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Abstract 
Riboswitches that couple binding of ligands to recruitment of molecular machines offer sensors 
and control elements for RNA synthetic biology and medical biotechnology. Current approaches 
to riboswitch design enable significant changes in output activity in the presence vs. absence of 
input ligands. However, design of these riboswitches has so far required expert intuition and 
explicit specification of complete target secondary structures, both of which limit the structure-
toggling mechanisms that have been explored. We present a fully automated method called 
RiboLogic for these design tasks and high-throughput experimental tests of 2,875 molecules 
using RNA-MaP (RNA on a massively parallel array) technology. RiboLogic designs explore an 
unprecedented diversity of structure-toggling mechanisms validated through experimental tests. 
These synthetic molecules consistently modulate their affinity to the MS2 bacteriophage coat 
protein upon binding of flavin mononucleotide, tryptophan, theophylline, and microRNA miR-208a, 
achieving activation ratios of up to 20 and significantly better performance than control designs. 
The data enable dissection of features of structure-toggling mechanisms that correlate with 
higher performance. The diversity of RiboLogic designs and their quantitative experimental 
characterization provides a rich resource for further improvement of riboswitch models and 
design methods. 

 

Main text 

Biological systems rely on precise regulation of cellular processes. In particular, regulatory RNAs, 
including riboswitches, play major roles in biological circuits, sensing molecules in the cellular 
milieu and then modulating gene expression and other processes in a wide variety of natural 
systems.1 The ability to perform de novo design of arbitrary riboswitches that interact with other 
biomolecules in their environments would have broad impacts in synthetic biology as well as for 
RNA diagnostics and therapeutics. Supporting these efforts, there are a rapidly growing number 
of synthetic and natural RNA ‘aptamer’ sequences that bind drugs, metabolites, proteins, and 
other biologically important molecules that might be incorporated into novel riboswitches. Many 
applications of these riboswitches, including fluorescent biosensors,2–6 require reversible 
riboswitches with tight binding to reporters in their ON states, and this criterion necessitates a 
tradeoff with good activation ratios, defined as the ratio in observed signal in the presence and 
absence of a trigger molecule.7  

Riboswitches are multi-stable RNA molecules, meaning they can form multiple secondary 
structures. The preferred states can be toggled by small molecule inputs or RNA oligonucleotides 
that bind aptamers or complementary regions embedded in the RNA (Figure 1A). So far, the 
majority of riboswitch design studies involve manual design of the desired states and require 
detailed specification of the structure-toggling mechanism.7 For reversible switches, these efforts 
have required significant trial-and-error; success has been achieved through screening of many 
constructs, the majority of which exhibit little to no switching, with median activation ratios close 
to 1 and best-case activation ratios of 10.2,3,6,7  

Proposals to automate this process still require experts to input the complete secondary 
structures of the RNA without and with ligands or are limited to specialized applications.8–13 In 
addition to lack of generality, lack of diversity, and limited automation, most methods have been 
subjected to no experimental tests8–11 or tests involving at most tens of riboswitches.12,13 It 
remains unclear if successful riboswitches can be created without expert input of detailed 
secondary structures and to what extent current energetic models for RNA secondary structure or 
expert-defined structure-toggling mechanisms might limit more automated efforts. 
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Here, we present a detailed computational and experimental study involving thousands of diverse 
molecules to test the fully automated design of riboswitches. For computational design, we 
describe RiboLogic, an algorithm for designing sequences of RNA molecules that are predicted 
to change their secondary structure in response to interactions with other biomolecules. This 
package only requires the user to provide small aptamer segments to bind desired input and 
output molecules. For experimental characterization, we evaluate the switching of thousands of 
designed RNA molecules using repurposed Illumina sequencers, through the recently developed 
the RNA-MaP (RNA on a massively parallel array) platform.14–17 These experimental results 
confirm that fully automated design can yield riboswitches with performance comparable to 
rational design, achieving activation ratios above 10 in many cases. The large number of 
measurements and high diversity of structure-toggling mechanisms allow dissection of currently 
limiting factors for automated riboswitch design and provide a rich data set for future efforts that 
seek to improve riboswitch design through machine learning or more accurate physics-based 
modeling. 

