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Abstract

Motivation: Protein binding site comparison (pocket matching) is of importance in drug discovery.
Identification of similar binding sites can help guide efforts for hit finding, understanding polypharmacology
and characterization of protein function. The design of pocket matching methods has traditionally involved
much intuition, and has employed a broad variety of algorithms and representations of the input protein
structures. We regard the high heterogeneity of past work and the recent availability of large-scale
benchmarks as an indicator that a data-driven approach may provide a new perspective.
Results: We propose DeeplyTough, a convolutional neural network that encodes a three-dimensional
representation of protein binding sites into descriptor vectors that may be compared efficiently in
an alignment-free manner by computing pairwise Euclidean distances. The network is trained with
supervision: (i) to provide similar pockets with similar descriptors, (ii) to separate the descriptors of
dissimilar pockets by a minimum margin, and (iii) to achieve robustness to nuisance variations. We evaluate
our method using three large-scale benchmark datasets, on which it demonstrates excellent performance
for held-out data coming from the training distribution and competitive performance when the trained
network is required to generalize to datasets constructed independently.
Availability: https://github.com/BenevolentAI/DeeplyTough
Contact: martin.simonovsky@enpc.fr, joshua.meyers@benevolent.ai

1 Introduction
Analysis of the three-dimensional (3D) structures of proteins, and in
particular the examination of functional binding sites, is of importance
in drug discovery and biological chemistry (Skolnick and Fetrow, 2000;
Ferreira et al., 2015). Binding site comparison, also known as pocket
matching, can be used to predict selectivity of ligand binding, as
an approach for hit-finding in early drug discovery or to suggest the
function of, as yet, uncharacterized proteins (Ehrt et al., 2016). Structural
approaches for pocket matching have been shown to be more predictive
of shared ligand binding between two proteins than global structure or
sequence similarity (Grishin, 2001; Illergård et al., 2009). Increasingly,
there is interest in applying pocket matching approaches to large datasets
of protein structures to enable proteome-wide analysis (Holm and Sander,
1996; Hou et al., 2005; Degac et al., 2015; Meyers et al., 2016; Bhagavat
et al., 2018). Existing approaches for quantifying the structural similarity
between a pair of putative protein binding sites exhibit a range of hand-
crafted pocket representations, as well as a combination of alignment-
dependent and alignment-free algorithms for comparison (Ehrt et al., 2016;
Naderi et al., 2018).

A key measure of success for a pocket matching algorithm is the ability
to assign similarity to pairs of protein pockets that have been shown to bind
identical ligands (Barelier et al., 2015; Chen et al., 2016). This requirement
is useful since it encourages pocket similarity towards biological relevance,
however the binding of identical ligands to unrelated pockets is highly
dependent on the nature of the ligand (as well as the protein) and often

there is no common structural pattern between the pair of binding sites
(Meyers et al., 2018; Pottel et al., 2018). As noted by Barelier et al.
(2015): "The same ligand might be recognized by different residues, with
different interaction types, and even different ligand chemotypes may be
engaged". It is therefore unsurprising that varied algorithms for pocket
matching differ in the manner by which cavities are represented, or as
to how different feature types are weighted in the resulting measure of
similarity. We argue that a solution that is able to learn from data is expected
to perform well since this offers the possibility to remove bias associated
with hand-engineered protein pocket representations and their matching,
others have also expressed this view (Naderi et al., 2018).

Deep learning has become the standard machine learning framework
for solving many problems in computer vision, natural language
processing, and other fields (LeCun et al., 2015). This trend has also
reached the community of structural biology and computational chemistry,
showing utility in a range of scenarios relevant to drug discovery (Rifaioglu
et al., 2018). In particular, trainable methods have been applied to protein
structure data for a number of applications including protein-ligand affinity
prediction (Wallach et al., 2015; Gomes et al., 2017; Ragoza et al., 2017;
Stepniewska-Dziubinska et al., 2018; Jiménez et al., 2018; Imrie et al.,
2018), protein structure prediction (AlQuraishi, 2018; Evans et al., 2018),
binding pocket inpainting (Škalič et al., 2019), binding site detection
(Jiménez et al., 2017) and prediction of protein-protein interaction sites
(Fout et al., 2017; Townshend et al., 2018). However, to our knowledge
a deep learning approach to pocket matching has not been previously
described.
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Fig. 1. Illustration of learning binding site matching with a contrastive loss function (green and red arrow) and a stability loss function (blue arrow). Binding sites are represented as
multi-channel 3D images pi and encoded using a CNN dθ into n-dimensional descriptors (filled symbols), which can be compared quickly and easily by computing their pairwise
Euclidean distances. The network is trained to make descriptors of matching pocket pairsP as similar to each other as possible but to separate the descriptors of non-matching pocket pairs
N by at least margin distancem. In addition, descriptors are encouraged to be robust to small perturbations of the representation, shown as hollow symbols.

