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Abstract 

Many genome variants shaping mammalian phenotype are hypothesized to regulate gene 

transcription and/or to be under selection. However, most of the evidence to support this 

hypothesis comes from human studies. Systematic evidence for regulatory and evolutionary 

signals contributing to complex traits in a different mammalian model is needed. Sequence 

variants associated with gene expression (eQTLs) and concentration of metabolites (mQTLs), 

and under histone modification marks in several tissues were discovered from multi-omics 

data of over 400 cattle. Variants showing signs of being selected were identified from the 

1000-bull genomes database (N=2,330). These analyses defined 30 sets of variants and for 

each set we estimated the genetic variance the set explained across 34 complex traits in 

11,923 bulls and 32,347 cows with 17,669,372 imputed variants. The per-variant trait 

heritability of these sets across traits was highly consistent (r > 0.98) between bulls and cows. 

Based on the per-variant heritability, the sets of mQTL, eQTL and variants associated with 

non-coding RNAs ranked the highest, followed by the young variants, those under histone 

modification marks and selection signatures. From these results, we defined a Functional-

And-Evolutionary Trait Heritability (FAETH) score indicating the functionality and predicted 

heritability of each variant. In 7,551 Danish cattle, the high FAETH-ranking variants had 

significantly increased genetic variances and genomic prediction accuracies in 3 production 

traits compared to the low FAETH-ranking variants. The publicly available FAETH variant 

score, based on regulatory and evolutionary data, provides a set of biological priors for the 

functional effects of variant on bovine complex traits.  
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Introduction 

Understanding how mutations lead to phenotypic variation is a fundamental goal of 

genomics. With a few exceptions, complex mammalian traits with significance in evolution, 

medicine and agriculture are determined by many mutations and by environmental effects. 

Genome-wide association studies (GWAS) have been successful in finding associations 

between single nucleotide polymorphisms (SNPs) and complex traits (1). In most cases there 

are many variants, each of small effect which contribute to variation in a complex trait. 

Consequently, very large sample size is necessary to find significant associations which 

explain most of the observed genetic variation. In humans sample size has reached over 1 

million (2).  

To test the generality of the findings in humans it is desirable to have another species with 

very large sample size and cattle is a possible example. There are over 1.46 billion cattle 

worldwide (3) and millions are being genotyped or whole genome sequenced and phenotyped 

(4, 5). The two sub-species of domestic cattle, humpless taurine (Bos taurus) and humped 

zebu (Bos indicus), diverged approximately 0.5 million years ago from extinct wild aurochs 

(Bos primigenius) (6). These features make cattle the only GWAS model of an outbred 

genome with a comparable sample size to humans. In addition, cattle have a very different 

demographic history than humans. Whereas humans went through an evolutionary bottleneck 

about 10,000 to 20,000 years ago and then expanded to a population of billions, cattle have 

declined in effective population size due to domestication and breed formation leading to a 

different pattern of linkage disequilibrium (LD) to humans. Therefore, insights into the 

genome-phenome relationships from cattle provide a valuable addition to the knowledge 

from humans and other mammalian species. The knowledge of cattle genomics is also of 

direct practical value because rearing cattle is a major agricultural industry around the world.  
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Despite the huge sample sizes used in human GWAS, identification of the causal variants for 

a complex trait is still difficult. This is due to the small effect size of most causal variants and 

the LD between variants. Consequently, there are usually many variants in high LD, any one 

of which could be the cause of the variation in phenotype. Prioritisation of these variants can 

be aided by information on the function of the genomic site and its evolutionary history. For 

instance, mutations that change an amino acid are more likely to affect phenotype than 

mutations which are synonymous.  

Many mutations affecting complex traits regulate gene transcription related activities. This 

has been demonstrated in a series of studies of human functional genomics, including but not 

limited to the analysis of intermediate trait quantitative trait loci (QTLs), such as metabolic 

QTLs (mQTLs) (7) and expression QTLs (eQTLs) (8) and analysis of regulatory elements, 

such as promoters (9) and enhancers (10) which can be identified with chromatin 

immunoprecipitation sequencing (ChIP-seq). In animals, the Functional Annotation of 

Animal Genomes (FAANG) project has started (11) and functional data from animal species 

has been accumulating (12-14). However, it is unclear which types of functional information 

improve the identification of causal mutations. 

Mutations affecting complex traits may be subject to natural or artificial selection which 

leaves a ‘signature’ in the genome (15, 16). Given the unique evolutionary path of cattle 

which has been significantly shaped by human domestication (17), it is attractive to test 

whether variants showing signatures of selection contribute to variation in complex traits.  

The aim of this study is to determine which of several possible indicators of function are most 

useful for predicting which sequence variants are most likely to affect 34 traits in Bos taurus 

dairy cattle. The indicators that we consider fall into 3 groups: (1) functional annotations of 

the bovine genome based, for instance, on ChIP-seq experiments; (2) evolutionary data such 

as a site being under selection; (3) GWAS data from traits that are relatively close to the 
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primary action of the mutation, such as gene expression. Using these indicators of function, 

we define 30 sets of variants and estimate the variance explained by each set across 34 traits 

in 44,270 cattle. We then combine the estimates of heritability per variant across traits and 

across functional and evolutionary categories to define a Functional-And-Evolutionary Trait 

Heritability (FAETH) score that ranks variants on variance explained in complex traits of 

dairy cattle. We then validate the FAETH score in 7,551 Danish cattle. The FAETH score of 

over 17 million variants is publicly available at: 

https://melbourne.figshare.com/s/2c5200a8333b6e759ddc. 

 

Results 

Analysis overview 

Our approach was to estimate the trait variance explained by a set of variants defined by 

some external data, such as the mapping of the gene expression QTLs (geQTLs), RNA 

splicing QTLs (sQTLs), or genome annotation, for 34 traits measured in dairy cattle. 

Sequence variants available to this study included over 17 million SNPs and indels. Any 

large set of variants can explain almost all the genetic variance due to the LD between 

surrounding and causal variants. Therefore, we fitted each externally defined set of variants 

in a model together with a standard set of 600K SNPs from the bovine high-density (HD) 

SNP array. We combined the results from all 34 traits and all the sets of variants to derive a 

score for each variant based on its expected contribution to the genetic variance in these 34 

traits and tested the validity of this score in an independent cattle dataset. 

Our analysis had four major steps (Figure 1):  

(1) The 17M sequence variants (1000 bull genome Run6 (18)) were classified according to 

external information from the discovery analysis of the function and evolution of each 

genomic site. The basis for this classification was either publicly available data or our own 
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data as described in the methods. The genome was partitioned 15 different ways as listed in 

Table 1. For example, the category of geQTL partitioned the genome variants into a set of 

targeted variants with geQTL p value < 0.0001 and a set of all other variants (i.e. the 

remaining or the ‘rest’ of the variants). Another partition, e.g., variant annotation, based on 

publicly available annotation of the bovine genome, divided variants into several non-

overlapping sets, such as ‘intergenic’, ‘intron’ and ‘splice sites’.  

(2) For each set of variants in each partition of the genome, separate genomic relationship 

matrices (GRMs) were calculated among the 11,923 bulls or 32,347 cows. Where a partition 

included only 2 sets (e.g. geQTL and the rest) a GRM was calculated only for the targeted set 

(e.g. geQTL).  

(3) For each of the 34 traits, the variance explained by random effects described by each 

GRM was estimated using restricted maximum likelihood (this analysis is referred to as a 

genomic REML or GREML). Each GREML analysis fitted a random effect described by the 

targeted GRM and a random effect described by the GRM calculated from the HD SNP chip 

(630,002 SNPs). Each GREML analysis estimated the proportion of genetic variance, ℎ2, 

explained by the targeted GRM in each of the 34 decorrelated traits (Cholesky 

orthogonalisation (19), see methods) in each sex. The ℎ2 explained by each targeted set of 

variants was divided by the number of variants in the set to calculate the ℎ2 per variant, i.e. 

per-variant ℎ2, and this was averaged for each variant across the 34 decorrelated traits.  

