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Abstract7

The mode of reproduction is a critical characteristic of any species, as it has a strong effect on its evolution.8

As any other trait, the reproduction mode is subject to natural selection and may adapt to the environment.9

When the environment varies over time, different reproduction modes could be optimal at different times. The10

natural response to a dynamic environment seems to be bet hedging, where multiple reproductive strategies11

are stochastically executed. Here, we develop a framework for the evolution of simple multicellular life12

cycles in a dynamic environment. We use a matrix population model of undifferentiated multicellular groups13

undergoing fragmentation and ask which mode maximizes the population growth rate. Counterintuitively, we14

find that natural selection in dynamic environments generally tends to promote deterministic, not stochastic,15

reproduction modes.16

1 Introduction17

The ability of organisms to reproduce is a paramount feature of life, and a great diversity of reproduction modes18

is observed in nature. Even the simplest organisms, such as colonial bacteria and primitive multicellular species19

reproduce in various ways: by producing unicellular propagules [Koyama et al., 1977], by fragmentation of the20

colony into two [Keim et al., 2004] or multiple multicellular pieces [Rippka et al., 1979], and by dissolution of21

the organism into independent cells [Stein, 1958]. A variety of reproduction modes originates from different22

external and internal conditions [Bonner, 1998, Strassmann et al., 2000, Rainey and Rainey, 2003, Fiegna and23

Velicer, 2003, Travisano and Velicer, 2004]. The choice of the reproduction mode has a major impact on the24

later evolution of the species’ traits. This aspect is especially important for organisms at the brink of multicel-25

lular life: the larger the organism grow, the more complex it can become [Smith et al., 2013]. However, it also26

means longer developmental time, which might incur additional risks; larger propagules require less protec-27

tion against unfavourable environmental conditions [Shine, 1978], while smaller propagules can be produced28

in larger quantities [Macarthur and Wilson, 1967, Pianka, 1970]. Thus, the question of the evolution of repro-29

duction modes of simple multicellular organisms and life cycles in general has a paramount importance for our30

understanding of the history of life on Earth.31

Natural selection favours the life cycle, which utilizes the opportunities and handles challenges faced by32

species the best. The evolution of life cycles among complex organisms is generally slow and with rare excep-33

tions [Sinervo et al., 2000] occurs unnoticed. At the same time, primitive organisms under selection pressure34
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demonstrate an extraordinary ability to adapt their reproductive strategies. Initially, unicellular Chlamydomonas35

reinhardtii experimentally subjected to selection for fast sedimentation in liquid media has evolved into multi-36

cellular clusters reproducing via single cell bottleneck [Ratcliff et al., 2013a]. Similar experiments with budding37

yeast Saccharomyces cerevisiae show the evolution into snowflake-shaped clusters reproducing by fragmenta-38

tion [Ratcliff et al., 2013b]. Selection pressure imposed by another source, e.g., the threat from predators, has39

similar effect [Herron et al., 2019]. It was shown that even prokaryotic unicellular life forms are capable to40

evolve collective-level traits within a matter of months [Hammerschmidt et al., 2014]. These examples show41

that natural selection can drive the adaptation of reproductive strategies.42

The evolution of life cycles has been investigated from the theoretical perspective as well. Roze and Michod43

[2001] have studied the evolution of the propagule size and found that the smaller propagules can be selected44

since they are more efficient in elimination of selfish mutants. Tarnita et al. [2013] considered “staying together”45

mode of group formation, where cell colonies or organisms grow only by means of division of cells already46

comprising them (without immigration). There, Tarnita et al. investigated conditions at which the multicellular47

life cycle characterized by stochastic detachment of unicellular propagules outperforms the unicellular life cycle.48

Recently, we have performed an extensive investigation for the optimal modes of group reproduction [Pichugin49

et al., 2017]. It turns out that only life cycles with a regular schedule of reproduction are favoured by natural50

selection. However, all these studies consider only constant environments, where external conditions do not51

change with time.52

It has been shown that the fluctuations of the environment have a significant influence on the life cycles of53

many species. Natural examples range from the day-night cycles driving photosynthetic activity [Tamiya et al.,54

1953], to the spawning of marine invertebrates synchronised with the lunar cycle [Tessmar-Raible et al., 2011,55

Kaiser et al., 2016], to the alteration of seasons affecting availability of food, energy spendings, amount of56

daylight, etc [Murphy, 1978, Lenz, 1984, Schierwater and Hauenschild, 1990]. An impact of the environmental57

changes on the life cycle has also been investigated in evolutionary experiments [Ratcliff et al., 2012, 2013a,b,58

Hammerschmidt et al., 2014]; and even the changes imposed by human interventions into nature [Gross, 1991]59

have been reported to have an effect on life cycles.60

The hallmark phenomenon observed in dynamic environments is bet-hedging, where organisms combine61

different reproductive strategies [Philippi and Seger, 1989, Beaumont et al., 2009]. Bet-hedging comes in two62

flavours: In “between-clutch” bet-hedging, different organisms of the same species use different reproductive63

strategies. An example of this is the blooming of the succulents which must coincide with a hardly predictable64

wet season in the desert [Venable, 2007, Gremer and Venable, 2014]. Different plants of the same species65

have different time of blooming, so those which catch the wet season will successfully reproduce, while others66

perish. Similar processes occur in many other plants including crops [Silvertown, 1984]. In “within-clutch”67

bet-hedging, offspring produced together have diverse properties [Einum and Fleming, 2004]. An example is68

the diversity among egg size in bird clutches: in mild seasons all eggs are hatched, while in harsh seasons only69

the larger eggs with more nutrients can survive [Olofsson et al., 2009].70

A theory describing demographic dynamics in dynamic environments has been developed in [Tuljapurkar,71

