963 

in unprocessed data, and 0.965 in corrected data; to recover Broad binary dependency from Sanger 

scores, AUROC scores were = 0.933, 0.859, and 0.967 respectively. The recall of Sanger-identified 

dependent cell lines in Broad data was 0.700 with precision equal to 0.252 for processed data, 0.847 and 

0.347 for unprocessed data, and ​0.756 ​ and ​0.603 ​ for batch-corrected data (​Supplementary Fig. 1b​). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/604447doi: bioRxiv preprint 

https://paperpile.com/c/DZzCzg/Qm1X
https://paperpile.com/c/DZzCzg/GdD5v
https://paperpile.com/c/DZzCzg/UFlvn
https://doi.org/10.1101/604447
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

Agreement is higher than could be expected by chance under all processing regimes (Fisher’s exact ​p​ = 

4.16 x 10 ​-41 ​ in processed, 1.37 x 10 ​-86 ​ in unprocessed, and 2.96 x 10 ​-215 ​ in batch-corrected data; ​N​ = 

7,203). A large proportion of Broad-exclusive dependent cell lines (56.2 % in processed data and 42.7% 

in unprocessed data) were due to the single gene HSPA5, which is an SSD in Sanger data but a common 

dependency in Broad data. Examining SSDs individually, we found median Cohen’s kappa for sensitivity 

to individual SSDs of 0.437 in processed, 0.661 in unprocessed, and 0.735 in batch-corrected data. In 

unprocessed data, 65% of SSDs had Cohen’s kappa greater than 0.4, as opposed to 0.17% seen by 

chance (​Supplementary Fig. 1c ​). 

 

Agreement of cell line dependency profiles 

Previous literature on reproducibility highlighted the importance of considering agreement along both the 

perturbation and cell line axes of the data ​23–25​. We assembled a combined dataset of cell line dependency 

profiles from both studies and computed all possible pairwise correlation distances between them, using 

genes that were dependencies in at least one cell line (​variable​ genes). A t-distributed stochastic neighbor 

embedding (tSNE)​26 ​ visualization derived from these distance scores is shown in ​Fig. 2d​. For the 

uncorrected data, we observed a perfect clustering of the dependency profiles by their study of origin, 

confirming a major batch effect. However, following batch correction, we observed integration between 

studies and increased proximity of cell lines from one study to their counterparts in the other study (​Fig. 

2e​). To quantify agreement, for each cell line dependency profile in one dataset, we ranked all the others 

(from both datasets) based on their correlation distance to the profile under consideration. For 

batch-corrected data, 175 of 294 (60%) cell lines dependency profile from one study have their 

counterpart in the other study as the closest (first) neighbor, and 209 of 294 (71%) cell lines having it 

among the five closest neighbors (area under the normalized Recall curve -  nAUC - averaged across all 

profiles = 0.91 for batch-corrected data, and = 0.54 for uncorrected data, ​Fig. 2f​). Similar results were 

obtained across dependency profiles restricted to different sets of genes, with the best performance for 

the SSD genes (nAUC=0.94) and the worst for all genes (nUAC=0.90). The percentage of cell lines 

matching closest to their counterparts in the other study was 57% for the variable gene set and 43% for 

SSD genes. Further, the tSNE plots for each gene set showed similar improvement after correction 

(​Supplementary Fig. 2a-b ​).  

 

The batch correction also aligned numbers of significant (at 5% FDR) dependencies across cell lines 

between the two datasets (median number of dependencies 2,109 and 1,717 before, and 2,053 and 

1,950 after correction, for Broad and Sanger respectively, ​Supplementary Fig. 3a​). The average 

proportion of dependencies detected in both studies over those detected in at least one study also 
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increased across cell lines from 47.75% to 59.14%. Furthermore, the correlation between cell lines after 

correction rose above the correlation within each individual screen for each gene set considered 

(​Supplementary Fig 3b ​). We finally examined whether the residual disagreement in corrected data might 

be related to screen quality. We assessed screen quality by computing true positive rates (TPRs) for 

recovering common essential genes in each cell line with a fixed 5% false discovery rate (FDR), 

determined from the distribution of nonessential genes in the cell line. We found that mean screen quality 

is a strong predictor of screen agreement for both the uncorrected and batch-corrected data sets 