(4) The FAETH score of all variants was calculated by averaging the per-variant ℎ2 across 

traits and informative partitions (12 out of 15). Partitions (3 out of 15) determined as not 

informative were not included in the FAETH score computation. Variance explained and the 

accuracy of genomic predictions (based on an independent dataset of 7,551 Danish cattle with 

three milk production traits) were compared between variants of high and low FAETH score.  
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Figure 1. Overview of the analysis. The discovery analysis involved selection of variants 

from functional and evolutionary datasets, this figure shows examples of some of the datasets 

used. In the test analysis, each of the variant sets were used to make genomic relation 

matrices (GRM)s. Then, each one was analysed in genome-wide restricted maximum 

likelihood (GREML, gGi) together with the high-density SNP chip GRM (gGHD) for each one 

of the 34 traits (Yj, j= {1. .34}). Once the heritability, ℎ𝑠𝑒𝑡
2 , of each gGi was calculated, it was 

averaged across traits and adjusted for the number of variants used to build the gGi to 

calculate the per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅. The FAETH scoring of each variant was derived based on their 

memberships to differentially partitioned sets and the per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅. In the validation 

analysis, variants with high and low FAETH ranking were tested in a Danish cattle data set 

for GREML and genomic prediction of three production traits. The Danish reference set 

contained 4,911 Holstein, 957 Jersey and 745 Danish Red bulls, and the Danish validation 

population 500 Holstein, 517 Jersey and 192 Danish Red bulls.  
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Characteristics of variant sets with regulatory and evolutionary significance 

Based on the 15 partitions of the genome in Table 1, we defined 30 sets of variants. The 

details of the discovery analysis defining these sets can be found in Methods. Briefly, 

regulatory variant sets including geQTLs, sQTLs and allele specific expression QTLs 

(aseQTLs) were discovered from multiple tissues including white blood and milk cells, liver 

and muscle. The polar lipid metabolites mQTLs were discovered using the multi-trait meta-

analysis (20) of 19 metabolite profiles, such as phosphatidylcholine, 

phosphatidylethanolamine and phosphatidylserine (21), from the bovine milk fat. The ChIP-

seq data used in our analysis contained previously published H3K27Ac and H3K4me3 marks 

in liver and muscle tissues (22, 23) and newly generated H3K4Me3 marks from the 

mammary gland.  

 

Table 1. Variant sets selected from functional and evolutionary partitions. 

Partitions Targeted variant sets (the number of variants) Animal no. 

Gene expression 

QTLs 

geQTLs with meta-analysis p < 1e-4 from blood and milk cells, liver and muscle 

(110,200) 
209 

Exon expression 

QTLs 

eeQTLs with meta-analysis p < 1e-4 from blood and milk cells, liver and muscle 

(945,832) 
209 

Splicing QTLs 
sQTLs with meta-analysis p < 1e-4 from blood and milk cells, liver and muscle 

(1,112,324) 
209 

Allele specific 

expression QTLs 
aseQTLs with meta-analysis p < 1e-4 from blood and milk cells (1,100,446) 112 

Polar lipid 

metabolite QTLs 
mQTLs with meta-analysis p < 1e-4 from 19 types of milk metabolites (5,365) 338 

ChIP-seq peaks 
Under H3K4Me3 and H3K27Ac peaks from liver, muscle and mammary gland 

(1,166,795) 
14 

Variant annotation 

Annotated as UTR (42,350), intergenic (11,869,145), geneend (1,007,214), intron 

(4,629,025), splice.sites (11,080), coding.related (105,969), noncoding.related 

(4,589) 

na 

Predicted CTCF 

sites 

variants tagged by mapped CTCF binding motifs from humans, mice, dogs and 

macaques as published by (24) (252,234) 
na 

HPRS 
Genome sites within the top 1% gkmSVM score from the Human Projection of 

Regulatory Regions as published by (25) (169,773) 
na 

Conserved sites 
Genome sites with PhastCon score (26) > 0.9 calculated using genome sequences 

of bovine, dog, mouse and humans (100,279) 
na 

Selected signature GWAS p < 1e-4 between 7 beef and 8 dairy breeds, 1000 bull genome (6,218) 1,370 
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Young variants 
Ranked within the bottom 1% of the proportion of positive correlations (PPRR) 

with rare variants, 1000 bull genome (893,986) 
2,330 

LD score quartiles 
1st quartile (4,417,033/4,416,205), 2nd quartile (4,418,731/4,419,930), 3rd 

quartile (4,415,633/4,415,481), 4th quartile (4,417,975/4,417,756) 

44,270 
Variant density 

quartiles 

1st quartile (4,429,833), 2nd quartile (4,414,996), 3rd quartile (4,427,220), 4th 

quartile (4,397,323) 

MAF quartiles 
1st quartile (4,414,292/4,417,036), 2nd quartile (4,421,093/4,417,428), 3rd 

quartile (4,416,834/4,418,157), 4th quartile (4,417,153/4,418,157) 

For the three categories of quartiles the numbers of variants on the left and right side of slash were for the bulls and 

cows, respectively. LD score: sum of linkage disequilibrium correlation between a variant and all variants in the 

surrounding 50kb region, GCTA-LDS (27). MAF: minor allele frequency. The details of the variant annotations can be 

found in the Table S1. The animal number are the sample size in each discovery analysis.  

 

Figure 2 illustrates some of the properties of these variant sets. Many sQTLs with strong 

effects on the intron excision ratio (28) were discovered in a meta-analysis of sQTLs mapped 

in white blood and milk cells, liver and muscle (13) (Figure 2A). Also, a large number of 

significant aseQTLs were discovered using a gene-wise meta-analysis of the effects of the 

driver variant (dVariant) on the transcript variant (tVariant) at the exonic heterozygous sites 

(29) from the white blood and milk cells (Figure 2B). As shown in Figure 2C, variants tagged 

by the H3K4Me3 marks, a marker for promoters, were closer to the transcription start site 

than other variants. 
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Figure 2. Examples of regulatory and evolutionary signals from the discovery analysis. 

A: A Manhattan plot of the meta-analysis of sQTLs from white blood and milk cells, liver 

and muscle tissues. B: A Manhattan plot of the meta-analysis of aseQTLs in the white blood 

cells. C: A distribution density plot of H3K4Me3 ChIP-seq mark tagged variants from 

mammary gland within 2Mb of gene transcription start site. D: artificial selection signatures 

between 8 dairy and 7 beef cattle breeds with the linear mixed model approach. The blue line 

indicates -log10(p value) = 4. 

 

The variant annotation partition had 7 merged sets (Table 1, Table S1) based on the Variant 

Effect Prediction of Ensembl (30) and NGS-variant (31). Additional information of variant 

function annotation was obtained from the Human Projection of Regulatory Regions (HPRS) 

as published in (25) and predicted CTCF sites as published in (24).  
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The evolutionary variant sets were discovered from cross- and within- species genome 

analyses. Variants within cross-species conserved sites were selected based on the PhastCon 

score (26) calculated using the genomes of bovine, dog, mouse and humans (Table 1). The 

within-species analysis used the whole genome sequence variants from Run6 of the 1000 bull 

genomes database (32). Those variants with higher frequency in dairy than in beef breeds 

(‘selection signature’, Table 1, Figure 2D and Figure S1) were detected from a GWAS where 

the breed-type was modelled as a binary phenotype in the linear mixed model (33) of 15 beef 

and dairy breeds.  

With the 1000 bull genome data, we used a novel statistic to identify variants possibly subject 

to artificial and/or natural selection, PPRR, the Proportion of Positive correlations (r) with 

Rare variants. Figure S2A illustrates a coalescence where a mutation has been positively 

selected, i.e. is relatively young, and increased in frequency rapidly. In this coalescence the 

selected mutation was seldomly on the same branch as rare mutations and so the LD r 

between the selected mutation and rare alleles was typically negative. This was similar to the 

logic employed by (34). In this partition of the genome, the 1% of variants with the lowest 

PPRR, after correcting for the variants’ own allele frequency (see Figure S2 and methods) 

were defined as young variants.  