1989, Orzack and Tuljapurkar, 1989, Tuljapurkar, 1990, Tuljapurkar et al., 2003] for models with discrete time72

and has focused on random fluctuations of environment. The arising method for the population growth rate is73

also applicable to continuous time models [Kussel and Leibler, 2005].74

As shown in experimental evolution studies [Ratcliff et al., 2013a, Hammerschmidt et al., 2014, Herron75

et al., 2019], under favourable conditions, the evolution of novel life cycles in microbial populations might occur76

within a matter of months. Therefore, the ecological and evolutionary processes in fast reproducing populations77

are intertwined with each other. Especially, environmental fluctuations strongly affect smaller groups because78

they are more likely to be sensitive to these perturbations in the external environment [Libby and Rainey,79
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2013, van Gestel and Tarnita, 2017]; small changes in the environment might lead to the significant changes80

in group behaviour. Yet, the evolution of life cycles of simple multicellularity under dynamic conditions still81

remains largely unexplored. To which extent can environmental fluctuations affect the patterns of cell colony82

reproduction? What reproduction modes thrive in dynamic environments? Do dynamic environments enrich83

the space of life cycles that can evolve, or do they impose additional restrictions? We combine methods from84

demographic dynamics in dynamic environments with the general framework of fragmentation mode evolution85

to answer these questions.86

2 Methods87

2.1 Life cycle of a group-structured population in a static environment88

We consider a population model, where cells are nested into groups. Reproduction of cells leads to growth of89

groups, but external cells are never integrated into groups (no “coming together ” in the sense of Tarnita et al.90

[2013]). The dynamics of the population is driven by a number of biological reactions representing cell growth91

and group fragmentation. After each cell division, cells either stay together as a group or fragment [Tarnita92

et al., 2013, Pichugin et al., 2017]. If they stay together, the group size increases, while the number of groups93

in the population is unchanged. Such events are given by the reactions94

Xi → Xi+1, (1)

where Xi denotes the group of size i. Each cell in a group of i cells has the same birth rate bi, and thus the95

growth rate of the group is ibi. In our model, birth rates bi represent the processes influencing the cell growth:96

they summarise the benefits and costs of a group living within a certain environment. The birth rate of a solitary97

cell can be set to one (b1 = 1) without loss of generality. On the other hand, after division, if a group of cells98

fragments instead of staying together, both the total number of cells and the number of groups in the population99

increase. The fragmentation results in reactions100

Xi →
i∑

k=1

πkXk, (2)

where πk is the numer of produced fragments of size k. Since fragmentation event conserves the total number101

of cell,
∑i
k=1 kπk = i+ 1.102

For example, upon reaching size two after a division from a solitary cell, a group may split into two inde-103

pendent cells, i.e. execute fragmentation pattern 1+1, or cells may stay together increasing the group size from104

1 to 2. Upon reaching size three, they may fragment into either a bi-cellular group and an independent cell105

(fragmentation pattern 2+1), three independent cells (fragmentation pattern 1+1+1), or cells may stay together106

making the group size 3. Upon reaching size four, a group may fragment to one of four fragmentation patterns:107

3+1, 2+2, 2+1+1, or 1+1+1+1 (see Fig. 1A), or stay as the group of size 4 and so on. For the sake of calculation108

efficiency and illustrative purposes, we limit the maximal group size n to 3 in our numerical simulations. How-109

ever, the approach we developed and our analytical results are not constrained by this limit and are applicable110

to populations with any group sizes.111

For an arbitrary life cycle, the rates of reaction are proportional to the probability of the fragmentation112

pattern κ to occur, denoted as qκ. Thus the set of fragmentation probabilities,113

q = (q1+1; q2+1, q1+1+1; q3+1, q2+2, q2+1+1, q1+1+1+1; . . .), defines the fragmentation mode of a population.114

In the special case where only a single fragmentation reaction occurs, i.e. all fragmentation probabilities except115

one are zero, the life cycle represents a regular schedule of the group development and fragmentation. We refer116
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Figure 1: Structure of “staying together” life cycles for a population with the maximal group size n = 3.
A. Schematic figure for the life cycles of a population with n = 3. Birth rates bi are identical for all cells in the same group size
i. Fragmentation probability set q = (q1+1; q2+1, q1+1+1; q3+1, q2+2, q2+1+1, q1+1+1+1) determines the life cycle of the group
structure. B. Pure life cycles are obtained in a special case where a single fragmentation probability is equal to one, while all others are
zero. An example of a pure life cycle using the fragmentation mode q = (0; 0, 0; 0, 0, 1, 0) is presented. In a pure life cycle, all groups
follow a regular schedule of development and fragmentation.
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to such cases as pure life cycles, see Fig. 1B. In other cases, commonly referred to as mixed life cycles, the sum117

of fragmentation probabilities at each size cannot exceed one: q1+1 ≤ 1 and q2+1 +q1+1+1 ≤ 1; at the maximal118

size it has to be one, so in our simulations we used q3+1 + q2+2 + q2+1+1 + q1+1+1+1 = 1 (see Fig. 1A).119

The rates of reactions are density independent and therefore, lead to a set of linear differential equations120

describing the population dynamics, see Appendix A and [Pichugin et al., 2017] for details,121

dx

dt̃
= Ax, (3)

where x is the vector for abundances xi of groups size i, t̃ is time, and A is the projection matrix. In a static122

environment, the projection matrixA does not change over time. Therefore, the population dynamics converges123

to a stationary regime where124

lim
t̃→∞

x
(
t̃
)