(p-values 2.06 x 10 ​-35 ​, 4.74 x 10 ​-35 ​ and adjusted R-squared 0.65, 0.64 for uncorrected and batch-corrected 

respectively; ​Supplementary​ ​Fig. 3c ​).  
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Figure 2: Reproducibility of gene and cell line dependency profiles ​. ​(a) ​ Score pattern examples for selected known cancer 

genes. ​(b)​ Distribution of correlations of scores for individual genes in unprocessed data. ​(c)​ Gene dependency scores for 

Strongly Selective Dependencies across all cell lines, with the threshold for calling a line dependent set at -0.7. ​(d)​ t-SNE 

clustering of cell lines in unprocessed data using the correlation between gene scores. Colors represent the cell line while shape 

denotes the dataset of origin. (​e) ​The same as in (d) but for data batch-corrected using ComBat. ​(f)​ Recovery of a cell line’s 

counterpart in the other dataset before (Uncorrected) and after correction (Corrected). The k-nearest neighborhood shows the 

percentage of cell lines whose matching counterpart in the other data set is within its k-nearest cell lines. Similarity between all 

cell line pairs is defined by the Pearson correlation and nAUC values are shown in brackets. We show the recovery using three 
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different gene sets to calculate the correlation between cell lines. First, using all genes (Uncorrected and Corrected all), second 

using genes that are dependencies for at least one cell line (corrected variable) and third using the Strongly Selective 

Dependencies (SSD) genes.  

 

 

Agreement of gene dependency biomarkers 

A selective dependency is of limited therapeutic value unless it can be reliably associated with an 

informative molecular feature of cancer (​biomarker​). Following a similar approach to that presented in ​21 ​, 

we performed a systematic test for molecular-feature/dependency associations on the two datasets. Cell 

lines were split into two groups based on the status of 587 molecular features derived from Iorio ​et al.​27​, 

encompassing somatic mutations in high-confidence cancer driver genes, amplifications/deletions of 

chromosomal segments recurrently altered in cancer, hypermethylated gene promoters, microsatellite 

instability status and the tissue of origin of the cell lines (​Supplementary Table 5​). For each feature in 

turn, all SSD genes were sequentially ​t-​tested for significant differences in dependency scores between 

the obtained two groups of cell lines.  

  

These tests yielded 71 out of 29,350possible significant associations (FDR < 5%, ΔFC < -1) between 

molecular features and gene dependency when using the Broad unprocessed data, and 90 when using 

the Sanger unprocessed data (​Supplementary Table 6​). Of these, 55 (77% of the Broad associations 

and 61% of the Sanger ones) were found in both datasets (FET p-value = 9.08 x10 ​-133 ​, ​Fig. 3a ​and 

Supplementary Tables 6-7 ​). The concordance between the associations identified by each study was 

proportional to the threshold used to define significance. This was assessed by considering for each 

study, in turn, the associations in a fixed quantile of significance and measuring the tendency of these 

associations to be among the most significant in the other study (​Fig. 3b​). Further, the overall correlation 

between differences in gene depletion FCs was equal to 0.763, and 99.2% of associations had the same 

sign of differential dependency across the two studies. 

 

Gene dependency associations identified with both datasets included expected as well as potentially 

novel hits. Examples of expected associations included increased dependency on ERBB2 in 

ERBB2-amplified cell lines, and increased dependency on beta-catenin in APC mutant cell lines. A 

potentially novel association between FAM72B promoter hypermethylation and beta-catenin was also 

identified (​Fig. 3c​). 
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We also considered gene expression to mine for biomarkers of gene dependency using RNA-seq 

datasets maintained at Broad and Sanger institutes. To this aim, we considered as potential biomarkers 

1,987 genes from intersecting the top 2,000 most variable gene expression levels measured by either 

institute. Clustering the RNA-seq profiles revealed that each cell line’ transcriptome matched closest to its 

counterpart from the other institute (​Supplementary Fig. 4a ​). 

 

We correlated the gene expression level for the most variably expressed genes to the gene dependency 

profiles of the SSD genes. Systematic tests of each correlation showed significant associations between 

gene expression and dependency (​Fig. 3d​). As with the genomic biomarkers, we found a strong overall 

correlation between gene expression markers and SSD genes dependency across datasets, Pearson’s 

correlation 0.804 and significantly high overlap between gene expression biomarkers identified in each 

dataset (Fisher’s exact test p-value below machine precision). We observed both positive and negative 

correlations; for example, ERBB2 dependency score was positively correlated with its expression, while 

