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Abstract1

The human gut microbiome is a complex ecosystem, in which hundreds of microbial species and2

metabolites coexist, in part due to an extensive network of cross-feeding interactions. However,3

both the large-scale trophic organization of this ecosystem, and its effects on the underlying4

metabolic flow, remain unexplored. Here, using a simplified model, we provide quantitative5

support for a multi-level trophic organization of the human gut microbiome, where microbes6

consume and secrete metabolites in multiple iterative steps. Using a manually-curated set of7

metabolic interactions between microbes, our model suggests about four trophic levels, each8

characterized by a high level-to-level metabolic transfer of byproducts. It also quantitatively9

predicts the typical metabolic environment of the gut (fecal metabolome) in approximate10

agreement with the real data. To understand the consequences of this trophic organization, we11

quantify the metabolic flow and biomass distribution, and explore patterns of microbial and12

metabolic diversity in different levels. The hierarchical trophic organization suggested by our13

model can help mechanistically establish causal links between the abundances of microbes and14

metabolites in the human gut.15

Introduction16

The human gut microbiome is a complex ecosystem with several hundreds of microbial species17

[1, 2] consuming, producing and exchanging hundreds of metabolites [3, 4, 5, 6, 7]. With18

the advent of high-throughput genomics and metabolomics techniques, it is now possible to19

simultaneously measure the levels of individual metabolites (the fecal metabolome), as well as20

the abundances of individual microbial species [8]. Quantitatively connecting these levels with21

each other, requires knowledge of the relationships between microbes and metabolites in their22

shared environment: who produces what, and who consumes what? [9, 10] In recent studies,23

information about these relationships for all of the common species and metabolites in the human24

gut has been gathered using both manual curation from published studies [6] and automated25

genome reconstruction methods [3]. This has laid the foundation for mechanistic models which26

would allow one to relate metabolome composition to microbiome composition [11, 12].27

More generally, the construction of mechanistic models has been hindered by the complexity28

of dynamical processes taking place in the human gut, which in addition to cross-feeding and29
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competition, includes differential spatial distribution and species motility, interactions of microbes30

with host immune system and bacteriophages, changes in activity of metabolic pathways in31

individual species in response to environmental parameters, etc. This complexity can be tackled32

on several distinct levels. For 2-3 species it is possible to construct a detailed dynamical model33

taking into account the spatial organization and flow of microbes and nutrients within the lower34

gut [13, 14], or optimizing the intracellular metabolic flows as well as competition for extracellular35

nutrients using dynamic flux balance analysis (dFBA) models [15, 4].36

For around 10 microbial species, and a comparable number of metabolites, it is possible37

to construct a Consumer Resource Model (CRM) taking into account microbial competition38

for nutrients, the generation of metabolic byproducts, and the different tolerance of species to39

various environmental factors like pH. Using the existing experimental data on consumption and40

production kinetics of different metabolites, it is possible to fit some (but not all) of around 8041

parameters in such a model [16].42

However, modeling 100s of species and metabolites, typically present in an individual’s gut43

microbiome, requires thousands of parameters, which cannot be estimated from the current44

experimental data. Therefore, any such model must instead resort to a few “global parameters”45

that appropriately coarse-grain the relevant ecosystem dynamics. Here, we propose such a46

coarse-grained model of the human gut microbiome, hierarchically organized into several distinct47

trophic levels. In each level, metabolites are consumed by a subset of microbial species in the48

microbiome, and partially converted to microbial biomass. A remainder of these metabolites is49

excreted as metabolic byproducts, which then form the next level of metabolites. The metabolites50

in this level can then be consumed as nutrients by another subset of microbial species. Our model51

needs two global parameters: (1) the fraction of nutrients converted to metabolic byproducts52

by any microbial species, and (2) the number of trophic levels into which the ecosystem is53

hierarchically organized.54

While previous studies have suggested that such cross-feeding of metabolic byproducts is55

common in the microbiome, the extent to which this ecosystem is hierarchically organized has not56

been quantified. Our model suggests that both, the gut microbiome, and its relevant metabolites,57

are organized into roughly 4 trophic levels, which interconnect these microbes and metabolites58

in quantitative agreement with their experimentally measured levels. We also show that this59

model can predict the flow of biomass and metabolites through these trophic levels, quantify60

the relative contribution of the observed microbes and metabolites to these levels, and thereby61

allows us to study how microbial competition and cooperation for nutrients maintain diversity at62

each level.63

Model and Results64

Multi-level trophic model of the human gut microbiome65

Our model aims to approximate the metabolic flow through the intricate cross-feeding network of66

microbes in the lower intestine (hereafter, “gut”) human individuals (figure 1A). This flow begins67

with metabolites entering the gut, which are subsequently consumed and processed by multiple68

microbial species. We assume that each microbial species grows by converting a certain fraction69

of its metabolic inputs (nutrients) to its biomass and secretes the rest as metabolic byproducts70