= eλt̃w. (4)

Here, λ is the leading eigenvalue of the projection matrix A, and w is the right eigenvector associated with λ.125

The growth rate of the population is determined by λ expressed in terms of birth rates bi and the fragmentation126

mode q. Hence, evolution favours the life cycle which gives the largest λ. For a static environment, it has127

been shown that an evolutionarily optimal life cycle must be a pure binary life cycle, where a parental group128

fragments into exactly two offspring groups [Pichugin et al., 2017].129

2.2 Growth of the group-structured population in a dynamic environment130

Next, we investigate the evolution of life cycles under dynamic environmental conditions, where growth rates131

bi do not remain the same through time. Here, we consider a dynamic environment in a form of a regular switch132

between two seasons S1 and S2. Each season is characterized by its own set of birth rates: S1 = (1, b12, b
1
3, . . .)133

and S2 = (1, b22, b
2
3, . . .), respectively. Consequently, S1 and S2 may favour different life cycles. In this setting,134

S1 lasts for time duration τ1 and then switches to S2, which lasts for τ2. Hence, the dynamic environment is135

determined by the two sets of birth rates and two season lengths D = {S1, τ1;S2, τ2}.136

In the dynamic environment, the growth rate of the population cannot be characterized by a single projection137

matrix. However, the demographical dynamics within a single season is still described by a single projection138

matrix. Therefore, we numerically simulated the population growth in a dynamic environment using the cor-139

responding projection matrix during each season. We follow the method used in [Kussel and Leibler, 2005] to140

compute the average population growth rate (Λ) in a dynamic environment (D) over a whole sequence of sea-141

sons, as a slope in the logarithm of the populations size against time, see Fig. 2 and Appendix B. The average142

growth rate Λ in a dynamic environment plays the same role as the leading eigenvalue λ of the projection matrix143

in a static environment: the life cycle with higher Λ will eventually outgrow others with lower Λ.144

For each studied dynamic environment D, we numerically find evolutionarily optimal life cycles by max-145

imizing Λ(q,D) with respect to the vector of fragmentation probabilities q, see Appendix C. Note that we146

perform optimization on a multi-dimensional lattice of q, so an accuracy of the optimal life cycle q is limited147

by the lattice spacing, which we set to 0.05. We repeat the optimization for different initial conditions to take148

into account the possibility of multiple local optima.149

3 Results150

3.1 Limit regimes of dynamic environments151

For a given pair of seasons {S1,S2}, we screened a wide range of seasons lengths combinations {τ1, τ2} and152

found a set of locally optimal life cycles for each dynamic environment D = {S1, τ1;S2, τ2}. We present153

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 8, 2019. ; https://doi.org/10.1101/602250doi: bioRxiv preprint 

https://doi.org/10.1101/602250
http://creativecommons.org/licenses/by/4.0/


0 1 2 3 4 5
0

1

2

3

4

5

birth rates ratio b2 b1

bi
rth

 ra
te

s 
ra

tio
 b

3
b 1

+

+

+

+

A

0 10 20 30
100

105

1010

1015

Time

Po
pu

la
tio

n 
si

ze

B

S1
<latexit sha1_base64="ojAsWvSinvgQnT2wsPLGSycQW4A=">AAAB9HicdVDLSgMxFL1TX7W+qi7dBIvgasho7WNXcOOyPvqAdiiZNG1DMw+TTKEM/Q43LhRx68e482/MtBVU9EDgcM693JPjRYIrjfGHlVlZXVvfyG7mtrZ3dvfy+wdNFcaSsgYNRSjbHlFM8IA1NNeCtSPJiO8J1vLGl6nfmjCpeBjc6WnEXJ8MAz7glGgjuV2f6BElIrmd9ZxevoDtarWEyxWE7RJOYch58QJXK8ix5wIuwBL1Xv692w9p7LNAU0GU6jg40m5CpOZUsFmuGysWETomQ9YxNCA+U24yDz1DJ0bpo0EozQs0mqvfNxLiKzX1PTOZhlS/vVT8y+vEelBxEx5EsWYBXRwaxALpEKUNoD6XjGoxNYRQyU1WREdEEqpNTzlTwtdP0f+keWY75za+LhZqN8s6snAEx3AKDpShBldQhwZQuIcHeIJna2I9Wi/W62I0Yy13DuEHrLdPKkySaQ==</latexit>

S2
<latexit sha1_base64="gzZZ72rnhgePVJ1QB0TuWDfUamc=">AAAB9HicdVDLSgMxFM34rPVVdekmWARXQ6aOfewKblzWRx/QDiWTZtrQTGZMMoUy9DvcuFDErR/jzr8x01ZQ0QOBwzn3ck+OH3OmNEIf1srq2vrGZm4rv72zu7dfODhsqSiRhDZJxCPZ8bGinAna1Exz2oklxaHPadsfX2Z+e0KlYpG409OYeiEeChYwgrWRvF6I9Yhgnt7O+qV+oYjsStmtoDJEtuvUyqhqSO2iVHMd6NhojiJYotEvvPcGEUlCKjThWKmug2LtpVhqRjid5XuJojEmYzykXUMFDqny0nnoGTw1ygAGkTRPaDhXv2+kOFRqGvpmMgupfnuZ+JfXTXRQ9VIm4kRTQRaHgoRDHcGsAThgkhLNp4ZgIpnJCskIS0y06SlvSvj6KfyftEq2c26ja7dYv1nWkQPH4AScAQdUQB1cgQZoAgLuwQN4As/WxHq0XqzXxeiKtdw5Aj9gvX0CP8iSeA==</latexit>

