1	Exploring the lower thermal limits for transmission of human malaria, <i>Plasmodium</i>
2	falciparum
3	
4	
5	Jessica L. Waite ^{1,*,§} , Eunho Suh ^{1,§} , Penelope A. Lynch ² , and Matthew B. Thomas ¹
6	
7	¹ Center for Infectious Disease Dynamics and Department of Entomology, The
8	Pennsylvania State University, University Park, PA 16802 USA
9	² University of Exeter, College of Life & Environmental Sciences, Penryn Campus,
10	Cornwall, TR10 9FE, UK
11	*Author for correspondence, jessi.waite@gmail.com
12	§These authors contributed equally.
13	
14	
15	
16	
17	Keywords: pathogen, extrinsic incubation period, climate change, parasite infection,
18	highlands, malaria risk
19	
20	
21	
22	
23	

24 Abstract

25 The rate of malaria transmission is strongly determined by parasite development time in 26 the mosquito, known as the extrinsic incubation period (EIP), since the quicker parasites 27 develop, the greater the chance that the vector will survive long enough for the parasite to 28 complete development and be transmitted. EIP is known to be temperature dependent but 29 this relationship is surprisingly poorly characterized. There is a single degree-day model 30 for EIP of *Plasmodium falciparum* that derives from a limited number of poorly 31 controlled studies conducted almost a century ago. Here, we show that the established 32 degree-day model greatly underestimates the rate of development of *P. falciparum* in 33 both Anopheles stephensi and An. gambiae mosquitoes at temperatures in the range of 17-34 20°C. We also show that realistic daily temperature fluctuation further speeds parasite 35 development. These novel results challenge one of the longest standing models in malaria 36 biology and have potentially important implications for understanding the impacts of 37 climate change. 38 39 40 **1. Introduction** 41 The transmission of vector-borne diseases is strongly influenced by environmental 42 temperature [1,2]. For this reason, there is considerable interest in the possible effects of 43 climate change on the dynamics and distribution of diseases such as malaria (e.g. [3-6]). 44 One of the key temperature dependencies in malaria transmission is the Extrinsic

45 Incubation Period (EIP; also defined as the duration of sporogony), which describes the

46 time it takes following an infectious blood meal for parasites to develop within a

47	mosquito and become transmissible [7].
48	
49	Most mechanistic models of <i>Plasmodium falciparum</i> transmission base estimates of EIP
50	on the degree-day model of Detinova [8]:
51	
52	EIP (in days) = $111/(T^{\circ}C - 16^{\circ}C)$ [Eq 1].
53	
54	In this model, 111 is the cumulative number of degree-days required for the parasite to
55	complete development once temperature exceeds a lower developmental threshold, T is
56	the average ambient environmental temperature, and 16°C is the lower temperature
57	threshold. However, in spite of widespread use for over 50 years, the Detinova degree-
58	day model is poorly validated (reviewed in [7]). For example, the model was
59	parameterized with limited data from a single study conducted in the 1930's using the
60	Eurasian vector, Anopheles maculipennis [9]. This work provided no empirical
61	measurements of EIP below 20-21°C. Similar historic studies either lacked temperature
62	control, adequate sampling, or did not use P. falciparum parasites (e.g. [10-13]). To date,
63	virtually no published studies have measured EIP at cooler temperatures, or confirmed
64	the lower developmental threshold. Further, the model is based on constant temperatures,
65	yet temperatures in the field exhibit diurnal fluctuation, which could affect parasite
66	development [14].
67	
68	Here we use An. stephensi and An. gambiae mosquitoes to determine the lower

69 temperature threshold of *P. falciparum*, evaluate EIP at temperatures below 20°C, and

		4	
4	۷	1	Ļ
		1	L

70	examine whether	the degree-day	model is robust to	daily temperatu	are variation.
----	-----------------	----------------	--------------------	-----------------	----------------

72

73 **2. Material and methods**

74 (a) Experimental treatments

75 Mosquitoes were reared at 27°C following standard protocols [15]. *P. falciparum* (NF54)

76 parasite cultures were either provided by the Johns Hopkins Malaria Institute Core

Facility, or produced in our lab following protocols described in [15]. In all cases

78 gametocyte cultures reached approximately 2-4% mature gametocytemia and were

between 14-17 days post gametocyte induction when cultures were fed to 3-5 day old

80 mosquitoes. After 20 minutes, blood-fed females were moved to temperature-controlled

81 incubators, set at $80 \pm 5\%$ RH. Mosquitoes were sampled over time with midguts and

82 salivary glands dissected to estimate oocyst and sporozoite infection (sampling intervals

83 given in electronic supplementary material, Table S1).