ATP6V0E1 showed significant dependency when its paralog ATP6V0E2 had a low expression (​Fig. 3e​).  
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Figure 3: Reproducibility of biomarkers (a) ​ Results from a systematic association test between molecular features and 

differential gene dependencies (of the SSD genes) across the two studies. Each point represents a pair consisting of a molecular 

feature (on the first line) and a gene dependency (second line.) ​(b)​ Precision/Recall and Recall/Specificity curves obtained when 

considering as true positives the associations falling in a fixed top quantile of significance in one of the studies and a classifier 

based on the p-values of the associations from the other study. ​(c)​ Examples of significant statistical associations between 

genomic features and differential gene dependencies across the two studies. ​(d)​ Results from a systematic correlation test 

between gene expression and dependency of SSD genes across the two studies. Labelled points show the gene expression 

marker on the first line and gene dependency on the second line. ​(e) ​Examples of significant correlations between gene 

expression and dependencies in both studies 

 

 

Elucidating sources of disagreement between the two datasets 

Despite the concordance observed between the Broad and Sanger datasets, we found batch effects in 

the unprocessed data both in individual genes and across cell lines. Although the bulk of these effects are 

mitigated by applying an established correction procedure ​28 ​, their cause is an important experimental 

question. We enumerated the experimental differences between datasets (​Fig. 1a​) to identify likely 

causes of batch effects. The choice of sgRNA can significantly influence the observed phenotype in 

CRISPR-Cas9 experiments, implicating the differing sgRNA libraries as a likely source of batch effect​29 ​. 

Additionally, previous studies have shown that some gene inactivations results in cellular fitness reduction 

only in lengthy experiments​11 ​. Accordingly, we selected the sgRNA library and the timepoint of viability 

readout for primary investigation as causes of major batch effects across the two compared studies. 

 

To elucidate the role of the sgRNA library, we examined the data at the level of individual sgRNA scores. 

The correlation between log fold change patterns of reagents targeting the same gene (“co-targeting”) 

across studies was related to the selectivity of the average dependency of that gene (as quantified by a 

“Likelihood Ratio Test” - normLRT - score ​22 ​, ​Fig. 4a ​): a reminder that most co-targeting reagents show 

low correlation because they target genes exerting little phenotypic variation. However, even among 

SSDs there was a clear relationship between sgRNA correlations within and between datasets (​p​ = 4.9 x 

10 ​-10 ​, ​N ​ = 49; ​Fig. 4b ​). In such cases, poor reagent efficacy at one or both datasets may explain the 

discrepancy. We estimated the efficacy of each sgRNA in both libraries using Azimuth 2.0 ​29 ​ which uses 

only information about the genome in the region targeted by the sgRNA. We found that among genes 

identified as common dependencies in either dataset, mean sgRNA depletion indeed had a strong 

relationship to its Azimuth estimated efficacy (​Fig. 4c​). When we examined SSDs, we found that reagent 

efficacy likely explains some differences, for example in EIF3F (common essential in Sanger screens, 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/604447doi: bioRxiv preprint 

https://paperpile.com/c/DZzCzg/rtK5
https://paperpile.com/c/DZzCzg/UvB2
https://paperpile.com/c/DZzCzg/RgMxe
https://paperpile.com/c/DZzCzg/UFlvn
https://paperpile.com/c/DZzCzg/UvB2
https://doi.org/10.1101/604447
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

nonscoring in Broad screens) and MDM2 (strongly selective in Broad screens, correlated but not strongly 

selective in Sanger screens) (​Fig. 4d​). 

 

We next investigated the role of different experimental timepoints on the screens’ agreement. Given that 

the Broad used a longer assay length (21 days versus 14 days) we expected differences to be observed 

between late dependencies across the datasets. Therefore, we compared the distribution of gene scores 

for genes known to exert a loss of viability effect upon inactivation at an early- or late-time (​early​ or ​late 

dependencies​)​11 ​. While early dependencies have similar score distributions in both datasets (median 

average score -0.781 at the Sanger and -0.830 at the Broad), late dependencies are more depleted at the 

Broad with median average score -0.402 compared to -0.269 for the Sanger screens (​Fig. 5a​).  

Unlike differences in sgRNA efficacy, timepoint effects are expected to lead to uniformly greater signal 

(typically depletion) in the Broad data and to be related to the biological role of late dependencies. We 

functionally characterized, using gene ontology (GO), genes that were exclusively detected as depleted in 

individual cell lines (at 5% FDR), in one of the two studies, excluding genes with significantly different 

sgRNA efficacies between libraries. Results showed 29 gene ontology categories significantly enriched in 

the Broad-exclusive dependencies genes (Broad-exclusive GO terms) for more than 50% of cell lines 

(​Fig. 5b ​and ​ Supplementary Table 8)​. The Broad-exclusive enriched GO terms included classes related 

to mitochondrial and RNA processing gene categories and other gene categories previously 

characterized as late dependencies​11 ​. In contrast, no GO terms were significantly enriched in the 

Sanger-exclusive common dependencies in more than 30% of cell lines.  