The quartile categories partitioned the genome variants into four sets of variants of similar 

size based on either their LD score (sum of LD r2 between a variant and all the variants in the 

surrounding 50kb region, GCTA-LDS (27)), or the number of variants within a 50kb window 

or their minor allele frequency (MAF) (35) (Table 1). 

The proportion of genetic variance for 34 traits explained by each set of variants 

In the test datasets of 11,923 bulls and 32,347 cows,, common variants (MAF>=0.001) of the 

sets described above were used to make GRMs (33). Each of these GRMs were then fitted 

together with the high-density variant chip GRM (variant number = 632,002) in the GREML 
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analysis to estimate the proportion of additive genetic variance explained by each functional 

and evolutionary set of variants, ℎ𝑠𝑒𝑡
2 , in each of the 34 decorrelated traits separately in bulls 

and cows (Table 2). Overall, the ranking of the averaged ℎ𝑠𝑒𝑡
2  across 34 traits,  ℎ𝑠𝑒𝑡

2̅̅ ̅̅̅, was 

highly consistent between bulls and cows (Spearman ranking correlation rho = 0.985). All the 

ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ estimates, except that of the intergenic variants, were higher for bull traits than cow 

traits, consistent with the higher heritability of phenotypic records in bulls than in cows (36) 

because bull phenotypes are actually the average of many daughters of the bull. When the HD 

variants were fitted alone they explained on average 17.8% (±2.7%) of the variance in bulls 

and 4.7% (±1.4%) in cows (Table S2). In general, the ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ estimates increase with the number 

of variants in the set. For example, expression QTLs, including exon expression eeQTLs, 

splicing sQTLs and allele specific expression aseQTLs, which included around 5% of the 

total variants explained 11~15% of trait variance in bulls and 2.5%~4% trait variance in 

cows. The young variants inferred by the novel statistic PPRR, which accounted for 0.54% of 

the total variants, explained 0.78% trait variance in bulls and 0.12% trait variance in cows. 
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Table 2. The relative proportion of selected variant in sets compared to the total number of 

variants analysed (Genome fraction) and their averaged heritability (ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅) in bulls and cows, 

across 34 traits with the standard error in the parenthesis.  

Category Genome fraction ℎ2̅̅ ̅ in bulls ℎ2̅̅ ̅ in cows 

eeQTLs 4.77% 14.52% (2.2%) 3.96% (1.2%) 

sQTLs 5.57% 15.08% (2.5%) 3.88% (1.2%) 

aseQTLs 5.21% 11.0% (2.0%) 2.47% (0.7%) 

mQTLs 0.03% 0.71% (0.2%) 0.12% (0.04%) 

geQTLs 0.53% 1.54% (0.4%) 0.19% (0.06%) 

ChIPseq 6.60% 4.21% (0.8%) 0.90% (0.3%) 

noncoding.related 0.03% 0.06% (0.02%) 0.013% (0.004%) 

Splice.sites 0.06% 0.08% (0.02%) 0.02% (0.005%) 

UTR 0.24% 0.18% (0.03%) 0.03% (0.01%) 

Coding.related 0.60% 0.26% (0.06%) 0.04% (0.012%) 

Geneend 5.70% 3.76% (0.8%) 0.80% (0.2%) 

Intron 26.2% 5.56% (0.7%) 1.53% (0.3%) 

Intergenic 67.2% 10.3% (1.3%) 17.3% (2.2%) 

Predicted CTCF sites 1.43% 0.36% (0.08%) 0.046% (0.02%) 

HPRS 0.96% 0.31% (0.08%) 0.045% (0.02%) 

Conserved sites 0.57% 0.23% (0.05%) 0.030% (0.01%) 

Selection signatures 0.02% 0.011% (0.004%) 0.002% (0.0008%) 

Young variants 0.54% 0.78% (0.2%) 0.12% (0.05%) 

LD score q1 25% 4.57% (0.6%) 1.18% (0.3%) 

LD score q2 25% 5.56% (0.7%) 1.45% (0.3%) 

LD score q3 25% 6.38% (0.8%) 1.75% (0.4%) 

LD score q4 25% 6.94% (0.9%) 2.01% (0.5%) 

Variant density q1 25% 5.59% (0.7%) 1.49% (0.3%) 

Variant density q2 25% 5.42% (0.7%) 1.45% (0.3%) 

Variant density q3 25% 5.72% (0.7%) 1.55% (0.3%) 

Variant density q4 25% 5.99% (0.7%) 1.65% (0.4%) 

MAF q1 25% 1.36% (0.2%) 0.35% (0.08%) 

MAF q2 25% 11.5% (1.3%) 3.51% (0.7%) 

MAF q3 25% 29.2% (2.4%) 10.3% (1.8%) 

MAF q4 25% 40.5% (2.8%) 15.6% (2.4%) 

q1~q4 were the genome partitions based on the 1st, 2nd, 3rd and 4th quartiles of minor allele 

frequency (MAF), LD score and the number of variants (variant density) per 50kb windows. 

 

The ℎ𝑠𝑒𝑡
2  increased greatly from MAF quantile 1 to 4. However, the dramatically low ℎ𝑠𝑒𝑡

2̅̅ ̅̅ ̅ 

estimates for the 1st MAF quartile may be associated with the reduced imputation accuracy 

for low MAF variants. By contrast ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ increased only slightly with LD score and even less 

with variant density.  

Estimates of ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ were divided by the number of variants in the set to calculate the per-

variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ allowing comparison of the genetic importance of variant sets made with varied 
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number of variants. Since the per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ was estimated independently in bulls and cows 

yet showed high consistency between sexes (Figure S3), the average per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ across 

sexes was used to rank each variant set (Figure 3). The set of mQTLs made the top of the 

rankings (Figure 3), due to its concentrated ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ (0.71% in bulls and 0.12% in cows, Table 2) 

in a relatively small genome fraction (0.03%, Table 2). The high ranking of the mQTLs set 

was followed by several expression QTLs sets, including eeQTLs, sQTLs, geQTLs and 

aseQTLs (Figure 3). Similar rankings were achieved by the ‘non.coding related’ set (0.03% 

of genome variants, included variants annotated as ‘non_coding_transcript_exon_variant’ and 

‘mature_miRNA_variant’ (Table S1), the ‘splice.site’ set (0.06% of genome variants, 

including all the variants annotated as associated with splicing functions) and the set of young 

variants (0.54% of genome variants). The ‘UTR’ set, which included variants annotated as 

within 3’ and 5’ untranslated regions of genes, and the ‘geneend’ set, which included variants 

annotated as within the downstream and upstream of genes, both had modest rankings along 

with the ChIP-seq set and selection signatures. The ‘coding.related’ set, which included 

variants annotated as synonymous and missense, ranked higher than conserved sites, top 1% 

HPRS, intergenic variants and predicted CTCF sites. Intron and the 1st quartile MAF set had 

the lowest per variant h2.  
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Figure 3. Proportion of genetic variances explained by sets of variants selected from 

functional and evolutionary categories. The ranking of variant sets based on the log10 scale 

of per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅, averaged across bulls (left error bar) and cows (right error bar).  

 

Variants from sets of high-ranking per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ were highlighted in important QTL 

regions with the multi-trait GWAS results (Figure 4). In the expanded region of beta-casein 

(CSN2), a major but complex QTL for milk protein due to the existence of multiple QTL with 

strong LD, different high-ranking variant sets tended to tag variants with strong effects from 

multiple locations (Figure 4A). Many variants with the strongest effects and close to CSN2 

were tagged by sQTLs. Several clusters of variants from up and downstream of CSN2 with 

slightly weaker effects were tagged by sets of ChIP-Seq marks, young variant and mQTLs. 

Conversely, for the expanded region of microsomal glutathione S-transferase 1 (MGST1), a 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601658doi: bioRxiv preprint 

https://doi.org/10.1101/601658
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

major QTL for milk fat, variants from high-ranking sets were more enriched in two major 

locations (Figure 4A). The top variant within the MGST1 gene was again an sQTL, 

confirming the previous results (13). The same region was also enriched with aseQTLs and 

ChIP-Seq mark tagged variants (Figure 4B). The ChIP-Seq and young variant sets appear to 

have tagged a different variant cluster around 0.7Mb downstream from MGST1 (Figure 4B).  