84

85 For An. stephensi (Liston), a dominant malaria vector in India, Asia, and parts of the

86 Middle East [16], we examined constant temperatures of 16, 17, 18, and 20°C, and

87 fluctuating temperature regimes of 14 ± 5 , 16 ± 5 and $18 \pm 5^{\circ}$ C. For *An. gambiae* (NIH

G3), the primary vector in sub-Saharan Africa [17], we examined temperatures of 17, 19

and $19 \pm 5^{\circ}$ C. The daily fluctuations followed a previously described temperature model

90 [3,14]. Diurnal temperature ranges (DTR) of 5-20°C are common across many malaria

91 transmission settings [3,14,18] and so DTR of 10°C is a representative intermediate

92 value. For each temperature we had 1-6 biological replicates using separate infectious

93	feeds, with at least 150 mosquitoes per infectious feed (see Table S1 for details of
94	replicate numbers and sample sizes). For each feed we included a control set of
95	mosquitoes maintained at 27°C to confirm infections.
96	
97	(b) Mosquito survival curves at constant and fluctuating temperature
98	
99	How EIP affects malaria transmission depends in part on mosquito survival; the absolute
100	duration of EIP does not matter so much as what proportion of mosquitoes survive the
101	EIP to become infectious [15]. Therefore, to parallel the 18°C infection studies, we
102	generated survival curves for adult An. stephensi. Mosquitoes 3-5 days old, reared in
103	identical conditions to those in the infection studies, were provided a blood meal and then
104	placed into incubators at either constant 18° C or $18 \pm 5^{\circ}$ C. Mosquitoes were housed in
105	cups in groups of 10, with a total of 200 mosquitoes per treatment. Cups were examined
106	daily until the last mosquito died.
107	
108	
109	3. Results
110	The results of the infection experiments are summarized in Table 1 (details of sampling
111	and parasite measures are given in Table S1).
112	
113	We found no evidence for oocyst or sporozoite infection at constant 16°C over three
114	replicate feeds. Oocyst prevalence in mosquitoes maintained at 27°C (controls) ranged
115	from 82-100%, indicating that these feeds were infectious (Table S1). Positive salivary

116	gland infections were detected at constant 17, 18, and 20°C for An. stephensi, and 17 and
117	19°C for An. gambiae. Rates of parasite development were greater than predicted by the
118	established degree-day model.
119	
120	Adding realistic diurnal temperature fluctuation enabled parasites to establish to oocyst
121	stage at 14 and 16°C, and to complete development to sporozoite stage at 16°C in An.
122	stephensi, albeit at low levels (Table 1). In the 18°C and 19°C treatments, temperature
123	variation further shortened EIP for both vector species (Table 1).
124	
125	Our relatively coarse sampling frequency does not enable us to precisely define EIP (i.e.
126	to definitively capture the day the first individual mosquito becomes infectious).
127	However, by estimating 95% confidence intervals across the replicate infectious feeds we
128	can determine a credible window for EIP, representing the latest day at which no
129	sporozoites were likely to be observed, and the latest day at which maximum sporozoite
130	prevalence was likely to have occurred based on our observations. Our conservative
131	methodology minimized any differences between the observed values and the Detinova
132	values. This approach conceptually follows recent work defining the completion of
133	sporogony as a distribution rather than a single time point [7,15,19]. Using this method
134	we define a window of sporogony for An. stephensi of 31-37 days at 18°C, and 26-27
135	days at $18 \pm 5^{\circ}$ C (Figure 1A&B). These empirical estimates are substantially shorter than
136	the EIP of 56 days predicted by the degree-day model. The significance of these shorter
137	EIPs can be illustrated by integrating EIP with the respective mosquito survival (Figure
138	1A&B). The shaded areas provide a measure of the daily number of infectious