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/604447doi: bioRxiv preprint 

https://paperpile.com/c/DZzCzg/RgMxe
https://paperpile.com/c/DZzCzg/RgMxe
https://doi.org/10.1101/604447
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

 
 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/604447doi: bioRxiv preprint 

https://doi.org/10.1101/604447
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

Figure 4 ​: ​Influence of reagent library on measured gene dependency ​. ​(a) ​ Distributions of sgRNA correlation for sgRNAs 

targeting genes with varying NormLRT scores within each dataset and between them. Each gene is binned according to the 

mean of its NormLRT score across the two datasets. The y axis reports the average of all correlations between pairs of sgRNAs 

that belong to the same dataset and target that gene. ​(b)​ Relationship between sgRNA correlation within datasets and gene 

correlation between datasets. The linear trend is shown for SSD genes. ​(c)​ The mean depletion of guides targeting common 

dependencies across all replicates vs Azimuth estimates of guide efficacy. ​(d)​ Comparison of Broad and Sanger unprocessed 

gene scores for genes matching (1) SSD with highest minimum MESE across both libraries, (2) common dependency in either 

dataset and greatest difference between KY and Avana MESE, (3) SSD with worst KY MESE. 
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Figure 5: Influence of Time point. (a) ​Distribution of early and late common dependency scores in the Broad and Sanger 

datasets averaged across cell lines. ​(b)​ GO enrichment annotations of Broad-exclusive common dependencies not accounted for 

by estimated sgRNA efficacy.  
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Batch effect sources: Experimental Verification 

To verify that batch effects between the datasets can be removed by changing library and the readout 

time-point, we undertook replication experiments independently at Broad and Sanger institutes, where 

these factors were systematically permuted. The Broad sequenced cells collected from its original HT-29 

and JIMT-1 screens at the 14-day timepoint and conducted an additional screen of these cell lines using 

the KY1.1 library with readouts at days 14 and 21. The Sanger used both the Broad’s and the Sanger’s 

clones of HT-29 to conduct a new KY screen and an Avana screen with readouts at days 14 and 21. 

Principal component analysis (PCA) of the concatenated unprocessed gene scores, including replication 

screens, showed a clear institute batch effect dominating the first principal component. By highlighting 

replication screens, we found that this effect is principally due to library choice, with time-point playing a 

smaller role (​Fig. 6a​, ​Supplementary Fig. 5a ​). Changing from Sanger to Broad clones of HT-29 had 

minimal impact. We examined the change in gene score profile for each screen caused by changing 

either library or time-point while keeping other conditions constant. Gene score changes induced by either 

library or timepoint alterations were consistent across multiple conditions (​Fig. 6b​). Sanger-exclusive 

common dependencies were strongly enriched for genes that became more depleted with the KY library, 

and Broad-exclusive common dependencies were enriched among genes more depleted with the Avana 

library (​Supplementary Fig. 5b ​). Late dependencies were strongly enriched among genes that became 

more depleted in the later time-points, while early dependencies were not (​Supplementary Fig. 5c​). We 

compared the deviations in gene score between Broad and Sanger screens under different conditions, 

first comparing Broad original and replication screens of HT-29 (Fig. 6c) and JIMT-1 (​Supplementary 

Fig. 5d ​) to the original Sanger screens of the same cell line. Matching Sanger’s library and time-point 

reduces the variance of gene scores in HT-29 from 0.0486 to 0.0252 and in JIMT-1 from 0.0556 to 

0.0260. Specifically, matching library and time-point removed most of the average gene score change 

(batch effect) between institutes, as indicated by the low correlation of the remaining gene score 

differences in the replication screens with the average gene score change. We next compared Sanger 

original and replication screens of HT-29 to the Broad original HT-29 screen. Matching library and 

time-point successfully detrended the data in this case as well; however, the Sanger Avana screens of 