 

 

Figure 4. Example of top ranked variant sets in important bovine trait QTL. A: 

Manhattan plot of the meta-analysis of GWAS of 34 traits in the ±2Mb region surrounding 

the beta casein (CSN2) gene, a major QTL for milk protein yield. B: Manhattan plot of the 

meta-analysis of GWAS of 34 traits in the ±1Mb region of the microsomal glutathione S-

transferase 1 (MGST1) gene, a major QTL for milk fat yield. The dots are coloured based on 

their set memberships. The black bar between the grey dots and the X-axis indicates the gene 

locations. 

 

The FAETH score of sequence variants 

To quantify the importance of variants using a combination of functionality, selection 

signatures as well as their trait heritability, a novel framework was introduced to score 

variants based on their memberships of the sets of variants. Each time the genome variants 

were partitioned into non-overlapping sets, each variant was a member of only one set and 
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was assigned the per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ of that variant. Therefore, all variants were assigned the 

same number (12 partitions) of per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ and the average of these 12 partitions was 

calculated for each variant and called the FAETH score. A criterion of per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ > per-

variant ℎ𝑟𝑒𝑠𝑡
2̅̅ ̅̅ ̅̅  was also imposed to determine whether the variant set was informative. This 

criterion determined that three variant sets (Conserved sites, HPRS and predicted CTCF sites) 

were not informative and they were not included in the FAETH scoring (see methods). The 

FAETH score of 17,669,372 sequence variants for their genetic contribution to complex traits 

has been made publicly available at 

https://melbourne.figshare.com/s/2c5200a8333b6e759ddc. 

 

Variants with high FAETH score have consistent effects across breeds 

In the analyses reported above the effect of a variant was estimated across all breeds. 

However, it is possible to fit a nested model in which both the main effect of the variant and 

an effect of the variant nested within a breed is included in the model. If a variant is causal or 

in high LD with a causal variant we might expect the effect to be similar in all breeds. 

Whereas if the variant is merely in LD with the causal variant, the effect might vary between 

breeds. Based on the FAETH score, the top 1/3 and bottom 1/3 ranked sequence variants in 

the Australian data were selected as ‘high’ and ‘low’ ranking variants, respectively. Figure 

5A showed the estimates of across breed and within breed variant variances for both high- 

and low-ranking variants. In both cases the within breed variance is small, but the high-

ranking variants have a larger across breed variant variance and a smaller within-breed 

variant variance than the low-ranking variants. This implied the consistency of the FAETH 

ranking of variants across breeds. 
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Figure 5. Further tests of the variant FAETH score. A: The heritability of high and low 

FAETH ranking variants for the multi-breed GRM and the within-breed GRM (2 GRMs 

fitted together) estimated across 34 traits in the Australian data. The error bars are the 

standard error of heritability calculated across 34 traits. B: The heritability of high and low 

FAETH variants for 3 production traits in Danish data. The error bars are the standard error 

of the heritability of each GREML analysis. C: prediction accuracy of gBLUP of 3 

production traits in Danish data using high and low FAETH variants (averaged between bulls 

and cows).  

 

Validation of the FAETH score in Danish cattle  

An independent dataset of 7,551 Danish cattle of multiple breeds were used to test the 

FAETH score. The Australian high- and low- ranking variant sets were mapped in the Danish 

data. In the GREML analysis of Danish data, the high-ranking variants had significantly 

higher heritability than the low-ranking variants across three production traits (Figure 5B). 

The genomic best linear unbiased prediction (gBLUP) of Danish traits were also evaluated 

where the models were trained in the multiple-breed reference data to predict three 

production traits in each of three breeds (3 × 3 = 9 scenarios, Figure 5C). Out of these 9 
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scenarios, high-ranking variants had higher accuracies than the low-ranking variants in 7 

scenarios.  

 

Discussion 

GWAS have been very successful in finding variants associated with complex traits but they 

have been less successful in identifying the causal variants because often there are a large 

group of variants, in high LD with each other (particularly in livestock), that are all 

associated with the trait. To distinguish among these variants, it would be useful to have 

information, external to the traits being analysed, that point to variants which are likely to 

have an effect on phenotype. In this paper we have evaluated 30 sources of external 

information based on genome annotation, evolutionary data and intermediate traits such as 

gene expression and milk metabolites. Then, we assessed the variance that each set of 

variants explained when they were included in a statistical model that also included a 

constant set of 600k SNPs from the bovine HD SNP array. The purpose of this method is to 

find sets of variants which add to the variance explained by the HD SNPs presumably 

because they are in higher LD with the causal variants than the HD SNPs are. Since, the 

causal variants themselves are likely to be among the sequence variants analysed, this method 

is a filter for classes of variants that are enriched for causal variants or variants in high LD 

with them. 

Our analysis highlights the importance of intermediate trait QTL, including QTLs for 

metabolic traits and gene expression (mQTLs, geQTLs, eeQTLs, sQTLs and aseQTLs). This 

is not a surprising result as the significant contribution of different intermediate trait QTLs to 

complex trait variations have been reported in humans (7, 28, 37-39) and cattle (13, 40-42). 

An advantage of these intermediate traits over conventional phenotypes is that individual 

QTL explain a larger proportion of the variance. For instance, cis eQTL tend to have a large 
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effect on gene expression. This reduces the noise-to-signal ratio and so increases power to 

distinguish causal variants from variants in partial LD with them. However, an intermediate 

QTL mapping study requires a large amount of resources, especially when considering 

different metabolic profiles and tissues with a large sample size. In the current analysis we 

utilised several methods to combine results from individual studies of intermediate QTL 

mapping (19, 20, 29) (equation 1, 2, 3, 5 in Methods). This could reduce the noise from 

individual analysis and this is likely to increase the chance of finding causal mutations. 

To our knowledge, no study has systematically compared the genetic importance of mQTLs 

with eQTLs. The high ranking of mQTLs over eQTLs in our study might be related to the 

fact that the mQTLs were discovered from the milk fat and the analysed phenotype in the test 

data contained several milk production traits. However, out of the 5,365 chosen mQTL 

variants, 961 variants were from the ±2Mb region of DGAT1 gene while no mQTLs were 

from chromosome 5 which harbors the MGST1 gene (Table S3, Figure 4B), both of which 

are known major milk fat QTL. This suggests that many variants from the mQTL set, not 

only influence milk fat production, but may have other functions including contributing to 

variations in general fat synthesis which is active in many mammalian tissues. Several large-

scale human studies have highlighted the importance of mQTLs in various complex traits (7, 

43). 

Consistent with previous studies in cattle and humans (13, 28, 39), splicing sQTLs and its 

related eeQTLs ranked slightly higher than other expression QTL sets (Figure 3). A previous 

study in cattle found that aseQTLs and geQTLs had a similar magnitude of enrichment with 

trait QTL (29) consistent with the current observation.  

Genomic sites that are conserved over evolutionary time probably affect some phenotype and 

hence fitness. However, we did not find conserved sites strongly associated with cattle 

complex traits. In humans, conserved sites across 29 mammals (44) showed strong 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601658doi: bioRxiv preprint 

https://doi.org/10.1101/601658
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

enrichment of variants associated with complex traits and many diseases (45). Conserved 

sites between humans and mice (46) and between humans and primates (47) showed 

enrichments in disease trait associations. A mutation that increases risk of disease is likely to 

be selected against (purifying selection) whereas a mutation that increases milk yield, for 

instance, may be positively or negatively selected depending on the environment and 

background genotype (subject to stabilising selection). Therefore, conserved sites might be 

more enriched for effects on disease than on traits subject to stabilising selection. 

Interestingly, conserved sites across 45 genomes of placental mammals and primates were 

not enriched for long noncoding RNAs associated with human complex traits (48). Perhaps 

the number and the types of species selected for the genome conservation estimation is 

another factor to consider when searching for trait associated conserved sites. Other methods 

exist for finding sites that have been subject to conservation and these sites are sometimes 

enriched for associations with human diseases traits (44, 47).  