(figure 1B). We define the byproduct fraction, f , one of the two key parameters of our model, as71

the fraction of nutrients secreted as byproducts. The complementary biomass fraction, 1− f ,72

is the fraction of nutrient inputs converted to microbial biomass. The metabolic byproducts73

produced from the nutrients entering the gut, can be further consumed by some species in the74
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Figure 1: Overview of the trophic model, its calibration and predictions. (A) Schematic
diagram showing the various steps in the trophic model, which uses fits the gut nutrient intake profile best
approximating the measured metagenome, and outputs a predicted metagenome (microbial abundances)
and metabolome. The experimentally measured metabolome is used to calibrate the number of trophic
levels, N` and byproduct fraction, f of the model. (B) “Zoomed-in” view of the trophic model from (A),
with different microbial species (red) and metabolites (blue) spread across the four trophic levels suggested
by the model. At each level, metabolites are consumed by microbial species, and converted partially
to their biomass, while the remainder is secreted as metabolic byproducts, which are nutrients for the
next trophic level. Metabolites that are left unconsumed across each level are assumed to eventually exit
the gut as part of the fecal metabolome, while the biomass accumulated by each species across all levels
contributes to the metagenome.

microbiome, in turn generating a set of secondary metabolic byproducts. We call each step of75

this process of metabolite consumption and byproduct generation, a trophic level. Due to factors76

such as limited gut motility, and a finite length of the lower gut, we assume that this process only77

continues for a finite number of levels, N`, the second key parameter of our model. At the end of78

this process, metabolites left unconsumed after passing through N` trophic levels are assumed to79

leave the gut as a part of the feces (figure 1B).80

In order to quantitatively describe all the steps of this process, our model requires the81

following information:82

• The metabolic capabilities of different microbial species in the gut, i.e. which microbes can83

consume which metabolites, and secrete which others. For this, we used a manually curated84

database connecting 567 common human gut microbes to 235 gut-relevant metabolites they85

are capable of either consuming or producing as byproducts [6] (see Methods for details).86

• The nutrient intake to the gut, which is the first set of metabolites that are consumed by87

the microbiome. Since the levels of these metabolites in a given individual are generally88

unknown, we first curated a list of 19 metabolites likely to constitute the bulk of this89

nutrient intake, and subsequently fitted their levels to best describe the observed microbial90

abundances in the gut of each individual (see Methods). We collected such microbial91

abundance data from various sources, in particular: 380 samples from the large-scale whole-92
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Figure 2: Calibration of the model. (A) Heatmap of the Pearson correlation between experimentally
measured and predicted metabolomes for different combinations of parameters f and N`. The plotted
value is the correlation coefficient averaged over 41 individuals in Ref. [18] (B) Comparison between the
experimentally observed bacterial abundances in a representative individual (y-axis) and their best fits
from our model (x-axis) with f = 0.9 and N` = 4. (C) Comparison between the experimentally observed
fecal metabolome (y-axis) and the predictions of our model (x-axis) with f = 0.9 and N` = 4 in the same
individual shown in panel (B) (Pearson correlation 0.64; P value < 10−5).

genome sequencing (WGS) studies of healthy individuals (Human Microbiome Project93