HT-29 contained considerable excess noise, causing these screens to have higher overall variance from 

the Broad than the original screens (0.0486 vs 0.115). Nonetheless, the replication experiments confirm 

that the majority of batch effects between datasets are driven by library and time-point. 
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Figure 6: Results of replication experiments​. ​(a) ​ original and replication screens from each institute plotted by 

their first two principal components.  HT-29 screens are highlighted. Axes are scaled to the variance explained by 

each component. ​(b)​ Correlations of the changes in gene score caused when changing a single experimental 

condition. ​(c) ​The difference in unprocessed gene scores between Broad screens of HT-29 and the original Sanger 

screen (Sanger minus Broad), beginning with the Broad’s original screen and ending with the Broad’s screen using 

the KY library at the 14-day timepoint. Each point is a gene. The horizontal axis is the mean difference of the 

gene’s score between the Sanger and Broad original unprocessed datasets. ​(d)​ A similar plot taking the Broad’s 

original screen as the fixed reference and varying the Sanger experimental conditions (Broad minus Sanger). 
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Discussion 

Providing sufficient experimental data to adequately sample the diversity of human cancers requires 

high-throughput screens. However, the benefits of large datasets can only be exploited if the underlying 

experiments are reliable and robustly reproducible. In this work, we survey the agreement between two 

large, independent CRISPR-Cas9 knock-out datasets, generated at the Broad and Sanger institutes. 

 

Our findings illustrate a high degree of consistency in estimating gene dependencies between studies at 

multiple levels of data processing, albeit with the longer duration of the Broad screens leading to stronger 

dependencies for a number of genes. The datasets are concordant in identifying common dependencies 

and identifying mean dependency signals. Their agreement is also striking in the more challenging task of 

identifying which cell lines are dependent on selective dependencies. Indeed, when we compared the two 

datasets at the level of gene dependency markers we found consistent results at the level of common 

informative molecular features, as well as with respect to their quantitative strength. 

 

We observed that a source of observed disagreement across the compared dataset is due to diffuse 

batch effects visible when the whole profiles of individual cell lines are compared. Such effects can be 

readily corrected with standard methods without compromising data quality, thus making possible 

integration and future joint analyses of the two compared datasets. Furthermore, much of this batch effect 

can be decomposed into a combination of two experimental choices: the sgRNA library and the duration 

of the screen. The effect of each choice on the mean depletion of genes is readily explicable and 

reproducible, as shown by screens of two lines performed at the Broad using the Sanger’s library and 

screen duration. Consequently, identifying high-efficacy reagents and choosing the appropriate screen 

duration should be given high priority when designing CRISPR-Cas9 knock-out experiments. 
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Methods 

Collection and Preprocessing of Data 

“Unprocessed” Gene Scores 

Read counts for the Broad were taken from avana_public_19Q1 ​30 ​ and filtered so that they contained only 

replicates corresponding to overlapping cell lines and only sgRNAs with one exact match to a gene. Read 

counts for Sanger were taken from Behan ​et al.​13​ and similarly filtered, then both read counts were filtered 

to contain only sgRNAs matching genes common to all versions of the data. In both cases, reads per 

million (RPM) was calculated and an additional pseudo-count of 1 added to the RPM. Log fold change 

was calculated from the reference pDNA. In the case of the Broad, both pDNA and screen results fall into 

distinct batches, corresponding to evolving PCR strategies. Cell lines sequenced with a given batch were 

matched to pDNA profiles belonging to the same batch. Multiple pDNA RPM profiles in each batch were 

median-collapsed to form a single profile of pDNA reads for each batch. Initial gene scores for each 

replicate were calculated from the median of the sgRNAs targeting that replicate. Each replicates initial 

gene scores for both Broad and Sanger were then shifted and scaled so the median of nonessential 

genes in each replicate was 0 and the median of essential genes in each replicate is negative one ​20 ​. 

Replicates were then median-collapsed to produce gene- by cell-line matrices. 

“Processed” Gene Scores 

Broad gene scores are taken from avana_public_19Q1 gene_effect​30 ​ and reflect CERES​31 ​ processing. 

The scores were filtered for genes and cell lines shared between institutes and with the unprocessed 

data, then shifted and scaled so the median of nonessential genes in each cell line was 0 and the median 

of essential genes in each cell line was -1 ​20 ​. Sanger gene scores were taken from the quantile-normalized 

averaged log fold-change scores and globally rescaled by a single factor so that the median of essential 

genes across ​all​ cell lines is negative one.​20  

“Batch-Corrected” Gene Scores 

The unprocessed sgRNA log FCs were mean collapsed by gene and replicates. Data were quantile 

normalized for each institute separately before processing with ComBat using the R package sva. One 

batch factor was used in ComBat defined by the institute of origin. The ComBat corrected data was then 

quantile normalized to give the final batch-corrected data set. 
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Alternate Conditions 

Screens with alternate libraries, cell lines, and timepoints were processed similarly to the “Unprocessed” 

data above. 