We proposed a novel method to identify variants that are young but at moderate frequency 

and found this set was enriched for effects on quantitative traits (Figure 3, Figure 4). 

However, Kemper et al (49) showed that variants identified by selection signatures using 

traditional methods, such as Fst (50) and iHS (51) had little contribution to complex traits in 

cattle. In the current study, the selection signatures between beef and dairy cattle (‘Selection 

signature’ set as shown in Table 1) explained some genetic variation in complex traits, 

although its quantity is relatively small (Table 2, Figure 3). It is possible that the inclusion of 

many non-production traits in the current study increased the chance of finding the trait-

related sequence variants that are under artificial selection. The use of sequence variants in 

the current study may also have increased power compared with the study conducted by 

Kemper et al that used HD chip variants (49). 
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The set of variants with low PPRR (‘young variants’) had a higher ranking of genetic 

importance to the complex traits than the other artificial selection signatures (Figure 3). The 

identification of relatively young variants is based on the theory that very recent selection 

will increase the frequency of the favoured alleles (34). Thus, the young variant set could 

contain variants that were either under artificial selections and/or recently appeared and this 

may be the reason that it explained more trait variation than the artificial selection signatures. 

As shown in Figure 4, many young variants can be found in major production trait QTL. 

Genome regulatory elements such as enhancers and promoters are important regulators of 

gene expression and they can be identified by ChIP-seq assays. In humans, ChIP-seq tagged 

binding QTLs (bQTL) showed significant enrichments in complex and disease traits (52). We 

did not have enough individuals with ChIP-seq data to identify bQTLs in the current study. 

However, with only a limited amount of ChIP-seq data included, variants tagged by 

H3K4me3 ChIP-seq showed closer distance to the transcription start sites (Figure 2C) and 

H3K4me3 and H3K27ac together tagged variants had some contribution to complex trait 

variation (Figure 3). Also, the FAETH ranking of the ChIP-seq tagged variant set was similar 

to the ranking of variant annotation sets of gene end (variants within down- and up- stream of 

genes) and UTR (variants within 3’ and 5’ UTR). It is logical that variants with the potential 

to affect promoters and/or enhancers are annotated as close to genes or located in gene 

regulatory regions.  

The variant annotation sets of non-coding related and splice sites ranked relatively high for 

their contribution to trait variation (Figure 3). Previously, variants annotated as splice sites 

also had a high ranking of genetic importance to cattle complex traits (53). The majority of 

the variants from the non-coding related set are ‘non_coding_transcript_exon_variant’ (Table 

S1) which is ‘a sequence variant that changes non-coding exon sequence in a non-coding 

transcript’ according to VEP (30). This group of variants can be associated with long non-
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coding RNAs and their important contributions to complex traits in humans (48) and cattle 

(54) have been reported. Variants that were annotated as coding related, of which the 

majority of variants are missense and synonymous (Table S1), had relatively low ranking of 

genetic importance to complex traits (Figure 3). It seems a surprising result, but Koufariotis 

et al also reported similar observations in cattle (53). Perhaps coding variants that have an 

effect on phenotype are subject to purifying selection and hence have low heterozygosity and 

hence low contribution to variance. 

The contribution of the variants with different LD properties to complex traits is an ongoing 

debate in humans (55-57). In our analysis of cattle, a domesticated species which tends to 

have strong LD between variants, negligible influences of variant LD differences to complex 

traits were observed (Table 2). Also, variants within regions that have more variants (variant 

density) did not explain more trait variation. Common variants, as expected (58), had 

substantial amount of contribution to complex traits (Table 2, Figure 3). 

Based on the variant membership to differentially partitioned genome sets and the value of 

the per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅, the FAETH score of sequence variants combined the information of 

evolutionary and functional significance and heritability estimates across multiple complex 

traits for each variant. This novel analytical framework provides simple but effective and 

comprehensive ranking for each variant that entered the analysis. Additional information of 

functional and/or evolutionary datasets can be easily integrated and linked to the variant 

contributions to multiple complex traits. A single score for each variant also makes the 

potential use of FAETH score easy and straightforward. For example, variants can be 

categorised as high and low FAETH ranking to create biological priors to inform Bayesian 

modelling for genomic selection (59). 

The utility of the FAETH score estimated in the Australian data was tested independently in a 

Danish dataset. Overall, variants with high FAETH ranking explained significantly more 
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genetic variance in protein, fat and milk yield in the Danish data, compared to the variants 

with low FAETH ranking (Figure 5B). This validates the enriched genetic information in the 

variants ranked high by FAETH. When evaluated in the genomic prediction trained in 

multiple breeds and predicted into single breeds, high-ranking variants had increased 

prediction accuracy compared to low-ranking variants for all 3 traits in Danish Holstein and 

Red breeds and for fat yield in the Danish Jersey breed (Figure 5C). By building the within-

breed GRM and comparing it with the multi-breed GRM (Figure 5A), our analysis suggested 

that the variants with the high FAETH ranking contained variants with consistent effects 

across different breeds. Future systematic analysis with increased breed diversity will provide 

better evaluation of the performance of the FAETH ranked variants in cross-breed genomic 

models. 

In humans, Finucane et al (45) combined many sources of data to calculate a prior probability 

that a variant affects a phenotype. Our approach is different to theirs in some respects. They 

used GWAS summary data and stratified LD score regression, whereas we used raw data and 

GREML. They fitted all sources of information simultaneously whereas we fitted one at a 

time in competition with the HD variants. We were unable to fit all sources at once with 

GREML for computational reasons but also because the extensive LD in cattle makes it 

harder to separate the effects of multiple variant sets. On the other hand, GREML is more 

powerful than LD score regression (60). Our results are similar to theirs in some cases but not 

all. For instance, we both found expression QTL to be enriched for associations with complex 

traits, but we did not find enrichment in conserved sites or coding sites. 

Our study demonstrates that the increasing amount of genomic and phenotypic data is making 

the cattle model a robust and critical resource of testing genetic hypotheses for large 

mammals. A recent large-scale study for cattle stature also supports the general utility of the 

cattle model in GWAS (5). In the current study, we highlight the contribution of the variants 
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associated with intermediate QTLs and non-coding RNAs to complex traits and this is 

consistent with many observations in human studies (8, 9, 28). However, we also provide 

contrasting evidence to results found from humans. We found that the conserved sites had 

little contribution to cattle complex traits, which is in contrast to its reported significant 

contribution in human complex and disease traits (45). Also, we found LD property of 

variants had negligible influences on trait heritability, contrasting the recent evidence for the 

strong influences of LD property on human complex traits (55). In addition, variants under 

artificial selection, which are absent from humans where natural selection clearly operates on 

complex traits (61), had limited contributions to bovine complex traits. While the reasons for 

these contrasting results are yet to be studied, our findings from cattle add valuable insights 

into the ongoing discussions of genetics of mammalian complex traits. 

Our study is not without limitations. While some discovery analyses of the intermediate 

QTLs used relatively large sample size, the number of tissues and/or types of ‘omics data 

included for discovering expression QTLs and mQTLs is yet to be increased. Also, in the 

discovery analysis, the selection criteria for informative variants to be included as targeted 

sets for building GRMs were relatively simple. In the test analysis, the heritability estimation 

for different GRMs used the GREML approach which has been under some debate because 

of its potential bias (56, 62). Analysis of functional categories by the genomic feature models 

with BLUP has been previously tested (63), although this methods can be computationally 

intensive. However, we aimed to treat each discovery dataset as equally as possible and all 

GRMs were analysed in the test dataset the same systematic way. The positive results from 

the validation analysis also suggest that informative variants have been well captured in the 

discovery and test analyses. 

 

Conclusions 
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We provide the first extensive evaluation of the contribution of sequence variants with 

functional and evolutionary significance to multiple bovine complex traits. While developed 

using genomic and phenotypic data in the cattle model, the novel analytical approaches for 

the functional and evolutionary datasets and the FAETH framework of variant ranking can be 

well applied in other species. With their utility demonstrated, the publicly available variant 

FAETH scores will provide effective and simple-to-implement prior data for advanced 

genome-wide mapping and prediction. 