7

139	mosquitoes alive, or 'infectious-mosquito-days', which all else being equal, scales with
140	force of infection [15]. Our empirical data suggest a 2.7-fold increase in force of infection
141	at constant 18°C compared with the degree-day model, and 8.5-fold increase at 18 ± 5 °C.
142	
143	
144	4. Discussion
145	The Detinova model of EIP has been applied extensively for over 50 years, but with little
146	critical evaluation. Our data suggest that 16°C, the minimum temperature threshold for
147	parasite development assumed in the model, is a good approximation. Adding realistic
148	diurnal temperature fluctuation at 16°C facilitated infection but only 2/377 mosquitoes
149	were positive for sporozoites, so the effect is marginal. A threshold of 16°C is in line
150	with very early empirical work and parasite kinetics research [20,21], but differs from a
151	number of modeling studies that assume a lower limit of 18°C (reviewed in [22]).
152	
153	However, the Detinova model dramatically underestimates parasite development rate at
154	temperatures marginally above the lower threshold, and fails to capture the effects of
155	realistic daily temperature variation, which enhances development still further. The
156	Detinova model assumes that 111 cumulative degree-days are required to complete
157	sporogony once temperature is above the lower threshold. The current study indicates
158	that the required number of degree-days is not a constant 111 days, but varies non-
159	linearly with temperature. Based on our observed approximations of EIP (Table 1) and
160	the established lower developmental threshold of 16°C, we use the degree-day equation

(Equation 1) to calculate that sporogony takes as few as 38, 66 and 104 degree-days at

162	17, 18 and 20°C, respectively, for An. stephensi. For An. gambiae we estimate 43 and 87
163	degree-days at 17 and 19°C, respectively. Note that these estimates do not mean that EIP
164	is shorter in absolute terms at cooler temperatures, but that at temperatures below 21°C it
165	takes proportionally fewer degree-days for parasites to complete sporogony. Moreover,
166	we find that realistic temperature fluctuation can enhance parasite development yet
167	further. These findings are consistent with Jensen's inequality, which predicts that
168	fluctuation around a mean temperature can modify (in this case increase) development
169	rate compared to the same average constant temperature [23], and confirm earlier
170	empirical research conducted using species of rodent malaria [14]. In turn, the faster
171	parasite development yields potentially much greater force of infection under cooler
172	environmental conditions than predicted using the Detinova model (illustrated in Fig 1).
173	
174	We acknowledge that our study used lab-adapted mosquito and parasite strains and there
175	is a need to validate our findings using local mosquito-parasite pairings. Local adaptation
176	in vector and/or parasite population could change the thermal sensitivity of the vector-
177	parasite interaction [24]. Note, however, this argument applies equally to the existing
178	Detinova model (and indeed extends to many other mosquito-parasite studies that use lab
179	strains). Similarly, our lab-based mosquito survival curves do not necessarily reflect
180	patterns of survival in the field [25,26], yet qualitative differences in force of infection
181	relative to the Detinova model should hold regardless. As such, our results challenge one
182	of the most long-standing models in malaria biology and highlight a need for further
183	studies to examine the thermal ecology of malaria, particularly at the edges of range in
184	areas such as the Kenyan and Ethiopian highlands where the potential impacts of climate

\mathbf{n}
ч
,

all

185	change remain controversial [4,5,27,28].
186	
187	Ethical statement
188	All experiments were conducted under Penn State IBC protocol #48219.
189	
190	Data availability
191	Data from this study are available as electronic supplementary material in Table S1 for a
192	temperatures for mosquitoes dissected for oocysts and sporozoite dissections, sampling
193	intervals, replicates, and sample sizes.
194	
195	Author contributions
196	JLW and ES conducted the experiments. PAL assisted in analysis. JLW and MBT wrote
197	the manuscript with inputs from ES and PAL.
198	
199	Competing interests
200	The authors have no competing interests.
201	
202	Funding
203	This study was part supported by NIH NIAID grant # R01AI110793, NSF grant # DEB-
204	151868, and the USDA NIFA and Hatch Appropriations under Project #PEN04691 and
205	Accession #1018545. The funders had no role in study design, data collection and
206	analysis, decision to publish, or preparation of the manuscript.
207	