D = {S1, ⌧1; S2, ⌧2}
<latexit sha1_base64="jyUqFBZ4dl4Y9sRcskzcwgMMsCg=">AAACKXicbZDLSsNAFIYn9VbrLerSzWARXEhJqqAgQkEXLuulF2hCmEyn7dDJJMxMhBLyOm58FTcKirr1RZy0QWzrDwM/3zmHOef3I0alsqxPo7CwuLS8Ulwtra1vbG6Z2ztNGcYCkwYOWSjaPpKEUU4aiipG2pEgKPAZafnDy6zeeiBC0pDfq1FE3AD1Oe1RjJRGnllzAqQGGLHkKoUX0EngL7hLPfsIOgrFnn0+has5rkIn9cyyVbHGgvPGzk0Z5Kp75qvTDXEcEK4wQ1J2bCtSboKEopiRtOTEkkQID1GfdLTlKCDSTcaXpvBAky7shUI/ruCY/p1IUCDlKPB1Z7avnK1l8L9aJ1a9MzehPIoV4XjyUS9mUIUwiw12qSBYsZE2CAuqd4V4gATCSodb0iHYsyfPm2a1Yh9XrJuTcu02j6MI9sA+OAQ2OAU1cA3qoAEweATP4A28G0/Gi/FhfE1aC0Y+swumZHz/AJQepZ8=</latexit>

Figure 2: Unconstrained population growth in dynamic environment can be approximated by exponential growth.
A. The map of evolutionarily optimal life cycles in static environments. Only four pure binary life cycles are evolutionarily
optimal: 1+1, 2+1, 3+1, or 2+2. The dynamic environment with seasons S1 and S2 is represented by a pair of interconnected
circles. B. The growth of population executing a pure life cycle 3+1 (q3+1 = (0; 0, 0; 1, 0, 0, 0)) in dynamic and static
environments. Each line shows the temporal growth of the population size. Coloured lines correspond to the population
growth in static environments S1 = (1, 3, 0.5) and S2 = (1, 0.5, 3), respectively. The two-colored line indicates the
population growth in the dynamic environment, alternating between two seasons S1 and S2 with τ1 = τ2 = 2.5. While the
growth in the dynamic environment is complicated in general, it can be approximated very well by exponential growth (thin
black line).
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the results of this screening in the form of optimality maps, which indicate optimal life cycles at a given set of154

season lengths. Each pixel on a map represents a set of season lengths {τ1, τ2}, and the colour of a pixel is given155

by the all optimal life cycles found in many optimizations from different initial conditions, see Appendix D.156

For convenience, we convert parameters τ1 and τ2 into the season turnover period T ≡ τ1 + τ2 and the ratio157

of season lengths t ≡ τ1/τ2 and present the obtained map using T and t. Examples of optimality maps are158

presented in Fig. 3.159

We focus our analysis on extreme regimes: prevalence of the the single season (t � 1 or t � 1), short160

seasons (T � 1), and long seasons (T � 1). The numerical simulations show that at intermediate lengths of161

seasons (t ∼ 1 and T ∼ 1), the behaviour of the system is intermediate between these extremes, see Fig. 3.162

The simplest behaviour occurs in the prevalence regime (t� 1 or t� 1). In this case, the influence of the163

shorter season on the population growth is negligible. The growth rate in such dynamic environment is close to164

the growth rate in the static environment given by the long season, i.e. Λ(q,D) ≈ λ(q,S1) when the first season165

is much longer (t � 1). As a consequence, a pure binary life cycle, which is optimal in the static environment166

provided by the first season S1, is evolutionarily optimal in the dynamic environment D, where the first season167

prevails (t � 1). Similarly, the life cycle optimal in the static environment provided by the second season S2168

is evolutionarily optimal in dynamic environments, where t � 1. All numerically obtained optimality maps169

confirm this.170

For short seasons (T � 1), the population composition changes little within a single period of seasons171

change. Thus, demographical changes in the population occur at much slower time scale than changes of the172

environment. As such, the system effectively experiences the average environment with season lengths being173

the weights of each component [Gokhale and Hauert, 2016]. Thus, in the short seasons approximation — the174

population growth rate is given by the growth rate in the averaged static environment S̄175

ΛSSA(q,D) ≈ λ
(
q, S̄

)
, (5)

where176

S̄ =
τ1

τ1 + τ2
S1 +

τ2
τ1 + τ2

S2

=
t

1 + t
S1 +

1

1 + t
S2. (6)

This approximation also allows us to use the results of the optimal life cycles in a static environment177

[Pichugin et al., 2017]. These imply that for any dynamic environment with short seasons, there is only a178

single evolutionarily optimal life cycle, which is a pure binary life cycle. In addition, the short seasons ap-179

proximation allows us to explicitly find the border value of t separating the area of optimality of favoured life180

cycles in the static environment given by S1 and S2, respectively. The border is determined by the ratios of181

season lengths t at which the average environment lies at the border between areas of optimality in static envi-182

ronments. Numerical simulations reproduce this border well, see the predicted border marked at the left sides183

of the optimality maps in Fig. 3.184

For the long season length (T � 1), the population reaches the stationary regime within each season, and185

the transient growth regime between two adjacent seasons can be negligible. This suggest the long seasons186

approximation — the population growth rate is given by the weighted average of growth rates in static environ-187

ments188

ΛLSA(q,D) ≈ τ1
τ1 + τ2

λ(q,S1) +
τ2

τ1 + τ2
λ(q,S2)