 

Materials and Methods 

Discovery analysis 

A total of 360 cows from a three-year experiment at the Ellinbank research facility of 

Agriculture Victoria in Victoria, Australia, were used to generate functional datasets 

including RNA-seq, ChIP-seq and milk fat metabolites. All the animal experiments were 

approved by the Agriculture Victoria Animal Ethics Committee (2013–23).  

The data of geQTLs, eeQTLs and sQTLs in each tissue of white blood and milk cells in a 

total of 131 Holstein and Jersey cows as previously published (NCBI Bioproject 

accessionPRJNA305942 (13)) were used. In addition, the data of geQTLs, eeQTLs and 

sQTLs from liver and semitendinosus muscle samples were also used (13) (NCBI Bioproject 

accession PRJNA392196). Previously, the geQTLs, eeQTLs and sQTLs were identified using 

the expression level of genes, exons and excision ratio of introns calculated using leafcutter 

(28), respectively, with imputed whole genome sequence (accuracy r > 0.92) analysed by 

Matrix eQTL (13, 64). From this analysis in each tissue, each variant had an estimate of the 

effect b and standard error (se) allowing for the multi-transcriptome meta-analysis in the 

current study. Such meta-analysis combining information from all four tissues followed the 

formula: χ(1)
2 = [∑

𝑡𝑛

√𝑁
𝑁
𝑛=1 ]2 (equation 1, published in (13)). N = the number of tissues (N = 4 
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in this case) where the single-transcriptome variant t values (b/se) were estimated. Variants 

with the p value < 0.0001 for the meta-analysis of 4 tissues in the analysis of geQTLs, 

eeQTLs and sQTLs were chosen for the geQTL, eeQTL and sQTL sets, respectively. 

The aseQTLs were discovered using the RNA-seq data of white blood and milk cells in a 

total of 112 Holstein cows (5). The allele specific expression status of variants in 

heterozygous sites was tested based on the framework of transcript tVariant and driver 

dVariants proposed by Khansefid et al (29). Briefly, the model: 𝑦𝑎𝑐𝑟 = 𝑋1𝑏1 + 𝑒 (equation 2, 

adopted from (29)) was used, where yacr was an N × 1 vector of log10 allele count ratio 

between parental genomes for the heterozygous exonic tVariant; N was the number of 

heterozygous animals at the tVariant; X1 was an N × 1 vector coding the genotype of each 

animal at a dVariant which may drive the differential allele expression of the tVariant; b1 as 

the regression coefficient, i.e., effects of the dVariant, for X1 and e was the residual. 

dVariants were defined as all the variants within ±1MB distance to the tVariant and thus for a 

given phenotype as the allele count ratio at a tVariant, local (±1MB) linear models were 

performed for all dVariants. Then, tested dVariants had estimates of b1 and the p values 

allowing for weighted meta-analysis for each gene using the formula: 𝑧̅ =  
∑ 𝑧𝑖

𝑁
𝑖=1

√𝑁
 (equation 3, 

published in (29)); where N was the number of times that b1 of the dVariant was calculated 

by equation 2; 𝑧𝑖 =  Φ−1(𝑝𝑖) where Ф was the cumulative standard normal distribution and 

pi was the p value of b1 for each tested dVariant from equation 2. Variants with the p value < 

0.0001 for the meta-analysis in both blood and milk cells were chosen for the aseQTL set. 

The discovery of milk fat polar lipids metabolites mQTLs was based on the mass-

spectrometry quantified concentration of 19 polar lipids from 338 Holstein cows. The bovine 

milk were collected as described above and polar lipids were extracted from bovine milk 

following the previously developed protocols (21). The chromatographic separation of polar 

lipids used a Luna HILIC column (250×4.6 mm, 5 µm, Phenomenex) maintained at 30 °C. 
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The lipids were detected by the LTQ-Orbitrap mass spectrometer (Thermo Scientific) 

operated in electrospray ionization positive (for most polar lipid classes) or negative (for 

analysis of PI) Fourier transform mode. The identification of lipid species present in milk was 

performed as previously reported (21). Quantification of selected polar lipid species was 

based on peak area of parent ions after normalization by the internal standard. GWAS of the 

concentration of each polar lipid was conducted using the model: 𝑦𝑙𝑖𝑝𝑖𝑑𝑠 = Χ𝛽 + Ζ𝑢 + 𝑤𝑎 +

𝑒 (equation 4), where ylipids was the vector of concentration of polar lipids of analysed 

individuals; 𝛃 was the vector of fixed effects (analytical batches); 𝐗 was a design matrix 

relating phenotypes to their fixed effects; u was the vector of animal effects where 𝐮~𝑁(0, 

𝐆𝜎𝑔
2), 𝐆 was the genomic relationship matrix between individuals 𝒁 was the incidence 

matrix; w was the vector of imputed sequence genotypes (over 10.1 million sequence 

variants) coded as 0, 1 or 2 (representing the genotypes aa, Aa or AA) and a was the effect of 

the variant; e was the vector of residual effects. For each GWAS, each variant had an 

estimate of the effect b and se allowing for multi-trait meta-analysis of variant effects across 

19 traits with the formula: 𝜒(𝑁)
2 = 𝑡𝑖

′𝑉−1𝑡𝑖 (equation 5, published in (20)). N = the number of 

single-trait GWAS conducted; ti was a N×1 vector of the signed t-values (b/se) of varianti for 

the N traits; ti′ was a transpose of vector ti (1×N); V−1 was an inverse of the N × N correlation 

matrix where the correlation between two traits was the correlation over all analysed variant t 

values of the two traits. Variants with the p value < 0.0001 for the meta-analysis of 19 polar 

lipids were chosen for the mQTL set. 

ChIP-seq marks indicative of enhancers and promoters from a combination of experimental 

and published datasets were used. Trimethylation at lysine 4 of histone 3 (H3K4me3) ChIP-

seq peak data of 9 bovine muscle samples (23) (NCBI GEO accession: GSE61936) and of 

H3K4me3 and acetylation at lysine 27 of histone 3 (H3K27ac) ChIP-seq peak data from 4 
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bovine liver samples (22) (EMBL Array Express accession: E-MTAB-2633) were 

downloaded. 

H3K4me3 ChIP-seq peaks from mammary tissue of a lactating Holstein Dairy cow was 

generated as follows. 50mg of ground frozen tissue was fixed for 10 minutes and chromatin 

prepared using the MAGnify Chromatin Immunoprecipitation kit (Thermofisher) as per the 

manufacturer’s instructions. Chromatin immunoprecipitation was performed with the same 

kit. 0.25 and 0.5µg of H3K4Me3 antibody (Abcam) was used for each immunoprecipitation 

with chromatin from 200,000 cells per reaction in triplicate. Libraries were made from ChIP 

product from all 3 reactions combined and input DNA (non-immunoprecipitated chromatin) 

using the NEBNext library prep kit (New England BioLabs). Libraries were sequenced on the 

HiSeq 3000 (Illumina) in a 150 cycle paired end run. More than 100 million reads were 

produced for the ChIP and input samples. Raw sequence reads were trimmed of adapter and 

poor-quality bases using Trimmomatic (65) using options ILLUMINACLIP: 

ADAPTER.fa:2:30:3:1:true LEADING:20 TRAILING:20 SLIDINGWINDOW:3:15 

MINLEN:50. Reads were then aligned to the genome using BWA mem algorithim (66). 