208	Ack	nowledgments
209	We t	thank MR4/BEI resources for provision of parasites. Thanks to Deonna Soergel,
210	Dear	n Taylor and Janet Teeple for assistance in the lab, and Anna Guschin and Elizabeth
211	Eswa	askio for translating journal articles from Russian to English.
212		
213	Sup	plementary Information
214	Elec	tronic supplementary material is available online at (link that will be assigned to
215	Tabl	e S1 https://)
216		
217	Refe	erences
218	1.	Mordecai, E. A. et al. 2017 Detecting the impact of temperature on transmission of
219		Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis.
220		11, 1-18 e0005568–18. (doi:10.1371/journal.pntd.0005568)
221	2.	Mordecai, E. A. et al. 2012 Optimal temperature for malaria transmission is
222		dramatically lower than previously predicted. Ecol. Lett. 16, 22-30.
223		(doi:10.1111/ele.12015)
224	3.	Paaijmans, K. P., Read, A. F. & Thomas, M. B. 2009 Understanding the link
225		between malaria risk and climate. Proc. Natl. Acad. Sci. U.S.A. 106, 13844–13849.
226		(doi:10.1073/pnas.0903423106)
227	4.	Ryan, S. J., McNally, A., Johnson, L. R., Mordecai, E. A., Ben-Horin, T.,
228		Paaijmans, K. & Lafferty, K. D. 2015 Mapping physiological suitability limits for
229		malaria in Africa under climate change. Vector Borne Zoonotic Dis. 15, 718–725.
230		(doi:10.1089/vbz.2015.1822)

231	5.	Hay, S. I., Cox, J., Rogers, D. J., Randolph, S. E., Stern, D. I., Shanks, G. D.,
232		Myers, M. F. & Snow, R. W. 2002 Climate change and the resurgence of malaria
233		in the East African highlands. Nature 415, 905–909. (doi:10.1038/415905a)
234	6.	Parham, P. E. et al. 2015 Climate, environmental and socio-economic change:
235		weighing up the balance in vector-borne disease transmission. Philos. Trans. R.
236		Soc. Lond. B Biol. Sci. 370, 20130551–20130551. (doi:10.1098/rstb.2013.0551)
237	7.	Ohm, J. R., Baldini, F., Barreaux, P., Lefèvre, T., Lynch, P. A., Suh, E.,
238		Whitehead, S. A. & Thomas, M. B. 2018 Rethinking the extrinsic incubation
239		period of malaria parasites. Parasit. Vectors 11, 13. (doi:10.1186/s13071-018-
240		2761-4)
241	8.	Detinova, T. S. 1962 Age-grouping methods in Diptera of medical importance.
242		Geneva: Monogr. Ser. World Health Organ. 47:13-91.
243	9.	Nikolaev, B. P. 1935 On the influence of temperature on the development of
244		malaria plasmodia in the mosquito. Trans. Pasteur Inst. Epi. Bact. Leningrad 2:1-
245		5.
246	10.	Boyd, M. F. & Stratman-Thomas, W. K. 1933 A note on the transmission of
247		quartan malaria by Anopheles quadrimaculatus. Am J Trop Med Hyg s1-13, 265-
248		271. (doi:https://doi.org/10.4269/ajtmh.1933.s1-13.265)
249	11.	Boyd, M. F. 1932 Studies on <i>Plasmodium vivax</i> . 2. The influence of temperature
250		on the duration of the extrinsic incubation period. Am J Trop Med Hyg 12, 851-
251		853.
252	12.	Basu, B. C. 1943 Laboratory studies on the infectivity of Anopheles annularis. J
253		Malar Inst India 5, 31–51.

12

254	13.	Knowles, R. & Basu, B. C. 1943 Laboratory studies on the infectivity of
255		Anopheles stephensi. J Malar Inst India 5, 1–29.