Gene Expression Data 

Gene expression log ​2 ​(Transcript per million+1) data was downloaded for the Broad from Figshare for the 

Broad data set. For the Sanger dataset, we used reads per kilobase million (RPKM) expression data from 

the iRAP pipeline. We added a pseudo-count of 1 to the RPKM values and transformed to log ​2 ​. Gene 

expression values are quantile normalized for each institute separately. For the Sanger data, Ensembl 

gene ids were converted to Hugo gene symbols using BiomaRt package in R. 

 

Guide Efficacy Estimates 

On-target guide efficacies for the single-target sgRNAs in each library were estimated using Azimuth 2.0 ​29 

against GRCh38.  

Comparison of All Gene Scores 

Gene scores from the chosen processing method for both Broad and Sanger were raveled and Pearson 

correlations calculated between the two datasets. 100,000 gene-cell line pairs were chosen at random 

and density-plotted against each other using a Gaussian kernel with the width determined by Scott’s 

rule ​32 ​. All gene scores for essential genes were similarly plotted in ​Fig. 1b​. 

Comparison of Gene Means 
Cell line scores for each gene in both Broad and Sanger datasets with the chosen processing method 

were collapsed to the mean score, and a Pearson correlation calculated. 

Gene Ranking, Common Essential Identification 

For each gene in the chosen dataset, its score rank among all gene scores in its 90th percentile least 

depleted cell line was calculated. We call this the gene’s 90th percentile ranking. The density of 

90th-percentile rankings was then estimated using a Gaussian kernel with width 0.1 and the central point 

of minimum density identified. Genes whose 90th-percentile rankings fell below the point of minimum 

density were classified as essential ​.  
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Identification of Selective Gene Sets 
Selective dependency distributions across cell lines are identified using a “Likelihood Ratio Test” as 

described in ​McDonald et al​22 ​. For each gene, the log-likelihood of the fit to a normal distribution and a 

skew-t distribution is computed using R packages MASS​33 ​ and sn ​34 ​, respectively. In the event that the 

default fit to the skew-t distribution fails, a two-step fitting process is invoked. This involves keeping the 

degrees of freedom parameter (𝞶) fixed during an initial fit and then using the parameter estimates as 

starting values for a second fit without any fixed values. This process repeats up to 9 times using 𝞶 values 

in the list (2, 5, 10, 25, 50, 100, 250, 500, 1000) sequentially until a solution is reached. The numerical 

optimization methods used for the estimates do not guarantee the maximum of the objective function is 

reached. The reported LRT score is calculated as follows: 

 

LRT = 2*[ln(likelihood for Skewed-t) - ln(likelihood for Gaussian)] 

 

Genes with NormLRT scores greater than 100 and mean gene score greater than -0.5 in at least one 

institute’s unprocessed dataset were classified as SSDs. The cancer gene set was taken directly from 

Vogelstein ​et al.​35  

Binarized Agreement of SSDs 

SSD gene scores in both Broad and Sanger datasets with the chosen processing method were binarized 

at -0.7, with scores falling below this threshold indicating the sensitivity of the cell line on the chosen 

gene. Cohen’s kappa was calculated for each gene individually. Fisher’s exact test, precision, recall, and 

AUROC scores were calculated globally for all SSD sensitivities in the three data versions.  

 

Cell line agreement Analysis 

To obtain the two dimensional visualisations of the combined dataset before and after batch correction 

and considering different gene sets, we computed the sample-wise correlation distance matrix and used 

this as input into the t-statistic Stochastic Neighbor Embedding (t-SNE) procedure ​26 ​, using the ​tsne 

function of the tsne R package, with 1,000 iterations, a perplexity of 100 and other parameters set to their 

default value.  

 

To evaluate genome-wide cell line agreement we considered a simple nearest-neighbor classifier that, for 

each dependency profile of a given cell line in one of the two studies, predicts its matching counterpart in 
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the other study. This prediction was based on the correlation distance between one profile and all the 

other profiles. To estimate the performance of this classifier, we computed a Recall curve for each of the 

294 dependency profiles in the tested dataset. Each of these curves was assembled by concatenating the 

number of observed true-positives amongst the first ​k​ neighbors of the corresponding dependency profile 

(for ​k ​ = 1 to 293). We then averaged the 294 resulting Recall curves into a single curve and converted it 

to percentages by multiplying by 100/294. Finally we computed the area under the resulting curve and 

normalized it by dividing by 293. We considered the area under this curve (nAUC) as a performance 

indicator of the k-nn. 