=
t

1 + t
λ(q,S1) +

1

1 + t
λ(q,S2). (7)
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Figure 3: Evolutionary optimality of life cycles in extreme regimes can be described by analytical approximations.
A The dynamic environment used in panels B, C, and D are represented by connected circles. B The optimality map featuring only pure
life cycles. When season 1 is much longer than season 2, t� 1, regardless of the overall seasons turnover length, the optimal life cycle is
always the pure life cycle 2+2. For the opposite case, t� 1, 3+1 is always optimal. For short seasons, T � 1, the border between two life
cycles is located at the position predicted by the short seasons approximation (black tick line on the left side of the map). For long seasons
T � 1, for this dynamic environment, the transition between two life cycles is performed through the bi-stability between pure life cycles,
as suggested by long seasons approximation (see main text). Coloured bars on the right side of the map show the areas of stability of pure
life cycles according to the long seasons approximation. C The optimality map featuring a mixed life cycle at the long seasons regime.
For t > 0.287, pure life cycle 1+1 is not evolutionarily optimal, yet the mixed life cycle featuring pattern 1+1 persists up to t = 0.485,
where it disappears in a saddle-node bifurcation indicated by red mark (see main text). D The pure life cycles 1+1 and 2+2 can be executed
within the same mixed life cycle at different seasons (see main text), and such a combination (yellow) might be evolutionarily optimal in
long seasons regime. Exact parameters used in calculations and simulations are presented in Appendix L.
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Under the long seasons approximation at intermediate values of t, the optimal life cycle is not necessarily pure,189

and there might be more than one locally optimal life cycle, see examples on Fig. 3C. The transition in t from190

the prevalence of one season to another is non trivial in this case. These changes in optimal life cycles along t191

in the long seasons regime (T � 1) are our focus in the remaining part of this study.192

3.2 Borders of the prevalence regimes193

In the limits t → ∞ and t → 0, the optimal life cycles are determined by the prevalent season. However, as194

we increase the other season length, the optimal life cycle may change. In this section, we examine the border195

of these prevalence regimes. We begin by considering extremely small t and measure how long the optimal life196

cycle persists against the increase of t.197

We sampled 40, 000 pairs of seasons and investigated at which t the prevalence regime is violated, see198

Appendix E for details of sampling. We found that the border of the prevalence regime significantly varies199

between season combinations. For some pairs of seasons, the prevalence regime is extremely robust while some200

others show that the prevalence regime is extremely fragile; even at t = 10−4 the prevalence was violated.201

We found that the main factor determining the robustness of the prevalence regime is the environment in the202

prevalent season. The most fragile prevalence regimes were observed for environments at the border between203

two different types of life cycles and environments promoting unicellular life cycle, see Fig. 4A. At the same204

time, the most robust prevalence regimes were observed for environments far from optimality borders, see205

Fig. 4B.206

3.3 Stability of life cycles in the long seasons regime207

In this section, we investigate what kind of life cycles emerge to be evolutionary optimal at intermediate t in208

the long seasons regime (T � 1). In the long seasons regime, the population growth in a dynamic environment209

can be inferred from the growth rates in two stationary environments, see Eq. (7). Therefore, the analysis of210

evolutionary optimality of life cycles can be performed with relatively simple expressions.211

An arbitrary fragmentation mode (q) is a local optimum of the growth rate Λ, when any small change in212

the probabilities set q leads to a decrease in the population growth rate. For this to happen, all fragmentation213

patterns κ must fulfil the conditions214 
∂Λ
∂qκ

∣∣∣
q
< 0 if κ is not executed (qκ = 0),

∂Λ
∂qκ

∣∣∣
q

= 0 and ∂2Λ
∂q2κ

∣∣∣
q
< 0 if κ is mixed with other patterns of the same size (0 < qκ < 1),

∂Λ
∂qκ

∣∣∣
q
> 0 if κ is the only executed pattern of its group size (qκ = 1).

(8)

First, we consider the evolutionary optimality of pure life cycles, where only one fragmentation pattern occurs,215

see Fig. 1B. These life cycles establish a regular schedule of group growth and reproduction, which is commonly216

observed in nature. From the perspective of our model, in pure life cycles qκ = 0 or qκ = 1, the investigation217

of evolutionary optimality invokes only the first order derivatives, see Eq. (8). A pure life cycle q becomes218

evolutionary unstable when an admixture of at least one of absent fragmentation patterns (with qκ = 0) no219

longer decreases the growth rate: ∂Λ
∂qκ

= 0. For a given pair of the pure life cycle q1 and admixture life cycle220

q2, this is achieved at the ratio of the season length221

ts(κ1, κ2) = − λ′x(q(x),S2)

λ′x(q(x),S1)

∣∣∣∣
x=1

, (9)

where q(x) is the mixed life cycle in which fragmentation occurs by κ1 with probability x and occurs by κ2222

with probability 1 − x, see Appendix F for details. Knowing the values of ts for all pairs (κ1, κ2) makes it223
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Figure 4: The robustness of the prevalence regime is mainly determined by the position of the prevalent environment.
A. Circles show prevalent seasons, for which the violation of the prevalence regime occurred already when the fraction of
time t spend in the second, randomly chosen environment is small, t < 0.1. These non-robust seasons either promote
unicellularity or are located at the borders between areas of optimality - where at least two life cycles have similar growth
rate. B. Circles show prevalent seasons, for which the violation of the prevalence regime occurred only when the fraction of
time spend in the other environment, is very large, t > 10. The distribution of these seasons has low density in the border
regions.
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possible to outline the ranges of t where each pure life cycle is optimal. We denote this optimality areas as224

coloured bars to the right of each optimality map, see Fig 3.225

Next, we consider mixed life cycles, which can emerge as evolutionary optimal in the long seasons regime.226