RiboLogic designs riboswitches based on a maximally flexible set of user-specified constraints. 
The algorithm accounts for any number of folding conditions, as defined by the concentrations of 
ligands defined by the user. These ligands can be small molecules, proteins with known 
aptamers, or other RNA strands engaged through base-pairing interactions. For example, in 
some of our tests below, we used flavin mononucleotide (FMN) as an input ligand; FMN binds to 
a small aptamer sequence discovered by in vitro selection (Figure 1A & 1B).18 The user only 
needs to specify the sequence of this aptamer and the estimated dissociation constant of the 
aptamer-ligand complex under the experimental conditions, and RiboLogic will place this 'input' 
segment within the design and optimize the surrounding sequence in each of the riboswitch 
states, simulating ligand binding to the aptamer (see Methods for details). In this example, the 

two states are RNA with no FMN present and with a concentration of 200 M FMN (Figure 1A). 

For each of the target riboswitch states, the user can specify either a full desired secondary 
structure or, more simply, the substructure of an 'output' segment that must be adopted or not 
adopted by the RNA in order to trigger or suppress an output, respectively. For example, in some 
of our tests below, we used binding of a fluorescently tagged MS2 viral coat protein to an MS2 
RNA hairpin segment within the design as an output (Figure 1A & 1B); such interactions underlie 
most systems for CRISPR interference and activation and in situ RNA visualization.2–6,19–21  The 
user only needs to specify the sequence and ‘active’ secondary structure of this output element 
and RiboLogic will place this sequence relative to the input aptamer element and optimize 
surrounding sequences during its design process. 

RiboLogic uses simulated annealing to sample the space of possible sequences to satisfy the 
given constraints. At each step, the sequence is mutated either at a single base or by sliding the 
position of a functional element (e.g., the FMN aptamer or MS2 hairpin; colored nucleotides in Fig. 
1B). For each sequence that is sampled, the minimum free energy secondary structure is 

determined for each solution condition (e.g., without and with 200 M  FMN) and evaluated by 

two scores (Figure 1C & 1D). The first score is a base pair distance that measures the number of 
base pairs that must be broken or formed to obtain the target structure or substructures in each 
solution condition, summed over the different solution conditions. The second score is a base 
pair probability score that sums the probabilities of formation of all base pairs that should form in 
the target structure or substructures, providing a smoother quantitative measure of structure 
formation than the first base pair distance score. RiboLogic implements several additional 
strategies to narrow the sequence space being explored. Mutation of the sampled sequences 
leverages a dependency graph-based approach, which ensures that bases that are paired in any 
target structure are always complementary in sequence (e.g., N’s connected by blue lines in 
Figure 1B).22 In the case of designing riboswitches responsive to other input RNA molecules, the 
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algorithm provides the option to automatically introduce the sequence complementary to the input 
in order to promote favorable interactions between the designed RNA and input RNA.  

 

 

Figure 1: RiboLogic uses a graph representation and two scoring functions to design 
riboswitches. (A) This energy diagram represents the thermodynamic model used, where the 
ligand-bound state is given an energetic bonus due to the chemical potential of the binding of the 
ligand. (B) A graph representation is used to constrain the sequence space that is sampled by 
RiboLogic. In this example, the goal is to design a riboswitch whose formation of the MS2 RNA 
hairpin is modulated by the presence of the flavin mononucleotide (FMN) molecule. Bases 
connected by an arc are part of these secondary structure elements and are constrained to be 
complementary in sequence update. (C) Two scoring metrics are used to evaluate each design 
candidate. The base pair distance measures the number of base pairs that must be broken or 
formed to reach the target structure, while the base pair probability (bpp) score quantifies the 
probability of formation of each base pair in the target structure. (D) The scores change as 
expected during computational design, with the base pair distance decreasing and the base pair 
probability score increasing over optimization steps. 