For the comparison of cell line profiles agreement in relation to initial data quality. First, to estimate the 

initial data quality we calculated True Positive Rates (TPRs, or Recalls) for the sets of significant 

dependency genes detected across cell lines, within the two studies. To this aim, we used as positive 

control a reference set of a priori known essential genes​12 ​. We assessed the resulting TPRs for variation 

before/after batch correction, and for correlations with the inter-study agreement.  

 

Biomarker Analysis 

We used binary event matrices based on mutation data, copy number alterations, tissue of origin and MSI 

status. The resulting set of 587 features were present in at least 3 different cell lines and fewer than 144. 

We performed a systematic two-sample unpaired Student’s t-test (with the assumption of equal variance 

between compared populations) to assess the differential essentiality of each of the SSD genes across a 

dichotomy of cell lines defined by the status (present/absent) of each CFE in turn. From these tests we 

obtained p-values against the null hypothesis that the two compared populations had an equal mean, with 

the alternative hypothesis indicating an association between the tested CFE/gene-dependency pair. 

P-values were corrected for multiple hypothesis testing using Benjamini-Hochberg. We also estimated the 

effect size of each tested association by means of Cohen’s Delta, i.e. difference in population means 

divided by their pooled standard deviations. For gene expression analysis we calculated the Pearson 

correlation across the cell lines between the SSD gene dependency profiles and the gene expression 

profiles from each institute. Significance of the correlation was assessed using the t-distribution (n-2 

degrees of freedom) and p-values multiple hypothesis corrected using the q-value method. 

For the agreement assessment via ROC indicators (Recall, Precision and Specificity), for each of the two 

studies in turn we picked the most significant 20, 40, 60, 80 and 100% associations as true controls and 

evaluated the performance of a rank classifier based on the corresponding significance p-values obtained 

in the other study. 
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For the analysis involving transcriptional data, we used the RNA-seq data from each institute for 

overlapping cell lines, which includes some sequencing files that have been used by both institutes and 

processed separately. 

 

Rank-based dependency significance and agreement quantification 

To identify significantly depleted genes for a given cell line, we ranked all the genes in the corresponding 

essentiality profiles based on their depletion logFCs (averaged across targeting guides), in increasing 

order. We used this ranked list to classify genes from two sets of prior known essential (​E​) and 

non-essential (​N​) genes, respectively​12 ​. 

For each rank position ​k​, we determined a set of predicted genes ​P(k) = {s ∈ E ∪ N : ϱ(s) ≤ k}​, with 

ϱ(s)​ indicating the rank position of ​s​, and the corresponding precision ​PPV(k)​ as: 

 

PPV(k) = |P(k)∩ E| / |P(k)| 

 

Subsequently, we determined the largest rank position ​k*​ with ​P(k*)​ ≥ 0.95 (equivalent to a False 

Discovery Rate (FDR)  ​≤ ​0.05). Finally, a 5% FDR logFCs threshold ​F*​ was determined as the logFCs of 

the gene s such that ​ϱ(s) = k*​, and we considered all the genes with a logFC < ​F*​ as significantly 

depleted at 5% FDR level. For each cell line, we determined two sets of significantly depleted genes (at 

5% FDR): ​B​ and ​S​, for the two compared datasets, respectively. We then quantified their agreement 

using the Jaccard index​36 ​ ​J(B,S) = | B ​∩ S ​| / | B ​∪​ ​S ​|​, and defined their disagreement as ​1 - J(B,S)​. 

Summary agreement/disagreement scores were derived by averaging the agreement/disagreement 

across all cell lines. 

 

sgRNA Correlations 

Broad and Sanger log fold-changes for their original screens were median-collapsed to guide by cell line 

matrices. For each gene present in the unprocessed gene scores, a correlation matrix between all the 

sgRNAs targeting that gene in each guide by cell line matrix was computed. The mean of the values in 

this matrix for each institute, excluding the correlations of sgRNAs with themselves, was retained. The 

mean sgRNA correlation within institutes was then calculated from the mean of the Broad and Sanger 

sgRNA correlation matrix means. The mean sgRNA correlation between institutes for each gene was 

calculated from the mean of all possible pairs of sgRNAs targeting that gene with one sgRNA chosen 

from Sanger and one from Broad.  
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Relating sgRNA Depletion and Efficacy 

We chose the set of genes found to be essential in at least one unprocessed dataset. The log fold-change 

of guides targeting those genes in each dataset was calculated and compared to the guide’s estimated 

on-target efficacy. 