(HMP) [1] and the MetaHIT consortium [2, 17]), 41 samples from a recent 16S rRNA study94

of 10 year old children in Thailand [18].95

• The kinetics of nutrient uptake and byproduct release, i.e. the rates we refer to as λ’s,96

at which different microbial species obtain and secrete different metabolites in the gut97

environment. Since this information is unknown for most of our microbes and metabolites,98

we made some simplifying assumptions. We assumed that, in a given level, when species99

consume the same metabolite, they receive it in proportion to their abundance in the100

microbiome. When secreting metabolic byproducts, we assumed equal splitting, such that101

every metabolite secreted by a given species was released in the same fraction. However,102

we later verified that the predictions of our model was relatively insensitive to the exact103

values of these parameters, by repeating our simulations with randomized values of these104

parameters (see figure S1).105

Calibrating the key parameters of the model106

To calibrate the two key parameters of our model, f and N`, we used data from the 41 individuals107

from a recent 16S rRNA sequencing study of Thai children [18] for which both, 16S rRNA108

metagenomic profiles, as well as quantitative levels of 214 metabolites in the fecal metabolome,109

were available. In each individual we fitted the nutrient intakes of the 19 metabolites to best agree110

with experimental microbial abundances. A representative example comparing the predicted and111

measured bacterial abundances is shown in Fig. 2B. The Pearson correlation coefficient for data112

shown in this plot is 0.94, while in individual participants it ranged between 0.81± 0.17.113

We carried out these fits of microbial abundances for each of the 41 individuals studied in114
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Figure 3: Metabolite and biomass flow through the levels. (A) Cascading nature of nutrient
flow across trophic levels: nutrient intake to the gut (the leftmost turquoise bar) is gradually converted
into microbial biomass (red bars in each level) and metabolic byproducts (turquoise bars in each level).
Some fraction of these byproducts (blue bars in each level) cannot be consumed by the microbiome and
hence remains further unprocessed until it leaves an individual as their fecal metabolome. The metabolic
byproducts of each level (turquoise bars) serve as the nutrient intake for microbes in the next level. The
process ends at level 4 where all byproducts remain unconsumed thereby enter the fecal metabolome. (B)
Normalized contribution of of the nutrient intake to microbial biomass (red) and fecal metabolome (blue)
split across levels 2 to 4. Dashed lines show that consumable metabolites generated at a previous level
serve as metabolic inputs to the next level.

Ref. [18] for a broad range of two parameters of our model - the byproduct fraction f ranging115

between 0.1 and 0.9 and the number of trophic levels N` between 2 and 10. For each individual116

and each pair of parameters f and N` we used our model to predict the fecal metabolome117

profile. This predicted metabolome was subsequently compared to the experimental data of Ref.118

[18] measured in the same individual. Around 19 of our predicted metabolites (variable across119

individuals) were actually among the ones experimentally measured in Ref. [18]. The quality120

of this comparison was quantified using the Pearson correlation coefficient (see Fig. 2A). The121

model with parameters f = 0.9 and N` = 4 best agrees with the experimental data (Pearson122

correlation 0.7± 0.2; median P value 8× 10−4) compared with all other values we tried. Hence,123

we used this combination of parameters in all subsequent simulations of our model.124

We found predicted and experimental observed metabolic profiles to be in reasonable agreement125

with each other. Fig. 2C shows the predicted and observed fecal metabolome data plotted against126

each other for the same individual used in Fig. 2B. Note that, while the agreement between the127

observed and predicted microbial abundances shown in Fig. 2B is the outcome of our fitting the128

levels of intake metabolites, the fecal metabolome is an independent prediction of our model. It129

naturally emerges from the trophic organization of the metabolic flow and agrees well with the130

experimentally observed metabolome. Thus our simplified model supports the organization of131

the microbiome into roughly four trophic levels with byproduct fraction around 0.9.132

Predictions of the multi-level trophic model133

Metabolite and biomass flow through trophic levels134

With a well-calibrated and tested model we are now in a position to apply it to a broader set135

of human microbiome data. To this end we chose data for 380 healthy adult individuals from136
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several countries (Europe [2], USA [1], and China [17]). For each individual, we used our model137

to predict its metabolome (that has not been measured experimentally) and quantified the flow138

of nutrients (or metabolic activity) through 4 trophic levels in our model averaged over these139

individuals.140

Fig. 3A shows the cascading nature of this flow: metabolites enter the gut as nutrient intake141

shown as the leftmost turquoise bar in Fig. 3A. Roughly, a fraction 1− f = 0.1 of this nutrient142

intake is converted into microbial biomass (red bar), while the remaining fraction f = 0.9 is143

excreted as metabolic byproducts. Some fraction of these metabolic byproducts (blue bar) cannot144

be consumed by any of the microbes in individuals microbiome and hence ultimately it leaves the145

individual as part of their fecal metabolome. The metabolic byproducts that can be consumed146

by the microbiome (turquoise bar) serve as the nutrient intake for microbes in the next level (i.e.147

level 3). This scenario repeats itself over the next levels until the level 4, beyond which we assume148

all the byproducts enter the fecal metabolome. Note that, even though some of these byproducts149

can be consumed by gut microbes, our previous calibration (Fig. 2A) suggests that this does150

not happen. We believe this may be due to the finite time of flow of nutrients through the gut.151