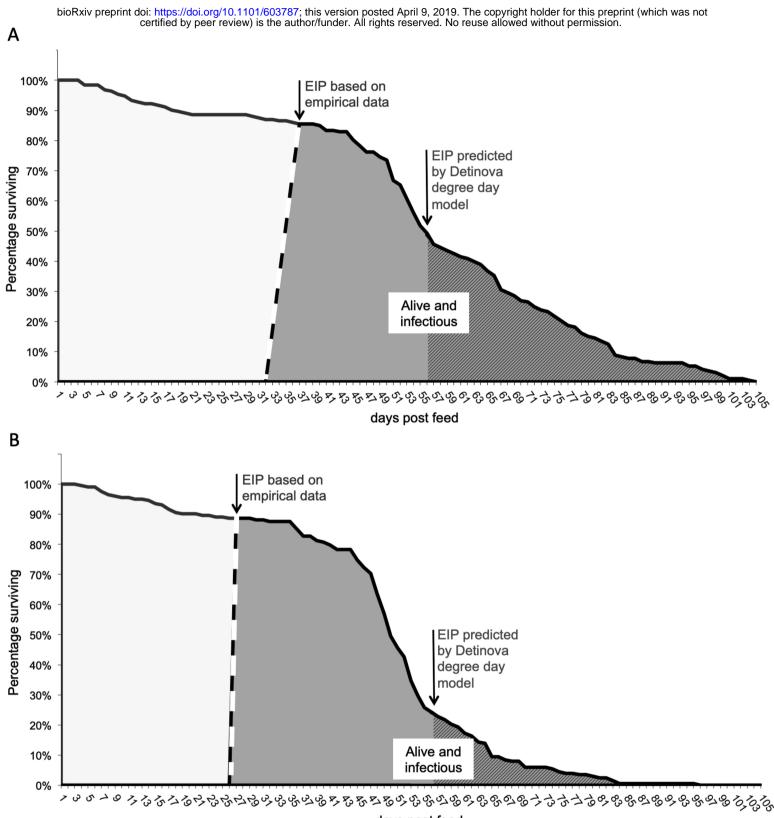
- 256 14. Paaijmans, K. P., Blanford, S., Bell, A. S., Blanford, J. I., Read, A. F. & Thomas,
- 257 M. B. 2010 Influence of climate on malaria transmission depends on daily
- temperature variation. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 15135–15139.
- 259 (doi:10.1073/pnas.1006422107)
- 260 15. Shapiro, L. L. M., Whitehead, S. A. & Thomas, M. B. 2017 Quantifying the
- 261 effects of temperature on mosquito and parasite traits that determine the
- transmission potential of human malaria. *PLoS Biol.* **15**, 1-21 e2003489–21.
- 263 (doi:10.1371/journal.pbio.2003489)
- 16. Sinka, M. E. et al. 2011 The dominant *Anopheles* vectors of human malaria in the
- Asia-Pacific region: occurrence data, distribution maps and bionomic précis.

266 *Parasit Vectors* **4**, 1–46. (doi:10.1186/1756-3305-4-89)

- 267 17. Sinka, M. E. et al. 2010 The dominant Anopheles vectors of human malaria in
- 268 Africa, Europe and the Middle East: occurrence data, distribution maps and
- 269 bionomic précis. *Parasit Vectors* **3**, 1-34. (doi:10.1186/1756-3305-3-117)
- 270 18. Blanford, J. I., Blanford, S., Crane, R. G., Mann, M. E., Paaijmans, K. P.,
- 271 Schreiber, K. V. & Thomas, M. B. 2013 Implications of temperature variation for
- 272 malaria parasite development across Africa. *Sci. Rep.* **3**, 13–11.
- 273 (doi:10.1038/srep01300)
- 274 19. Paaijmans, K. P., Blanford, S., Chan, B. H. K. & Thomas, M. B. 2012 Warmer
- 275 temperatures reduce the vectorial capacity of malaria mosquitoes. *Biol. Lett.* **8**,

276 465–468. (doi:10.1098/rsbl.2011.1075)