Timepoint Gene Ontology Analysis 

We tested for enrichment of GO terms associated with genes showing a significant depletion in only one 

institute. To rule out the differences due to library, genes with significantly different guide efficacies were 

filtered from the analysis. Using the Azimuth scores average (mean) efficacy scores for each gene at 

each institute were calculated. A null distribution of differences in gene efficacy was estimated using 

genes not present in either institute specific sets (which were defined as depleted in at least 25% of cell 

lines). Institute specific genes greater than 2 standard deviations from the mean of the null distribution 

were removed. 

For the filtered gene set prior known essential and non-essential gene sets from ​37 ​ were used to find 

significant depletions for each cell line and institute at 5% FDR. For each cell line, the genes identified as 

significantly depleted in only Broad or only Sanger were functionally characterized using Gene Ontology 

(GO) enrichment analysis​38 ​. To this aim, we downloaded a collection of gene sets (one for each GO 

category) from the Molecular Signature Database (MsigDB)​39 ​, and performed a systematic 

hypergeometric test to quantify the over-representation of each GO category for each set of 

study-exclusive dependency genes, per cell line. We corrected the resulting p-values for all the tests 

performed within each study using the Benjamini-Hochberg procedure ​40 ​, and considered a GO category 

enriched in a cell line if the corrected p-value resulting from the corresponding test was < 0.05. 

 

Principal Component Analysis of the Batch Effect and Alternate Conditions 

The Broad and Sanger unprocessed gene scores and the gene scores for the alternate conditions tested 

by both institutes were concatenated into a single matrix with a column for each screen. Principal 

components were found for the transpose of this matrix, where each row is a screen and each column a 

pseudogene. Components 1 and 2 were plotted for all original screens and the alternate screens for 

either HT-29 (Fig. 6a) or JIMT-1 (​Supplementary Fig. 6a ​). The aspect ratio for the plot was set to match 

the relative variance explained by the first two principal components. 
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Consistency of Timepoint and Library Effects on Gene Scores 

To evaluate library differences, we took all screens that had been duplicated in each library with all other 

conditions (timepoint, clone, and screen location) kept constant. For each of these screens, we subtracted 

the gene scores of the version performed with the KY library from the version performed with the Avana 

library to create library difference profiles. For the case of Sanger’s day-14 KY screen of the Sanger 

HT-29 clone, two versions exist, the original and an alternative that was eventually grown out to 21 days. 

We used the alternate version of this screen to be consistent with the day 21 results. A correlation matrix 

of library difference profiles was then calculated and is plotted in the left of Fig. 6b. The procedure was 

repeated for timepoint differences, creating timepoint difference profiles by subtracting day 14 results from 

day 21 results for pairs of screen readouts that differed in timepoint but not library, clone, or screen 

location.  

 

Mitigating Differences in Gene Scores by Matching Experimental 

Conditions 

For the cell line HT-29, we took Sanger’s original screen as a baseline. We then subtracted from this 

baseline from four Broad HT-29 screens: the original (Avana library at day 21), then with the Avana library 

at day 14, the KY library at day 21, and the KY library at day 14, generating four arrays indexed by gene 

which form the y-axes in the succession of plots in Fig. 6c. We also computed the mean score of each 

gene across all original Broad screens and subtracted it from the mean score of each gene across all the 

original Sanger screens to form the x-axis of all four plots. For each condition, the standard deviation of 

the HT-29 screen differences (y-axes) was computed along with the correlation of the HT-29 screen 

differences with the mean differences (x-axis). The plots themselves are Gaussian kernel density 

estimates. We repeated this process for JIMT-1 (​Supplementary Fig. 6d ​) and then for HT-29 while 

swapping the roles of Broad and Sanger (Fig. 6d). For the Sanger alternate condition screens we used 

the Sanger clone of HT-29, and for its day 14 KY screen we used the Sanger’s original HT-29 screen. 
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Replication Experiments 

The replication screens at Broad and Sanger were performed using the normal current protocol of the 

respective institution ​31 ​ except with respect to the specifically noted changes to library (and the associated 

primer sequences required for post-screen amplification of the sgRNA barcodes) and the timepoint. 

 

Data Availability 

The data used for this manuscript have been posted to Figshare ​41 ​. 
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