Fig. 3B shows the normalized contributions of the nutrient intake to microbial biomass (red)152

and fecal metabolome (blue) split across trophic levels. We observe a contrasting pattern across153

levels, with the contribution to microbial biomass decreasing along levels, whereas the fraction154

of unused metabolites (contribution to the fecal metabolome) increases. It is also worth noting155

that the same microbial and metabolic species get contributions from multiple trophic levels,156

i.e. the same microbes that consume nutrients and excrete byproducts in earlier levels can also157

grow on metabolites generated in later levels. Thus, even though the dominant contribution to a158

species’ biomass is typically derived from a specific trophic level, species can grow by consuming159

metabolites from multiple levels.160

Quantifying diversity across trophic levels161

The diversity of microbial communities can be separately defined both phylogenetically and162

functionally. Phylogenetic diversity counts the number of abundant microbial species inferred163

from the metagenomic profile. On the other hand, functional diversity quantifies the variety164

of collective metabolic activities of these species, which in our case could be inferred from the165

metabolome profile. Our model allows to quantify both types of diversity on a level-by-level166

basis. Instead of just calculating the presence or absence of microbial species or metabolites at167

each level, we weighed each microbe or metabolite by their relative contribution to the metabolic168

activity at that trophic level. At each level, we calculated the effective α-, β- and γ-diversity,169

separately for microbes and metabolites (see Methods for details).170

Fig. 4 shows the effective α-, β- and γ- diversity for microbes (grouped at the species171

and genus levels) and metabolites, averaged over our 380 healthy individuals. The microbes172

first appear in the second trophic level feeding off the nutrient intake metabolites in the first173

level. We found that the α-diversity (the average number of abundant entities weighted by their174

contribution to each level) systematically increases with the level number for both microbes175

and metabolites. There is no clear trend in the γ-diversity of microbes grouped at the species176

level (the “pan-microbiome” diversity, i.e. the number of abundant species in the combined177

metagenomes of 380 individuals).178

Finally the beta-diversity of microbial species, defined as the ratio between γ− and α-diversity179

is the highest (∼ 4) in the first level, while being considerably lower (∼ 2.5) in the next two180

levels. The β-diversity addresses the following important question: how variable are the abundant181

species between individuals?182
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Figure 4: Metabolite and microbial diversity at different levels. Effective (A–C) α-diversity,
(D–F) β-diversity, (G–I) γ-diversity in microbial species (A, D, G), microbial genera (B, E, H), and
metabolites (C, F, I) plotted as a function of trophic level (1–4) and averaged across 380 individuals.

While we found that the β-diversity of microbial species could be as large as 4 (Fig. 4), when183

we grouped organisms by their genus, β diversity decreased down to ∼ 2 across all levels (Fig.184

4E). This drop in β-diversity was the most pronounced in the uppermost trophic level. The185

overall reduction of β-diversity shown in Fig. 4E relative to Fig. 4D suggests that the chief186

driver of species variability in the gut microbiome is within-genus competition. Such a pattern187

has previously been explained by a “lottery-like” process of microbial competition within the gut188

[19].189

We also quantified the diversity of metabolites across 4 trophic levels. We found that the β190

diversity of metabolites was the highest in the uppermost level of nutrients (∼ 2) and lower in191

the next three levels (∼ 1). While this declining trend was similar to that observed for microbial192

diversity, surprisingly, the value of β diversity for nutrients was much smaller than for microbes193

(about 2.5 times lower across all levels). This suggests the picture of functional stability — in194

spite of taxonomic variability — in all trophic levels of the human gut microbiome, namely195

that even though the species composition of the microbiome can be quite different for different196

individuals, their metabolic function is quite similar. These results supplement similar findings of197

the HMP project [1] by breaking them up into trophic levels and by using metabolome diversity198

instead of metabolic pathways diversity to quantify the extent of functional similarity.199