Above, we have shown that only pure life cycles are evolutionary optimal if there is effectively a single season227

(t � 1 or t � 1). Therefore, as t approaching these extreme values, evolutionary optimal mixed life cycles228

cease to exist. This happens by one of two scenarios: either a mixed life cycle transforms into a pure one, or229

it merges with the local minimum of Λ and disappears in a saddle-node bifurcation. The majority of mixed230

life cycles observed in our simulations feature only two fragmentation patterns. For these life cycles, transition231

from a mixed optimal life cycle into a pure one occurs at values t given by Eq. (9). The saddle-node bifurcation232

(if exists) occurs at x = x∗ and t = t∗ satisfying233

λ′′xx(q(x),S1)

λ′x(q(x),S1)

∣∣∣∣
x=x∗

=
λ′′xx(q(x),S2)

λ′x(q(x),S2)

∣∣∣∣
x=x∗

, (10)

and234

t∗(κ1, κ2) = − λ′x(q(x),S2)

λ′x(q(x),S1)

∣∣∣∣
x=x∗

, (11)

see Appendix G for detailed analysis of mixed life cycles optimality. We highlight the positions of saddle-node235

bifurcations t∗ by red marks on the right hand side of our optimality maps, see Fig 3C.236

Finally, we found a distinct solution, when the maximal size of groups produced in one fragmentation pattern237

is smaller than the minimal size of offspring produced by another pattern. With the maximal group size 3, there238

is a single such pair: κ1 = 1+1 and κ2 = 2+2. When the two seasons in the dynamic environment favour239

the pure fragmentation modes 1+1 and 2+2, the optimal life cycle in a dynamic environment in a long seasons240

regime is always qC = q1+1 + q2+2 = (1; 0, 0; 0, 1, 0, 0), see Appendix I for details. In the long seasons241

regime, a population employing qC is capable to execute pure life cycle 1+1 during seasons favouring 1+1242

over 2+2; and pure life cycle 2+2 during seasons favouring 2+2 over 1+1. We call such scenario a coexisting243

fragmentation mode qC and the optimality map in Fig. 3D presents this. Except in this special case, numerical244

simulations confirm our analytical results.245

3.4 The spectrum of evolutionary optimal life cycles in dynamic environments is di-246

verse247

In this section, we consider, which fragmentation patterns can contribute to evolutionarily optimal life cycles.248

We begin our analysis from a specific scenario, where all birth rates are similar to each other. From a technical249

point of view, the situation where all birth rates are equal, constitutes a neutral environment at which all growth250

rates of any mixed or pure life cycles are equal. We consider near neutral environments, where cell birth rates in251

both seasons slightly deviate from one bi = 1 + εβi, ε� 1, where βi and thus bi is different in the two seasons.252

As a consequence, in the vicinity of this neutrality point (ε� 1), the growth rate of any life cycle is close to one253

and can be represented in a form Λ(q,D) = 1 + εΛ1 +O(ε2), where Λ1 is associated with the first derivatives,254

see Appendix J. Biologically, this corresponds to a scenario, where living in a group has only minimal impact255

on the cell growth. This scenario is seems to be relevant in the early stages of the evolution of multicellularity,256

where benefits of the group formation are minimal due to the absence of adaptations to collective life.257

There, the case where the maximal group size is limited to two is analytically trackable, see Appendix J. For258

groups not exceeding size two, only three fragmentation patterns are available: 1+1 (unicellularity), 2+1 (binary259

fragmentation) and 1+1+1 (multiple fragmentation). We proved that only three types of life cycles can emerge in260

near neutral environments: pure unicellularity and binary fragmentation, as well as the mixed life cycle utilizing261
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both of them, see Fig. 5. The multiple fragmentation pattern is unable to contribute to evolutionarily optimal262

life cycles here.263

Releasing the size constraints, we found that in near neutral environments, the evolutionary optimality of264

life cycles is independent on the seasons turnover period T . Life cycles evolve similarly in both the short and the265

long season regime, see Fig. 6A and Appendix K for a proof. As a consequence, in near neutral environments,266

the optimal pure life cycles can be inferred from the short seasons approximation. Since the areas of optimality267

map are separated by narrow borders in the order of ε in the short seasons regime, the pure binary fragmentation268

modes are evolutionarily optimal for the majority of dynamic environments with any season turnover period.269

If the birth rates are not in the vicinity of the neutral point bi = 1, the set of optimal life cycles violates this270

scheme. Beyond the near neutral environment, we find more complex life cycles. We find that the fragmentation271

pattern presented in the short seasons regime may be absent in the long seasons regime, see Fig. 6B. The272

opposite is also possible, a fragmentation pattern absent in the short seasons may appear in the long seasons (as273

a component of a mixed life cycle, though), see Fig. 6C. Moreover, the multiple fragmentation, which cannot be274

evolutionarily optimal in any static environment, can evolve in a dynamic environment (again, as a component275

of the mixed life cycle), see Fig. 6D.276

3.5 Robustness of pure binary fragmentation277

While the potential diversity of the life cycles in dynamic environment is huge, an exotic behaviour is rare,278

and requires a fine balance of cell birth rates profiles {S1,S2} and seasons lengths {τ1, τ2}. In the data set279

used in section 3.2, for each of 40, 000 pairs of seasons, we screened 41 different season length ratios (in280

total 1, 640, 000 dynamic environments), see Appendix E for details. For each environment, we found and281

characterized the set of evolutionarily optimal life cycles, see Fig. 7. The majority of dynamic environments282