277	20.	Mitzmain, M. B. 1917 The malaria parasite in the mosquito: the effects of low
278		temperature and other factors on its development. Public Health Rep. (1896-1970)
279		32 , 1400-1413. (doi:10.2307/4574614)
280	21.	Noden, B. H., Kent, M. D. & Beier, J. C. 1995 The impact of variations in
281		temperature on early Plasmodium falciparum development in Anopheles stephensi.
282		Parasitology 111, 539-547. (doi:10.1017/S0031182000077003)
283	22.	Ermert, V., Fink, A.H., Jones, A.E. & Morse, A.P., 2011. Development of a new
284		version of the Liverpool Malaria Model. I. Refining the parameter settings and
285		mathematical formulation of basic processes based on a literature review. Malar.
286		<i>J.</i> , 10 , 1-17.
287	23.	Ruel, J. J. & Ayres, M. P. 1999 Jensen's inequality predicts effects of
288		environmental variation. Trends Ecol Evol. 14, 361-366 (doi:10.1016/s0169-
289		5347(99)01664-x)
290	24.	Sternberg, E. D. & Thomas, M. B. 2014 Local adaptation to temperature and the
291		implications for vector-borne diseases. Trends Parasitol.,30, 115–122.
292		(doi:10.1016/j.pt.2013.12.010)
293	25.	Clements, A. N. & Paterson, G. D. 1981 The analysis of mortality and survival
294		rates in wild populations of mosquitoes. J Appl Ecol. 18, 373-399.
295	26.	Brady, O. J. et al. 2013 Modelling adult Aedes aegypti and Aedes albopictus
296		survival at different temperatures in laboratory and field settings. Parasit Vectors
297		6 , 1–12. (doi:10.6084/m9.figshare.865034)
298	27.	Pascual, M., Ahumada, J. A., Chaves, L. F., Rodo, X. & Bouma, M. 2006 Malaria
299		resurgence in the East African highlands: Temperature trends revisited. Proc. Natl.


300		Acad. Sci. U.S.A. 103 , 5829–5834.
301	28.	Siraj, A. S., Santos-Vega, M., Bouma, M. J., Yadeta, D., Carrascal, D. R. &
302		Pascual, M. 2014 Altitudinal changes in malaria incidence in highlands of Ethiopia
303		and Colombia. Science 343 , 1154–1158. (doi:10.1126/science.1248707)
304		
305		
306		
307		
308		
309		
310		
311		
312		
313		
314		
315		
316		
317		
318		
319		
320		
321		
322		

15

Table 1. Summary of *P. falciparum* infection across a range of temperatures, showing the
number of replicate infectious feeds, the number of mosquitoes dissected to examine for
oocysts and sporozoites, the day post-blood-feed when sporozoites were first observed in
mosquito salivary glands, and the equivalent EIP predicted by the Detinova degree-day
model [8].

Mosquito	No. of	Dissection days	Presence of	Presence of	Day	EIP
species and	replicate	post feed (and	oocysts	sporozoites	sporozoites	(days)
Temperature	infectious	total no.	(and	(and	first	predicted
regime (°C)	feeds	mosquitoes	maximum	maximum	detected in	by
		dissected for	prevalence	prevalence	salivary	degree-
		oocysts, and	on a given	on a given	glands	day
		sporozoites)	day)	day)		model
An. stephensi						
16 ± 0	3	40-62 (50, 92)	No	No	NA	Infinite
17 ± 0	2	34-60 (64, 273)	Yes (55%)	Yes (57%)	38	111
18 ± 0	3	16-62 (402, 322)	Yes (75%)	Yes (73%)	33	56
20 ± 0	1	11-39 (148, 114)	Yes (80%)	Yes (78%)	26	28
14 ± 5	3	17-60 (144, 217)	Yes (3%)	No	NA	Infinite
16 ± 5	6	16-55 (362, 377)	Yes (5%)	Yes (5%)	30	Infinite
18 ± 5	2	15-62 (286, 228)	Yes (79%)	Yes (85%)	27	56
An. gambiae						
17 ± 0	2	34-50 (107, 273)	Yes (13%)	Yes (3%)	43	111
19 ± 0	2	23-41 (52, 383)	Yes (40%)	Yes (23%)	29	37
19 ± 5	2	18-40 (80, 491)	Yes (50%)	Yes (33%)	25	37

330	Figure 1. Plot line shows survival of mosquitoes that we assume with become infectious
331	following a parasite-infected blood meal. Areas under the line represent total mosquito
332	days of life, based on empirical data for <i>An. stephensi</i> at (A) 18° C, and (B) $18 \pm 5^{\circ}$ C. The
333	dashed line bounding the grey area represents estimated EIP, or parasite sporogony,
334	based on observed data at these temperatures. The grey area represents the number of
335	infectious-mosquito-days, which provides a relative measure of force of infection. Within
336	the larger grey area, the hatched shading represents infectious-mosquito-days calculated
337	using the degree-day model of Detinova [8].
338	
339	
340	
341	
342	
343	
344	
345	
346	
347	
348	
349	
350	
351	
352	

days post feed