 

As test cases for our methods, we designed riboswitches where the binding of a small molecule 
or oligonucleotide ligand modulates the formation of the MS2 RNA hairpin, which can then 
transduce outputs by recruiting machinery coupled to the MS2 bacteriophage coat protein.23–25 
We applied a quantitative, high-throughput array technology that enables fluorescence 
measurements over millions of individual RNA clusters generated on an Illumina array, which has 
been extensively tested using the MS2 system (Figure 2A & 2B).14,16,17 The formation of the MS2 
RNA hairpin was detected by flowing fluorescently labelled MS2 protein at increasing 
concentrations to get a binding curve (Figure 2B & 2C). The dissociation constant 𝐾𝑑 was fit over 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2019. ; https://doi.org/10.1101/603001doi: bioRxiv preprint 

https://doi.org/10.1101/603001
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 5 

tens to hundreds of clusters for each design, yielding a distribution of 𝐾𝑑 measurements for each 

state (Figure 2D). By taking the median of each distribution, we calculated a 𝐾𝑑 as a quantitative 

measure of the switching of each design, and the ratio of these MS2 𝐾𝑑 values with and without 

input ligand (e.g., FMN) gives an activation ratio, which we use as our figure of merit for 
riboswitches. This activation ratio is equal to the ratio of fluorescence of the riboswitch with and 
without input ligand at low MS2 concentrations7; by carrying out fits of data from sub-nanomolar 
to many micromolar MS2 concentrations, we achieve high precision in these measurements. The 
resulting 𝐾𝑑 values and activation ratios were strongly correlated across experimental replicates, 

confirming the high precision of the method (r2=0.94 for log 𝐾𝑑; errors in activation ratios well 

under 2-fold; see Figure S1). 

 

Figure 2: Functional tests of riboswitches using a high-throughput array. (A) Each cluster 
on the array initially contained a single species of ssDNA from a synthesized oligo pool. dsDNA 
was generated by Klenow extension with a biotinylated primer, and RNA was transcribed by RNA 
polymerase until being stalled at the streptavidin roadblock. (B) Fluorescently-labelled MS2 
protein was flowed in at varying concentrations to enable measurement of binding. (C) The array 
technology enables measurement of binding curves over tens or hundreds of replicate clusters 
for each design and solution condition. (D) The median over the distribution of fit 𝐾𝑑s was used to 

estimate the activation ratio of switching. In this example of an ON switch, the activation ratio of 
11 was measured over 172 independent clusters displaying the same switch. 

 

We applied the algorithm to design simple switches responsive to three different small molecules 
– flavin mononucleotide (FMN), theophylline, and tryptophan. For OFF switches, the MS2 hairpin 
should form when the ligand is absent and be disrupted when the ligand is added (Figure 3A). 
For ON switches, the MS2 hairpin should form only when the FMN is present and otherwise be 
disrupted (Figure 3B). By applying secondary structure constraints to the MS2 hairpin region in 
both the absence and presence of the ligand, we set up a simple two-state design problem. We 
were able to obtain a set of structurally diverse designs (Figure 3A-C), and we experimentally 
characterized thousands of these molecules with the RNA-MaP method. 
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Figure 3: Design of ligand-responsive riboswitches. (A) Predicted secondary structures for a 
variety of OFF switches show disruption of the MS2 hairpin (red) upon binding of FMN, 
theophylline, or tryptophan (blue). (B) Predicted secondary structures for a variety of ON switches 
show formation of the MS2 hairpin (red) upon binding of FMN, theophylline, or tryptophan (blue). 
(C) Clustering of FMN switches based on the sum of base pair distances of predicted secondary 
structures reveals that RiboLogic designs with diverse structures achieve high activation ratios. 
(D) Distributions of experimentally measured activation ratios are shown for various types of 
designs, with medians shown as vertical lines. RiboLogic generally achieves significantly better 
activation ratios than baseline, as determined by a Wilcoxon rank-sum test (*** - p<0.001). 
Baseline is the measured activation ratio for sequences made for other design problems. (E) In 
practice, several of the most promising designs would be experimentally screened to evaluate 
switch efficiency. To mimic this, we bootstrapped sets of ten designs and chose the design with 
the best activation ratio. The distributions of activation ratios for these best-of-ten designs were 
compared between RiboLogic and baseline. A best-of-ten strategy yields designs with 
significantly higher activation ratios than baseline. 