Discussion200

Above we introduced and studied a mechanistic, consumer-resource model of the human gut201

microbiome quantifying the flow of metabolites and the gradual building up of microbial biomass202

across several trophic levels. What distinguishes our model is its ability to simultaneously capture203
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the metabolic activities of hundreds of species consuming and producing hundreds of metabolites.204

Using only the metabolic capabilities — who eats what, and makes what — of different species in205

the microbiome, we uncovered roughly four trophic levels in the human gut microbiome. At each206

of these levels, some microbes consume nutrients, and convert them partially to their biomass,207

while the remainder gets secreted as metabolic byproducts. These metabolic byproducts can208

then serve as nutrients for microbes in the next trophic level.209

Understanding such a trophic organization of microbial ecosystems is important because it210

helps identify causal relationships between microbes and metabolites at two consecutive trophic211

levels and helps to separate them from purely correlative connections, either at the same or at212

more distant levels. Thus it extends the previously introduced concept of a “microbial metabolic213

influence network” [6] by highlighting its hierarchical structure in which species/metabolites214

assigned to higher trophic levels could affect a large number of species/metabolites located215

downstream from them. The concept of trophic levels is widely discussed in macroecology helping216

to make sense of flow of nutrients and energy in large food webs, but rarely highlighted in the217

microbial ecosystems literature.218

Our model also allows us to quantify the diversity of both species and metabolites contributing219

to different trophic levels. One conclusion we made was that the functional convergence of the220

microbiome holds roughly equally across all trophic levels. Indeed, at each level we observed221

the microbial diversity across different individuals was considerably higher than their metabolic222

diversity. Our model also provides additional support to the “lottery” scenario described in Ref.223

[19], especially in the first trophic level. According to this scenario, there are multiple species224

nearly equally capable of occupying a certain ecological niche, which in our model corresponds225

to the set of nutrients they consume and secrete as byproducts. The first species to occupy this226

niche prevents equivalent microbes from entering it. This is reflected in a high β-diversity of227

microbial species combined with a low to moderate β-diversity of microbial genera to which they228

belong and low β-diversity of their metabolic byproducts.229

The flow of metabolites through the species-to-species cross-feeding network is reminiscent of230

the flow of web traffic modeled by Google’s original PageRank algorithm [20]. In the PageRank231

algorithm, each web page redirects f = 0.85 of its traffic along hyperlinks to other web pages232

thereby contributing to their network traffic. Interestingly, in our model, each bacterial species233

redistributes or converts a fraction f = 0.9 of its nutrients to other byproducts, which is close to234

that found by Page and Brin for web traffic [20].235

Our model is focused on studying the effects of cross-feeding and competition of different236

microbes for their nutrients. Thereby it ignores a number of important factors known to impact237

the composition of the human gut microbiome. These include interactions with host and its238

immune system [21] as well as with viruses [22], and environmental parameters other than239

nutrients, such as pH [14], spatial organization [23], etc. Instead, our model uses only two240

adjustable parameters: the byproduct fraction f and the number of trophic levels N`, assumed241

to be common to all species. This very small number of parameters has been a conscious choice242

on our part. We are perfectly aware that species differ from each other in their byproduct ratios,243

and that the metabolic flows are not equally split among multiple byproducts. This can be244

easily captured by a variant of our model in which different nutrient inputs and and byproduct245

outputs of a given microbial species are characterized by different kinetic rates. However, this246

would immediately increase the number of parameters from 2 to more than 3, 600. To calibrate a247

model with such a huge number of parameters one needs many more experimental data than248

we have access to right now. However, we tested the sensitivity of our model to variation in249

these parameters by repeating our simulations for 100 random sets of nutrient kinetic uptake250

and byproduct release rates (λ’s in our model), and found that this did not qualitatively change251
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our central result (i.e. that the human gut microbiome is composed of roughly N` = 4 trophic252

levels with a byproduct fraction f = 0.9). Surprisingly, our metabolome predictions were also253

relatively insensitive with respect to varying these parameters (Figure S1). The exact nature254

of the robustness of these metabolome predictions is beyond the scope of this paper, and the255

subject of future work.256

Methods257

Obtaining data for microbial metabolic capabilities258

For information about the metabolic capabilities of human gut microbes, we adopted a recently259

published manually-curated database, NJS16, which includes such data for 570 common gut260

microbial species and 244 relevant metabolites from Ref. [6]. This database recorded, for each261

microbial species, which metabolites each of the species could consume, and which they secreted262

as byproducts. Since we were interested in those metabolites that could be used for microbial263

growth, we removed metabolites such as ions (e.g. Na+, Ca+) from NJS16. Moreover, we264

constrained our analyses to microbes only, and therefore removed the 3 types of human cells from265