(87%) promoted a unique pure life cycle. A smaller fraction (13%) featured coexistence of multiple local283

optima. A much smaller fraction of dynamic environments (1.9%) exhibited mixed life cycles, the majority of284

which was composed of two fragmentation patterns. Finally, multiple fragmentation was observed in a tiny set285

of environments (0.04%). Therefore, we conclude that pure life cycles should be a widespread evolutionary286

strategy in changing environment.287

To support our result, we investigate the evolution of life cycles of larger colonial organisms. We consider288

groups growing up to size n = 15, so fragmentation must happen upon the birth of 16-th cell in a group. This289

size limit is comparable to the size of some volvocales algae, such as Gonium pectorale - one of the model290

organisms used to study the evolution of multicellularity.291

We use the cell birth rate profiles bi = 1+M
(
i−1
n−1

)α
. Investigation of these profiles in static environments292

[Pichugin et al., 2017] revealed that α � 1 promotes an equal split (8 + 8), and α � 1 promotes production293

of unicellular propagules (15 + 1). Note that the value of M has a relatively small influence. With these294

profiles, any increase in size is always beneficial to the group. Therefore, we restricted the optimization of life295

cycles to only fragmentation patterns of 16-cell groups. We obtain the optimality map, and the result supports296

our conclusion, see Fig. 8. Out of 1681 dynamic environments investigated, 1673 (99.5%) promoted a single297

unique optimal life cycle in a form of binary fragmentation. Only 8 environments (0.5%) had a mixed optimal298

life cycle, and no environment exhibited a coexistence of several local optima, or fragmentation into multiple299

pieces.300
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Figure 5: Only three kinds of life cycles can be evolutionarily optimal in near neutral environments if the maximal group size is
n = 2.
Populations, in which group size do not exceed two, have an access to three fragmentation patterns: 1+1, 2+1 and 1+1+1. In near neutral
environment constructed by S1 = {1, 1+ εβ} and S2 = {1, 1+ εγ}, only three fragmentation modes can be evolutionarily optimal: pure
1+1, pure 2+1, and a mixed life cycle simultaneously utilizing fragmentation modes 1+1 and 2+1. The fragmentation mode 1+1+1 does not
contribute to an evolutionary optimum under any near neutral dynamic environment. Since the same signs for both β and γ give the same
optimal life cycle in both seasons, we focus on different signs: β > 0 and γ < 0. A For |β| < |γ|, there is the range of t where population
exhibits a bi-stability between two pure life cycles. B For |β| > |γ|, there is the range of t where only a mixed life cycle is evolutionarily
optimal. On both panels, we use rescaled variable for x-axis, t′ ≡ t+γ/β

|γ/β|(β−γ) .
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Figure 6: In the near-neutral dynamic environments, the long and the short seasons regimes promote similar life cycles, while in
far-from-neutral environments, these can be very different.
A. In the near neutral environment, the behaviour in the short and long seasons regime are similar. For environments far from neutral, this
pattern is violated. B. A life cycle present in the short seasons regime (2+2) can be absent from the long seasons regime. C. Example in
which a fragmentation pattern absent at the short seasons regime (1+1) contribute to the optimal life cycle in the long seasons regime. D.
Example of a multiple fragmentation pattern (1+1+1, light blue) contributing to the optimal life cycle in the long seasons regime. Black
lines on the left hand side of maps indicate borders predicted by the short seasons approximation, coloured bars to the right from maps
indicate the locally stable areas of pure life cycles in the long seasons approximation. Red ticks on the right hand side of maps indicate the
saddle-node bifurcations t∗ in the long seasons approximation. Exact parameters of all presented calculation are presented in Appendix L.
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Total number of dynamic environments sampled 1 640000

Multiple local optima (21 4524) Non-binary fragmentation (701 )Mixed life cycles (31 794)

With at least three patterns (958)
Unique pure optima (1 4221 95)

Figure 7: The majority of dynamic environments promotes a unique evolutionary optimal pure life cycle in a form of binary
fragmentation.
We sampled 1.64 · 106 different long seasons dynamic environments, see Appendix E. More than one locally optimal fragmentation mode
was found only in 13% of them (second circle). In 1.9% of dynamic environments, a set of locally optimal life cycles contained a mixed
life cycle (third circle). Majority (97%) of found mixed life cycles executed just two fragmentation patterns. Only 3% of evolutionarily
optimal mixed life cycles had three patterns or more. Finally, the number of dynamic environments promoted the evolution of non-binary
fragmentation (1+1+1, 2+1+1, or 1+1+1+1) was extremely tiny - 0.04% (last circle). So, the most common result of life cycle optimization
was a single local optimum, which happened to be a pure life cycle with binary fragmentation (first circle).
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Figure 8: Monotonic dynamic environments promote binary fragmentation.
A. To investigate the evolution of larger life cycles, we constructed a monotonic dynamic environment, where the birth rates bi follow
the function bi = 1 +M

(
i−1
n−1

)α
with different exponents α at different seasons. B. The majority of dynamic environments promoted

unique pure life cycle with binary fragmentation. Even the environment is far from neutral, short and long seasons regimes exhibit similar
evolutionary optimal life cycles. In our investigation, we used M = 5 in both seasons, α = 0.1 for the first season, and α = 10 for the
second season. Due to significant computational load, we performed only 20 independent optimizations at each pixel of the map.
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4 Discussion301