Duplicates were marked with Picard (v2.6.0) MarkDuplicates 

(http://broadinstitute.github.io/picard) and reads with low mapping quality filtered using 

Samtools (v1.8) view (67) with -q 15 option. Narrow peak-calling was performed using 

MACS2 (v2.1.1, https://github.com/taoliu/MACS) based on default settings. DeepTools 

(v2.5.4) plotFingerprint (68) was used to plot cumulative sums of reads to assess ChIP 

quality. Phantompeakqualtools (v1.1) (69) was used to calculate cross-strand correlation 

metrics as another measure of ChIP quality. Bovine sequence variants within these peaks 

were defined as the ChIP-seq tagged variants and tagged variants from all samples were 

merged to one list of ChIP-seq tagged set. 
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The discovery of variant sets with evolutionary significance was based on the whole genome 

sequences of Run 6 of the 1000 bull genomes project (32). The selection signature analysis 

used a subset of 1,370 cattle of 15 dairy and beef breeds (Figure S1) with a linear mixed 

model approach. 18,446,470 sequence variants were used after filtering for Hardy–Weinberg 

equilibrium p < 0.0001 and MAF <0.005. For each animal, a binary phenotype (1/0) was 

created based on the assignment of the animal as a ‘dairy’ or ‘beef’ breed. This breed 

phenotype was analysed in the GWAS model: 𝑦𝑏𝑟𝑒𝑒𝑑 = Χ𝛽 + Ζ𝑢 + 𝑤𝑎 + 𝑒 (equation 6), 

where y was the vector of binary phenotype of breed (1/0) of analysed individuals; 𝛃 was the 

vector of fixed effects (types of sequence assays); 𝐗 was a design matrix relating phenotypes 

to their fixed effects; u was the vector of animal effects where 𝐮~𝑁(0, 𝐆𝜎𝑔
2), 𝐆 was the 

genomic relationship matrix between the 1,370 individuals; 𝒁 was the incidence matrix; w 

was the vector of whole genome sequence genotypes coded as 0, 1 or 2 (representing the 

genotypes aa, Aa or AA) and a was the effect of the variant; e was the vector of residual 

effects. To improve the power of the GWAS, the leave-one-chromosome-out approach 

implemented in GCTA (33) was used and variants with the p value < 0.0001 for the GWAS 

were chosen for the selection signatures set. 

To fully utilise the data of 1000 bull genomes the metric PPRR, proportion of positive 

correlations (r) with rare variants (MAF<0.01), was developed to infer the variant age. Our 

idea was based on the coalescent theory where the history of haplotypes of a sample can be 

represented by branching structures with the root being their common ancestor (70). The 

distribution of sequence variants is related to the branch lengths for the coalescence, and as 

demonstrated in humans (34) very recent selection decreased the branch lengths and 

increased the frequency of the favoured allele, compared to a neutral expectation. Therefore, 

haplotypes with favoured alleles had reduced number of ‘singleton mutations’ (34), i.e., the 

rarest type of variants which has only been seen once. This highlighted the negative 
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relationship between allele rarity and favourability (Figure S2A) and thus inspired our 

proposal: variants that appeared and/or are selected recently, i.e., relatively young, in a 

population could be enriched in regions with a reduced number of positive relationships with 

rare variants. PPRR was then calculated as 𝜋+𝑟 =
𝑁𝑘[+𝑟(𝑤𝑐,𝑤𝑟𝑎𝑟𝑒)]

𝑁𝑘[𝑟(𝑤𝑐,𝑤𝑟𝑎𝑟𝑒)]
 (equation 7), where 𝜋+𝑟 

was the PPRR; 𝑁𝑘[+𝑟(𝑤𝑐, 𝑤𝑟𝑎𝑟𝑒)] was the count (N) of all the positive correlations (r) 

between the genotypes of common variants (𝑤𝑐) and the genotypes of rare variants (𝑤𝑟𝑎𝑟𝑒) in 

a given window with a size of k (k = 50kb for this study for computational efficiency). 

𝑁𝑘[𝑟(𝑤𝑐, 𝑤𝑟𝑎𝑟𝑒)] was the count of all correlations regardless of the sign. The calculation of 

𝜋+𝑟 can be easily and effectively performed using plink1.9 (www.cog-

genomics.org/plink/1.9/). To reduce noises only correlations with |r| > 0.0002 were 

considered. An example of the distribution of the PPRR across the allele frequency for 

bovine chromosome 25 was given in the Figure S2B. In the end, variants within the top 1% 

of the reversed ranking of PPRR in each 10% allele frequency bin, e.g., AF ∈

{(0, 0.1], (0.1, 0.2] , … , (0.9, 1)}, were selected to represent the young variant set. 

Conserved genome sites, as another measure of the evolutionary significance, were also 

determined using the PhastCon program (26). The analysis used the reference genome 

sequences of cattle (UMD3.1), dog (CanFam3.1), mouse (GCRm38.p6) and human 

(GRCh38.p12) from Ensembl (https://www.ensembl.org/). Variants within the bovine 

genome sites with PhastCon score > 0.9 were chosen for the conserved site variant set. 

However, the conserved site variant set was not informative in our analysis (detailed in the 

test analysis) and was not included in the final ranking of variants. 

Several datasets with annotated variant functions were also used to partition genome variants. 

The variant annotation category shown in Table 1 was based on predictions from Ensembl 

variant Effect Predictor (30) in conjunction with NGS-variant (31). Several variant 

annotations were merged from the original annotations to achieve reasonable sizes for 
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GREML. Merged annotations included geneend, splice.sites, coding related and non.coding 

related and the details of the size of original variant annotation sets can be found in the Table 

S1. Two additional variant functional annotations were also considered. One was the gkm 

SVM score of bovine genome sites from the HPRS (25) where each bovine genome site had a 

score of predicted regulatory potential. Variants in our study that overlapped HPRS and the 

were within the top 1% of the SVM score ranking (169,773 variants) were selected as the 

HPRS variant set. Another annotation dataset was the predicted CTCF sites published by 

Wang et al (24). Variants that overlapped with predicted bovine CTCF sites from (24) were 

chosen to be the CTCF variant set (252,234 variants). The HPRS and CTCF variant sets were 

not informative in our analysis (detailed in the test analysis) and were not included in the 

final ranking of variants. 

Variant sets based on their distribution of LD score, density and MAF were created using 

GCTA-LDMS method (35) based on imputed genome sequences of the test dataset of 11,923 

bulls and in 32,347 cows (detailed below). Over 17.6 million genome variants were 

partitioned into four quartiles of LD score per region (region size = 50kb), number of variants 

per window (window size = 50kb) and MAF sets of variants which were used to make 

GRMs. The quartile partitioning of sequence variants followed the default setting of the 

GCTA-LDMS. As a by-product of GCTA LD score calculation, the number of variants per 

50kb window was computed and the quartiles of the value of variant number per region for 

each variant was used to generate the variant density sets. 

Test analysis 

An Australian dataset of 11,923 bulls and 32,347 cows from Holstein (9,739 ♂ / 22,899 ♀), 

Jersey (2,059 ♂ / 6,174 ♀), mixed breed (0 ♂ / 2,850 ♀) and Red dairy breeds (125 ♂ / 424 

♀) obtained from DataGene (http://www.datagene.com.au/) with 34 phenotypic traits (trait 

deviations for cows and daughter trait deviations for bulls (19)), including 5 production, 2 
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reproduction, 3 management and 24 type traits, were used for the test analysis (Table S2). All 

the traits were ordered by their number of non-missing records and transformed by Cholesky 

factorisation (19), so that they had minimal correlations with each other. Briefly, the formula 

of 𝐶𝑛 = 𝐿−1𝑔𝑛 (equation 8, published in (19)) was used where 𝐶𝑛was a k (number of traits)×1 

vector of Cholesky scores for the animal n; L was the k×k matrix of the Cholesky factor 

which satisfied 𝐿𝐿𝑡 = 𝐶𝑂𝑉, the k×k covariance matrix of raw scores after standardisation as 

z-scores, 𝑔𝑛 was an k×1 vector of traits for animal n. As a result, the kth Cholesky 

transformed trait can be interpreted as the kth original trait corrected for the preceding k-1 

traits and each Cholesky transformed trait had a variance of close to 1 (Table S2).  