NJS16. This left us with a database with 567 microbes, 235 metabolites and 4,248 interactions266

connecting these microbes with corresponding metabolites (see table S1 for the complete table of267

interactions).268

Obtaining metagenomic and metabolomic data269

To calibrate the key parameters of our model, we used a previously published dataset, namely a270

16S rRNA sequencing study of 41 human individuals from rural and urban areas in Thailand271

[18]. From these data, we collected the reported 16S rRNA OTU abundances as well as their272

corresponding taxonomy. We explicitly removed all OTUs that did not have an assigned species-273

level taxonomy. The remaining OTUs explained roughly 71%(±15%) of the bacterial abundances274

per sample.275

We then mapped these species names to species names listed in the NJS16 database. We276

found an exact match for 110 species out of 208 in this table. In order to improve the species277

coverage from the abundance data, we manually mapped the remaining species in the following278

manner. For those genera in NJS16, whose member species had identical metabolic capabilities,279

we assumed that the capabilities of other, unmapped species from these genera were the same280

as these species. For several well-studied bacterial genera, such as Bacteroides, we determined281

a “core” set of metabolic capabilities (i.e. those metabolites that could either be consumed282

or secreted by all species in that genus), and assigned them to all unmapped species in that283

genus (i.e. those with known abundances, but otherwise understudied metabolic capabilities in284

NJS16). This allowed us to map an additional 20 microbial species from the abundance data,285

and incorporate into our model. Note that we did this additional mapping, only for those genera,286

where species metabolic capabilities were identical.287

To quantify the metabolome levels in each individual, we used the available quantitative288

metabolome profiles (obtained via from CE-TOF MS) corresponding to the 41 individuals whose289

metagenomic samples we had. Here, we mapped the reported metabolites to our database of290

metabolic capabilities using KEGG identifiers, which revealed 84 such measured metabolites.291

To make predictions about metabolic flow and effective diversity from our model, we used292

additional metagenomic datasets, namely those from the Human Microbiome Project (HMP) [1]293

and MetaHIT [2, 17], for which we had microbial abundances, but no fecal metabolome. This294
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resulted in an additional 380 human individuals, for which we obtained tables of MetaPhlAn2295

microbial abundances, and mapped species names to those in NJS16 using the same procedure296

described above. Here, out of a total of 532 microbial species detected over these data, we could297

map and incorporate 316 species. Of these, 207 were mapped through an exact taxonomic match,298

and 109 by a genus-capability match. These incorporated species covered, on average, 90% of299

the total microbial abundance in each individual sample.300

Determining the components of the nutrient intake to the gut301

The inputs of our model are the relative abundances of microbial species in each individual,302

which are known (and described above), and the levels of various nutrients reaching their lower303

gut, which we fit using the model. For simplicity, we do not explicitly include the various304

polysaccharides (dietary fibers, starch, etc.) known to constitute the bulk of an individual’s diet.305

Instead, we chose not to include the polysaccharides themselves, but instead use their breakdown306

products as the direct nutrient intake to the gut. The reason for this is our limited quantitative307

understanding of the processes by which these polysachharides are converted to these breakdown308

products, e.g. the levels of extracellular enzymes, variability in their composition (their lability),309

etc. This curated nutrient intake consisted of 19 metabolites, such as arabinose, raffinose, and310

xylose (see table S2 for the complete list of metabolites).311

Simulating the trophic model312

For a specific individual, our model comprises multiple iterative “rounds” of metabolite con-313

sumption by microbes and the subsequent generation of metabolic byproducts, with each round314

constituting a trophic level. At each level, all metabolites produced in the previous level could315

be consumed by all microbial species detected in the specific individual’s gut. Note that at the316

first level, these metabolites were given by the nutrient intake to the gut, as described above.317