Environmental fluctuations are commonly observed in nature. Under changing conditions, a trait beneficial in302

one season may become detrimental in another. Thus, adaptation to a dynamic environment may lead to totally303

different phenotypes than those that evolve in a static environment. In this manuscript, we investigated the304

influence of a changing environment on the evolution of life cycles in the context of primitive multicellularity.305

In our model, unstructured groups grow and eventually reproduce by fragmentation. The growth competition306

between different reproduction modes determines which life cycle will spread in population.307

Our present model uses the minimal set of processes necessary for the multicellular life cycle: birth, growth,308

and reproduction of cell colonies. A number of other factors might influence the evolution of life cycles as well:309

aggregation of cells [Garcia and De Monte, 2013, Amado et al., 2018], group death [Pichugin et al., 2017], cell310

death [Amado et al., 2018, Pichugin and Traulsen, 2018], interactions between different cell types [Garcia et al.,311

2014, 2015, Gao et al., 2019], the geometry of groups [Libby et al., 2014], and so forth. However, given the312

current state of the field, the understanding of evolutionary dynamics of life cycles even in the minimal setups313

is missing. Our study has shown that even with basic processes, the spectrum of evolutionary outcomes is rich314

and deserves a dedicated investigation.315

Previous findings reveal that a static environment puts strong constraints on evolutionarily optimal life cycles316

[Pichugin et al., 2017]. There, only pure life cycles can evolve. Moreover, among these, only binary fragmenta-317

tion life cycles, featuring fragmentation into two groups, can become evolutionarily optimal. Interestingly, we318

found that evolution in dynamic environments can release both constraints.319

Not only pure, but also mixed life cycles are able to evolve in our model. Being unable to perform well dur-320

ing both seasons, groups may employ a stochastic life cycle, where different groups randomly execute different321

fragmentation patterns. Thus, mixed life cycles are manifestation of between-clutch bet-hedging within the322

scope of our model. We found that in some dynamic environments, a mixed life cycle is the only evolutionarily323

optimal strategy, see Fig 5B. Our model also predicts that mixed life cycles may employ fragmentation patterns324

which would not contribute to the optimal life cycles under any of static seasonal components alone, see Fig. 6C325

and D. Yet, the most abundant scenario was the existence of only one locally optimal life cycle, which utilize326

a pure binary fragmentation mode, see Fig. 7. In other words, our model predicts that for simple multicellular-327

ity, between-clutch bet-hedging is possible to evolve, but is rarely an evolutionarily optimal strategy – even in328

changing environments.329

Another form of bet-hedging observed among complex multicellular organisms is within-clutch bet-hedging,330

where offspring with diverse properties are produced in a single act of reproduction [Einum and Fleming, 2004].331

From the perspective of simple multicellular life cycles, an act of reproduction is the distribution of the parental332

biomass among offspring. Hence, it is impossible to distinguish between an organism releasing a propagule and333

an organism producing two offspring of different size. In both cases, the result of reproduction is a collection334

of organisms of different sizes. The traditional point of view on these events is to consider them as asymmetric335

division, or propagule formation, and not as a bet-hedging scenario. In other words, while we can distinguish,336

who is the parent and who is the offspring in the case of chicken laying eggs, it is hardly possible to do so337

for a broken cyanobacteria filament. Thus, the very idea of within-clutch bet-hedging implies more developed338

multicellularity than one considered in our study.339

In the light of the evolution of simple multicellularity, pure life cycles deserve special attention. One of the340

conceptual barriers for the species transitioning from unicellular to multicellular existence is the necessity to341

develop a predictable life cycle. While, the formal grouping of cells into clusters can give some advantages to342

the population [Rainey and Travisano, 1998, Ratcliff et al., 2012], the real strength of multicellularity eventu-343

ally comes from beneficial interactions within the groups, such as cooperation or division of labour [Bell and344
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Koufopanou, 1991, Kirk, 1997, Flores and Herrero, 2010, Hammerschmidt et al., 2014]. The ability of cells345

to participate in such interactions is not guaranteed beforehand and therefore, must evolve. For this, a regular346

schedule of a group growth and reproduction provides a proper basis. In our model, this regularity is obtained347

by pure life cycles. Thus, it is an interesting question, to which extent the changing environment can violate the348

evolutionary stability of pure life cycles.349

Despite the mixed life cycles observed in simulations, pure life cycles remain prevalent: less than 2% of350

our dynamic environments promoted mixed cycles, see Fig. 7. Among the four analysed limiting regimes,351

three favour pure life cycles. If one season occupies a large enough proportion of the seasonal cycle, the352

evolutionary optimal life cycle is the same as if the second season does not happen at all. In other words, short353

disruptions of environmental conditions are unable to affect the evolutionary optimality of life cycles. The actual354

threshold below which the short season is unable to influence the life cycle evolution is a complex function of the355

environments and the turnover rate. Nevertheless, this value can be either inferred from numerical simulations356

of our model, or estimated from approximations. The short seasons regime only promotes pure life cycles. In357

near neutral environments, the behaviour at any seasons turnover time becomes similar to the one expressed at358

short seasons – the transitional area between pure life cycles become narrow. Only the long seasons regime can359

explicitly promote mixed life cycles. However, these emerge only at intermediary values of season length.360

These findings are surprising because in dynamic environments, intuitively, mixed life cycles, which com-361

bine the best of both worlds, are expected to be optimal. Countering that intuition, we found that pure life cycles362

emerge for a wide range of dynamic environments.363
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