A total of 17,669,372 imputed sequence variants with Minimac3 imputation accuracy (REF) 

R2 > 0.4 in above described bulls and cows using 1000 bull genome data (5, 32) as the 

reference set were used in the test analysis. Lists of variant sets selected from the discovery 

analysis with MAF > 0.001 in 11,923 bulls and in 32,347 cows were used to make targeted 

GRMs using GCTA (33). A GRM of the high-density (HD) variant chip (630,002 variants) 

was also made. Each targeted GRM was analysed in the 2-GRM REML model as : 𝑦𝑡𝑟𝑖
=

Χ𝛽 + Ζ𝑠𝑒𝑡𝑢𝑠𝑒𝑡 + Ζ𝐻𝐷𝑢𝐻𝐷 + 𝑒 (equation 9); where 𝒚𝑡𝑟𝑖
 was the vector of trait ith phenotypic 

trait of analysed individuals; 𝛃 was the vector of fixed effects (breeds); 𝐗 was a design matrix 

relating phenotypes to their fixed effects; 𝑢𝑠𝑒𝑡 was the vector of animal effects for the 

targeted GRM where 𝐮𝑠𝑒𝑡~N(0, 𝐆𝑠𝑒𝑡𝜎𝑔
2), 𝐆𝑠𝑒𝑡 was the GRM between the analysed 

individuals made of the targeted variant set; 𝚭𝑠𝑒𝑡 was the incidence matrix made of the 

targeted variant set; 𝑢𝐻𝐷 was the vector of animal effects for the GRM made of the HD 

variants where 𝐮𝐻𝐷~N(0, 𝐆𝐻𝐷𝜎𝑔
2), 𝐆𝐻𝐷 was the GRM between the analysed individuals 

made of the HD variants (630,002); e was the vector of residual. GREML was analysed using 

MTG2 (71) for each trait separately in different sexes to calculate the heritability, ℎ𝑠𝑒𝑡
2 , of the 

targeted GRM. For each GRM within each sex, the ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ was calculated as the average across 
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34 traits. The per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ was calculated as the ℎ𝑠𝑒𝑡

2̅̅ ̅̅ ̅ divided by the number of variants in 

the targeted GRM. 

To calculate the FAETH variant ranking, for genome partitions where one set of variants was 

chosen, i.e., sets of eeQTLs, geQTLs, sQTLs, mQTLs, ChIP-seq, selection signatures, young 

variants, conserved site variant, HPRS and CTCF, the heritability of the set of rest variants, 

ℎ𝑟𝑒𝑠𝑡
2 , was calculated as ℎ𝑎𝑙𝑙 𝑆𝑁𝑃𝑠

2  – ℎ𝑠𝑒𝑡
2 . This allowed that for each genome partition, each 

variant had a membership to a set. For each trait, ℎ𝑎𝑙𝑙 𝑆𝑁𝑃𝑠
2  was calculated using the same 

model as equation 9, except that Ζ𝑠𝑒𝑡𝑢𝑠𝑒𝑡 was replaced by Ζ𝑎𝑙𝑙 𝑆𝑁𝑃𝑠𝑢𝑎𝑙𝑙 𝑆𝑁𝑃𝑠. 𝑢𝑎𝑙𝑙 𝑆𝑁𝑃𝑠 was for 

the GRM where 𝐮𝑎𝑙𝑙 𝑆𝑁𝑃𝑠~N(0, 𝐆𝑎𝑙𝑙 𝑆𝑁𝑃𝑠𝜎𝑔
2), 𝐆𝑎𝑙𝑙 𝑆𝑁𝑃𝑠 was the GRM between the analysed 

individuals made of all variants considered with MAF > 0.001 (over 16.1 million variants); 

𝚭𝑠𝑒𝑡 was the incidence matrix made of the all variant set. Then, this allowed for the 

calculation of ℎ𝑟𝑒𝑠𝑡
2 = ℎ𝑎𝑙𝑙 𝑆𝑁𝑃𝑠

2  – ℎ𝑠𝑒𝑡
2  for each trait and the ℎ𝑟𝑒𝑠𝑡

2̅̅ ̅̅ ̅̅  as the average across 34 

traits. The per-variant ℎ𝑟𝑒𝑠𝑡
2̅̅ ̅̅ ̅̅  was then calculated as the ℎ𝑟𝑒𝑠𝑡

2̅̅ ̅̅ ̅̅  divided by the number of 

variants in the remaining (‘rest’’) set as the difference between the total number of variants 

and the number of variants in the targeted set. A criterion of per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ > per-variant 

ℎ𝑟𝑒𝑠𝑡
2̅̅ ̅̅ ̅̅  was used to determine whether the variant set was informative. Based on this criterion, 

the sets of conserved site variant, HPRS and CTCF were determined not informative and 

their per-variant ℎ2̅̅ ̅̅  estimates were not included in the FAETH ranking. 

The FAETH ranking of variant sets used the estimates per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ and the ranking of 

each variant was derived based on the variant membership to the non-overlapping sets within 

each partition. If a variant belonged to a targeted set or a rest set in the partition, the estimate 

of per-variant ℎ𝑠𝑒𝑡
2̅̅ ̅̅ ̅ or the per-variant ℎ𝑟𝑒𝑠𝑡

2̅̅ ̅̅ ̅̅  was assigned to the variant accordingly. In the end, 

the variant FAETH ranking was based on the average of the 12 genome partitions retained (as 

shown in Table 1). 
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Validation analysis 

The validation used variants within the top 1/3 (high) and bottom 1/3 (low) ranking from the 

Australian analysis to make GRMs in a total of 7,551 Danish bulls of Holstein (5,411), Jersey 

(1,203) and Danish Red  (937) with a total of 8,949,635 imputed sequence variants in 

common between the Danish and Australian datasets, with a MAF ≥ 0.002 and imputation 

accuracy measured by the info score provide by IMPUTE2 ≥ 0.9 in the Danish data (72). 

Deregressed proofs (DRP) were available for all animals in the Danish dataset for milk, fat 

and protein yield. The Danish dataset was divided into a reference and validation set, where 

the reference set include 4,911 Holstein, 957 Jersey and 745 Danish Red bulls and the 

validation set included 500 Holstein, 517 Jersey and 192 Danish Red bulls.  Over 1.25 

million high-ranking variants and over 1.25 million low-ranking variants were used to make 

the high- and low- ranking GRMs. For the individuals in the reference set, each trait of 

protein, milk and fat yield was analysed with the GREML model 𝑦𝐷𝑎𝑛 = Χ𝛽 + Ζ𝐷𝑎𝑛𝑢𝐷𝑎𝑛 +

𝑒 (equation 10) using GCTA (33), where yDan was the vector of DRP of analysed Danish 

individuals; 𝛃 was the vector of fixed effects (breeds); 𝐗 was a design matrix relating 

phenotypes to their fixed effects; u was the vector of animal effects where 

𝐮𝐷𝑎𝑛~N(0, 𝐆𝐷𝑎𝑛𝜎𝑔
2), 𝐆𝐷𝑎𝑛 was the genomic relationship matrix between Danish individuals, 

𝚭𝐷𝑎𝑛 was the incidence matrix; e was the vector of residual. This allowed the estimate of ℎ2  

of high- and low- ranking variants in the Danish data.  

To further test the utility of the variant ranking, genomic prediction with gBLUP was also 

performed by dividing the Danish individuals into reference and validation datasets. The –

blup-variant option in GCTA (33) was used to obtain variant effects from the GREML 

analyses, that were used to predict GEBV in the validation population. Prediction accuracies 

were computed for each of the breeds in the validation population, as the correlation between 

GEBV and DRP. 
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The high- and low- ranking variants were also evaluated for their utility in across-breed and 

within breed analysis in the Australian dataset. The high- and low- ranking variants were 

used to make GRMs in Australian bulls. The within-breed GRM was built following the 

intuition from (73) by setting the across-breed elements, i.e., the relationship between 

individual pairs from different breeds, of the original GRM to the mean of the breed block. 

For each of the 34 traits, the original multi-breed GRM was fitted together with the within-

breed GRM in the 2-GRM REML model similar to equation 9. Then, the ℎ2̅̅ ̅̅  of multi-breed 

and within breed GRMs of high- and low- ranking variants across 34 traits were calculated. 
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