We found that RiboLogic designs achieved activation ratios significantly better than unrelated 
designs made for other ligands, which were used as baseline comparisons (Figure 3D). For 
example, the median activation ratio for Ribologic designs of FMN-responsive ON switches was 
1.5 with a standard deviation of 1.3 (Figure 3D, Table 1, Table S1). As the baseline comparison, 
the median activation ratios with respect to FMN for designs meant to be responsive to 
theophylline or tryptophan was 1.2. For each of the six switch design challenges (three ligands, 
ON vs. OFF) the difference was significant (p<10-10; Figure 3D, Table S2). For comparison, 
previous characterization of rationally designed reversible riboswitches yielded a median 
activation ratio of 1.1.3,6 
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For each of the six challenges, the best activation ratio was over 4-fold, and extended up to 15-
fold for the theophylline ON switch tests (Figure 3D). Anticipating that most riboswitch design 
efforts will be able to experimentally test several molecules and choose the best one,  we 
conducted a best-of-ten analysis, in which we randomly drew subsets of 10 designs and scored 
the best activation ratios. These best-of-ten trials showed clear separation of the activation ratios 
from baselines, and in the majority of cases gave activation ratios of 2.0 or greater (Figure 3E, 
Table S3). In addition, most designs exhibited 𝐾𝑑's close to the affinity of the MS2 coat protein 

under the conditions in which they were supposed to be active (with ligand for ON switches; 
without ligand for OFF switches) (Figure S2). The switch with the highest activation ratio of 15.4 
achieved a 𝐾𝑑  of 10 nM in the activated state, within experimental error of the intrinsic 

dissociation constant of the MS2 coat protein-RNA hairpin interaction (6 nM, measured in the 
same experiment). 

 

Figure 4: Design of miRNA-responsive riboswitches. (A) This OFF switch is predicted to form 
the MS2 hairpin (red) only in the absence of the miRNA (blue). (B) This ON switch is predicted to 
form the MS2 hairpin (red) only in the presence of the miRNA (blue). (C) Clustering of miRNA 
switches based on the base pair distance between predicted secondary structures in the absence 
of the miRNA reveals that RiboLogic designs with diverse structures achieve high activation 
ratios.  (D) The distribution of experimentally measured activation ratios are shown as scatter and 
violin plots, with medians shown as horizontal lines. Across all design problems, there is no 
significant difference between RiboLogic and baseline designs, as determined by a Wilcoxon 
rank-sum test. (E) A best-of-ten strategy analysis results in designs with significantly higher 
activation ratios, but the distributions are similar with the exception of a few outliers. 
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Table 1: Summary of activation ratios for RiboLogic designs.  

design maximum AR median AR best-of-ten 
median AR 

count 

FMN OFF 9.74 0.987 2.57 1357 

FMN ON 14.4 1.46 3.89 853 

theophylline OFF 9.92 1.73 4.86 97 

theophylline ON 15.4 0.991 3.44 99 

tryptophan OFF 4.29 1.17 2.28 89 

tryptophan ON 4.55 1.08 2.09 94 

miRNA OFF 21.8 0.825 1.66 188 

miRNA ON 20.0 1.17 2.84 98 

We further tested if RiboLogic could design riboswitches that are responsive to RNA inputs 
instead of small molecule ligands. Specifically, we applied the algorithm to design 286 switches 
that modulate MS2 binding based on the presence of miR-208a, a 22-nt miRNA implicated in 
cardiac hypertrophy.26 This type of RNA-based system could be used in diagnostic devices or 
linked to downstream therapeutic events. Using RiboLogic, we were able to design both ON and 
OFF switches triggered by the miRNA strand (Figure 4A & 4B). We found that these designs 
generally took more iterations of optimization to satisfy the constraints as compared to the ligand-
responsive switches (Figure S2), but diverse mechanisms were achieved (Figure 4C). While 
experimental evaluation showed no significant difference between RiboLogic and baseline 
designs in terms of the median activation ratio, the best-of-ten comparison showed significant 
differences and maximum activation ratios of 20 exceeded those of small molecule activated 
switches (Figure 4D & 4E, Table 1). These computational and experimental observations suggest 
that design for RNA-responsive switches may be intrinsically more difficult, despite the larger 
binding energy of the RNA compared to the small molecule ligands, perhaps due to a large 
number of competing binding modes where the input RNAs hybridize to alternative locations in 
the riboswitch design. At the same time, this automated procedure can still lead to excellent 
microRNA sensors at the expense of characterizing more designs. 