Any metabolite that could be consumed by multiple microbial species, was split across those318

species in proportion to their measured relative abundances. Those metabolites that could319

not be consumed at any level were assumed to eventually exit the gut, and form part of the320

individual’s fecal metabolome. Upon metabolite consumption in any trophic level, we assumed321

that all microbial species that consumed these metabolites, converted a fraction (1− f) of the322

total consumed metabolites to their biomass. The remaining fraction, f (assumed fixed for all323

species) was converted to byproducts for the next level. Here, we assumed that each of the324

species produced all the byproducts it was capable of in equal amounts. After N` such iterative325

rounds (calibrated separately, see the next section), we assumed that this process ends. We326

added up all the biomass accumulated by each microbial species across all trophic levels as their327

total biomass, and added up all the unconsumed metabolite levels as the total fecal metabolome.328

Finally, we normalized, both the microbial biomass and metabolite amounts separately, to obtain329

the relative microbial abundances and relative metabolome profiles, respectively.330

Fitting and inferring the nutrient intake to the gut331

Simulating the model required us to know the nutrient intake to the gut, for which there are332

no available experimental measurements. Therefore, we inferred the amounts of these 19 intake333

metabolites by fitting the microbial abundances predicted by our model with those measured334

from each individual’s microbiome. We used a nonlinear optimization technique (implemented335

as lsqnonlin in MATLAB R2018a, Mathworks Inc.) for this fit, from which we obtained the336

amounts of the gut nutrient intake supplied to the first trophic level, that minimized the sum of337
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squares of the logarithm of the difference between the observed species abundances, and those338

predicted by our model. Typically, we fit 19 metabolite amounts for each human individual, who339

had roughly 80 microbial species.340

Calculating level-by-level diversity341

To quantify the diversity of microbes and metabolites at each trophic level across the 380
individuals we studied, we used three measures popular in the ecosystems literature: namely
the α-, β- and γ- diversity [24, 25, 26]. For each individual, we calculated the α-diversity of
microbes and metabolites on each of the trophic levels. For this we first quantified the relative
contributions of a given level to microbial abundances, and separately to the fecal metabolome
profile. The contribution of a given trophic level ` to the relative abundance of a species
(microbial or, separately, metabolic) i in a specific individual j is given by pi(`, j) normalized by∑S

i=1 pi(`, j) = 1. The α-diversity

Dα(`) =
1

〈
∑S

i=1 pi(`, j)
2〉j

,

where 〈·〉j represents taking the average across 380 individuals used in our analysis.342

Across all individuals, we calculated the γ-diversity of microbes and metabolites in their gut,343

which quantified the “global” diversity across all individuals, as:344

Dγ(`) =
1∑S

i=1 pi(`)
2
,

where pi(`) = 〈pi(`, j)〉j is the mean relative abundance of species (or metabolite) i at the trophic345

level ` across all individuals used in our analysis.346

Finally, to quantify the between-individual variability in microbial and metabolite diversity,347

we calculated the overall β-diversity, which is the ratio of the global to local diversity, as:348

Dβ(`) =
Dγ(`)

Dα(`)
.

Code availability349

All computer code and extracted data files used in this study are available at the following URL:350

https://github.com/eltanin4/trophic_gut.351

Supplementary Figures and Tables352

Figure S1 Effect of changing kinetic parameters on model prediction. Scatter plot353

of the measured and predicted metabolome where, instead of considering equal specific nutrient354

uptake and byproduct release rates, λ’s in our model, we take several random sets (in black).355

Error bars (in black) indicate standard deviation in the predicted levels of specific metabolites356

for different sets of λ’s. The solid line represents x = y. Red squares indicate the predicted357

metabolome for the default set of kinetic parameters used, i.e. when all of λ’s were set equal to 1.358

Table S1 Microbial and metabolite interactions used in the model. Table of all 4,248359

interactions between microbes and metabolites used in the model, from Ref. [6].360
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Table S2 Components of the nutrient intake to the gut. List of all 19 metabolites used361

to fit the gut nutrient intake in the model.362
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Supplementary Figures

Figure S1: Effect of changing kinetic parameters on model prediction. Scatter plot of the
measured and predicted metabolome where, instead of considering equal specific nutrient uptake and
byproduct release rates, λ’s in our model, we take several random sets (in black). Error bars (in black)
indicate standard deviation in the predicted levels of specific metabolites for different sets of λ’s. The
solid line represents x = y. Red squares indicate the predicted metabolome for the default set of kinetic
parameters used, i.e. when all of λ’s were set equal to 1.
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