Across these design challenges, we found that riboswitches with high activation ratios could 
take a variety of forms. Some high performing designs had the MS2 sequence nested between 
the two sides of the aptamer, while others had the MS2 outside, with only a short hairpin between 
the two halves of the ligand-binding internal loop (Figure 3A & 3B; compare designs 2297 & 1555 
to 512 & 2534). Some designs formed relatively simple secondary structures with long stems, 
while others formed more complex folds with three-way junctions (Figure 3A & 3B; compare 
designs 512 & 2357 to 1555 & 2534). Several structures contain large single-stranded regions, 
while some have regions designed to bind the functional elements when they are inactive (Figure 
3A & 3B; compare design 2534 to 512). The size of our dataset enabled detailed analyses of 
these secondary structure features, highlighting several that were significantly correlated with 
high activation ratios (Figure S4). For example, the data showed that having more base pairs 
shared between states correlated with higher resulting activation ratios. Still, the correlations of 
any single feature with activation ratio are weak (𝑟2 < 0.5). Regression models that take into 

account multiple features will be interesting to develop and test. 
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A related insight into current design limitations is also enabled by the diversity and large 
number of our riboswitches. We note that the designs produced by RiboLogic have features that 
are distinct from designs created by human experts. For the small molecule sensitive 
riboswitches (Figure 3), the RiboLogic designs include numerous stems outside the aptamer 
segments that need to be broken or formed. These designs are not as ‘concise’ as expert-
designed riboswitches seen in the literature2,12, although it should be noted that some natural 
riboswitches do involve ornate conformational rearrangements.27 For the miRNA-sensitive 
riboswitches (Figures 4), the binding of the input miRNA and the RiboLogic riboswitch is typically 
not through a completely contiguous, long RNA-RNA duplex, as is typically the case in, e.g., 
toehold riboswitches28,29 or DNA logical devices30,31 designed by human experts. Automated 
riboswitch design might improve if these features seen in human designs were rewarded or 
seeded into the RiboLogic design algorithm.  

We hypothesized that errors in current RNA secondary structure energetic models might be 
limiting for RiboLogic designs. We carried out comparisons of 𝐾𝑑's and activation ratios predicted 

by the ViennaRNA and NUPACK packages for small molecule and miRNA riboswitches, 
respectively. We saw poor correlations for both (r2 of 0.06 and 0.01 for small molecule and 
miRNA riboswitches, respectively; Figure S5 & 5). Several designs predicted to have poor 
activation ratios (near or lower than 1.0) in fact gave activation ratios near 10.0; and other 
designs predicted to have outstanding activation ratios (greater than 100.0) gave experimental 
activation ratios lower than 1.0 (Figure 5B). This experiment-theory correlation was better for 
small-molecule riboswitches compared to the miRNA riboswitches, consistent with the generally 
better activation ratios of the former, relative to baseline measurements (compare Figures 3 and 
4; Table S1). Future design efforts would benefit from more accurate computational models of 
RNA folding energetics; we present all data collected herein in Supplemental Data to help guide 
and validate such improvements. 

 

 
Figure 5: Comparison of predicted and measured activation ratios. (A) For small molecule 
riboswitches, the predicted activation ratio is somewhat correlated with measured activation ratio. 
(B) For miRNA riboswitches, the correlation between prediction and experiment is poor.  

 

Here, we have presented RiboLogic, an automated algorithm for designing riboswitches, as 
well as a rich dataset characterizing a few thousand ligand-responsive RNAs. We show that 
RiboLogic generates designs with diverse structural mechanisms and achieves activation ratios 
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comparable to previous efforts in rational design of reversible riboswitches. In combination with 
improved thermodynamic models and high-throughput measurement techniques, we expect that 
this method and these data will enable improved automated design of switchable RNA elements 
for a wide variety of applications in biotechnology and medicine. 

Methods 

Design algorithm 

Overview 

Given secondary structure constraints in multiple states defined by ligands or short RNA inputs, 
our method optimizes an RNA sequence using a simulated annealing algorithm. The starting 
sequence is selected to ensure complementarity in the target secondary structures. In each step, 
a random mutation is made, and the new sequence is evaluated using a base pair distance and a 
base pair probability score. The sequence is updated based on a Metropolis-Hastings 
acceptance criterion:  

 𝑝(𝑎𝑐𝑐𝑒𝑝𝑡) = max (𝑒𝑥𝑝 (−
∆𝐺

𝑇𝑑𝑒𝑠𝑖𝑔𝑛
) , 1) (1) 

where ∆𝐺 is the difference in score between the updated and current sequences and 𝑇𝑑𝑒𝑠𝑖𝑔𝑛 is 

the temperature parameter. This temperature parameter is decreased over the course of the 
optimization and can be tuned by the user. By default, it decreases linearly from 5 to 1 over the 
course of design. This process is repeated until a satisfactory sequence is found or the maximum 
number of iterations specified by the user is reached. 

Constraints 

Sequence constraints can include fixed bases at specified positions as well as substrings that are 
disallowed from the final sequence. Secondary structure constraints can be given for multiple 
user-specified states, as defined by varying concentrations of the input ligands. For small 
molecule and protein ligands, the aptamer sequence, secondary structure, and dissociation 
constant must be specified. For each state, secondary structure constraints can be applied to any 
part of the input sequence, including any RNA inputs, and bases can be specified to be unpaired, 
paired to any other base, or paired with a specific other base. Secondary structure elements’ 
positions can be left unspecified, and RiboLogic will optimize its position as well. To further 
ensure diversity, for the tests herein, we enforced two different global arrangements of the 
aptamer and MS2 hairpin elements – one with the two parts of the aptamer loop adjacent to each 
other and one with the MS2 sequence nested within the aptamer segments. 

Sequence update 

Sequences are represented in a dependency graph structure as described by Flamm et al.22 
Briefly, each base is a node and each base pair in the constraints forms an edge between nodes. 
The graph is maintained such that nodes connected by an edge are always complementary. 
Each time a base is mutated, its entire connected component is mutated accordingly to ensure 
that all nodes connected to the selected base maintains complementarity. In addition, sequence 
constraints are incorporated into this graph, disallowing mutations that would force a constrained 
base to change. In the case of RNA inputs, our method provides the option to automatically 
introduce the complement of the input sequence into the design sequence in order to promote 
interactions between strands. This complementary segment can be altered in length, moved, or 
mutated as a sequence update step. 
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Scoring functions 

Two scoring functions are used: a primary score based on a single minimum free energy 
secondary structure, and a base pair probability-based secondary score that is used in the 
primary score's place when the it is the same between two sequences. Based on the predicted 
minimum free energy structures in each state, a base pair distance to the target secondary 
structure is calculated. The base pair distance is the number of base pairs that must be broken or 
formed in order to get from one secondary structure to the other.32 If only a substructure is 
specified, this can include the breaking of base pairs formed with nucleotides outside of the 
subsequence specified. In addition, for small molecule riboswitches, if the energy of the ligand-
bound conformation, with energetic bonus, is not lower than the ligand-free conformation, a 
penalty equal to the ΔG between the two states is applied to the base pair distance.  

 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑐𝑜𝑟𝑒 =  𝑏𝑝 𝑒𝑑𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + max (0, ∆𝐺−𝑎𝑝𝑡𝑎𝑚𝑒𝑟 − ∆𝐺+𝑎𝑝𝑡𝑎𝑚𝑒𝑟 − 𝑅𝑇 ln
[𝐿]

𝐾𝑑
𝐿) (2) 

where ∆𝐺−𝑎𝑝𝑡𝑎𝑚𝑒𝑟  is the free energy of the RNA alone in kcal/mol, [𝐿] is the concentration of the 

input ligand, 𝐾𝑑
𝐿  is the affinity of the input ligand, ∆𝐺+𝑎𝑝𝑡𝑎𝑚𝑒𝑟  is the free energy of the RNA 

constrained to form the aptamer, 𝑅 is the gas constant, 𝑇 is the experimental temperature (37 °C 

= 310.15 K). We consider only structures that form the desired aptamer, as opposed to doing a 
minimum free energy calculation with an energetic bonus. This allows the algorithm to guide the 
sequence towards those that have a more favorable aptamer-forming conformation, even if it is 

not the minimum free energy structure. We used a value of 
[𝐿]

𝐾𝑑
𝐿  of 133 for FMN and 150 for 

theophylline and tryptophan, based on initial 𝐾𝑑  estimates for those input ligands and 

experimental [𝐿] = 200 μM, 2 mM, and 2.4 mM (FMN, theophylline, and tryptophan, respectively). 

However, since the score in eq. 2 is not highly sensitive to single mutations, a secondary base 
pair probability score is used when the base pair distance is unchanged between sequence 
updates. This measure of secondary structure formation over the full ensemble is defined by  

 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑠𝑐𝑜𝑟𝑒 = ∑ ∑ ∑ 𝑋𝑠𝑖𝑗𝑝𝑠𝑖𝑗𝑏𝑎𝑠𝑒𝑠 𝑗𝑏𝑎𝑠𝑒𝑠 𝑖𝑠𝑡𝑎𝑡𝑒𝑠  (3) 

where 𝑠 is the index of the folding state, 𝑖 and 𝑗 are indices of the base position in the sequence,  
𝑋𝑠𝑖𝑗is an indicator variable representing whether base 𝑖 and 𝑗 should be paired in state 𝑠, and 𝑝𝑠𝑖𝑗 

is the probability of base 𝑖 and 𝑗 forming in state 𝑠 according to the partition function calculation. 

The value of the indicator variable is 1 if the base pair should be formed, -1 if it should not be 
formed, and 0 if it is unconstrained. 

Folding of each sequence can be modeled using either ViennaRNA33 or NUPACK.34 NUPACK 
3.0.5.34 was used for design involving more than one RNA, in order to properly model multi-
strand RNA folding, while ViennaRNA 2.1.933 was used for designs involving small molecule 
aptamers. 

The score used for the Metropolis-Hastings criterion in eq. 1 was: 

∆𝐺 = {
∆ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑐𝑜𝑟𝑒 𝑖𝑓 ∆ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑐𝑜𝑟𝑒 ≠ 0

∆ 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑠𝑐𝑜𝑟𝑒 𝑖𝑓 ∆ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑐𝑜𝑟𝑒 = 0
 

Computation and code availability 

All computation was performed on Intel Xeon Processors E5-2650. The code is available at 
https://github.com/wuami/RiboLogic.  
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Average computation time for the design of a ligand-induced riboswitch varied widely, both 
across runs and depending on the design problem (Figure S3). Every 1,000 iterations took about 
2 minutes on one core. 

High-throughput array experiments 

The experimental methods have been described in detail previously14,16. Briefly, DNA templates 
for designs were synthesized (CustomArray, Bothell, WA) and sequenced on Illumina MiSeq 
instruments, and RNA was transcribed directly on the sequencing chip in a repurposed Illumina 
Genome Analyzer II instrument. Fluorescently-labelled MS2 protein was introduced at 
concentrations from 1.5 nM to 3 μM, and fluorescence images were collected and quantified to 
generate binding curves in buffer of 100 mM Tris-HCl, 80 mM KCl, 4 mM MgCl2, 0.1 mg/ml BSA, 
1 mM DTT, 10 μg/ml yeast tRNA, 0.012% Tween20. These curves were measured in the 
absence and presence of the ligand of interest, with concentrations of 200 μM FMN, 2 mM 
theophylline, 4 mM tryptophan, and 100 nM miR-208a. These conditions were selected based on 
the 𝐾𝑑  of each ligand. Each design was measured over an average of about 100 individual 

clusters on the flow cell. Median fit 𝐾𝑑 values over all clusters for each design were used to 

compute the activation ratio. Designs were prepared and analyzed as part of the Eterna massive 
open laboratory experiments (rounds R95, R101, and R107). 

Designs for which 𝐾𝑑 measurements were made over fewer than 10 clusters were excluded from 

our analysis to avoid poor quality measurements. For diversity analysis, Levenshtein distance 
was computed between each pair of sequences to obtain a distance matrix. Complete-linkage 
hierarchical clustering was performed to obtain a dendrogram with each design as a leaf (hclust 
in R). For statistical analysis, two-sided Wilcoxon rank sum test was used to determine if 
activation ratios between design types were significantly different. Predicted 𝐾𝑑's were computed 

as described by Wayment-Steele et al.7 Calculations were performed in R35, with example scripts 
available at https://github.com/wuami/RiboLogic. The full dataset is available as Supplementary 
Data. 
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