A challenge for any machine learning-based method for pocket
matching is presented by the available quantity of known protein pocket
pairs and the quality of their annotations. Conveniently, Govindaraj
and Brylinski (2018) have recently compiled TOUGH-M1, a large-scale
dataset of roughly one million pairs of pockets differentiated by whether
or not they bind structurally similar ligands. In this paper, we rely on
this collection for training and expect that the scale will help the method
overcome the noise inherently present in automated strategies for gathering
data.

We introduce DeeplyTough, a pocket matching method that uses
a convolutional neural network (CNN) to encode protein binding sites
into descriptor vectors. Once computed, descriptors can be compared
very efficiently in an alignment-free way by simply measuring their
pairwise Euclidean distances. This efficiency makes the proposed approach
especially suited to investigations on large datasets. Our main contribution
is the formulation of pocket matching as a supervised learning problem
with three goals: i) to provide similar pockets with similar descriptors, ii)
to separate the descriptors of dissimilar pockets by a minimum margin, and
iii) to achieve robustness to selected kinds of nuisance variability, such as
specific delineations of binding sites. We thoroughly evaluate our method
on three recent large-scale benchmarks for pocket matching. Concretely,
we demonstrate excellent performance on held-out data coming from the
training distribution (TOUGH-M1) and competitive performance when
the trained network is required to generalize to datasets constructed
independently by Chen et al. (2016) and Ehrt et al. (2018).

2 System and Methods
The problem of protein pocket matching is seen from the perspective of
computer vision in our approach. The main idea is to regard pockets as 3D
images and process them using a CNN to obtain their representation in a
vector space where proximity indicates structural similarity, see Figure 1.
In this section, we first discuss the choice of the training dataset and
featurization. Then, we pose our method as a descriptor learning problem
and describe a training strategy that encourages robustness to nuisance
variability. Finally, we describe the architecture of the neural network and
details relevant to its implementation.

2.1 Training Dataset

Moving from intuition-based featurization schemes towards learned
representations presumes the availability of a large training corpus of
pocket pairs with associated 3D structures. To frame the task as a
supervised machine learning problem, we assume each pocket pair to be of
a certain similarity. Here, we restrict ourselves to the binary case of similar
and dissimilar pocket pairs. Unfortunately, obtaining this information
is not easy in practice and has been the underlying theme in a range
of benchmarking papers. Indeed, the performance of pocket matching
algorithms has been shown to depend strongly on the construction of
particular datasets (Lee and Im, 2017), and we expect similar behavior
to arise when using such datasets for training as well. While highly
structurally similar pocket pairs can be easily obtained by considering
sequence similar proteins, pairs of unrelated proteins binding similar
ligands (Barelier et al., 2015) represent less obvious examples of pocket
pairs that may be presumed similar. We expect these cases to represent
more closely the needs of desired applications since they are not detectable
by methods that rely on sequence-based similarity.

Generally speaking, similarity can be defined on two levels of
granularity: for pairs of proteins and for pairs of pockets.

Protein-level similarity is often derived from chemical similarity
among the respective binding ligands of two proteins (Keiser et al., 2007)
or from commonalities in activity profiles for a set of shared compounds,
as measured by functional or binding assays. For example, Chen et al.
(2016) discriminate protein pairs sharing common active ligands from
those without shared active ligands. While the empirical measurement
of protein-level similarity is arguably scalable and cost-efficient, pin-
pointing the exact binding sites (and protein conformations) responsible
for the observed behavior is problematic. This uncertainty makes pocket
pair datasets defined at the protein-level unfit for training a pocket-level
similarity predictor directly. Nevertheless, such datasets can be used to
evaluate pocket matching algorithms by estimating protein similarity as
the maximum predicted pocket similarity computed over all pockets and
all structures of the respective proteins (Chen et al., 2016).

Pocket-level similarity is derived directly from 3D protein-ligand
complexes such as those available in the Protein Data Bank (PDB) (Berman
et al., 2000), and is often enhanced by the heuristic assumption that similar
ligands bind to similar pockets and vice versa. While providing detailed
localization of protein-ligand binding, data acquisition is expensive and
pockets are observed in a single bound (holo-) conformation, which means
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that training on such data may not warrant generalization to other induced
fit or unbound (apo-) protein conformations. Although studies have
suggested that conformational rearrangement may be limited (Brylinski
and Skolnick, 2008).

Historically, datasets have been constructed as classification
experiments involving sets of protein structures bound to a small number
of commonly occurring co-crystal ligands (Kahraman et al., 2007; Xie
and Bourne, 2008; Hoffmann et al., 2010). However, these datasets tend
to be small (hundreds or a few thousand pairs) and may not be sufficiently
representative of possible protein binding site space for training purposes.
The APoc dataset (Gao and Skolnick, 2013) represents a step towards
larger, more general datasets, comprising 34,970 positive and 20,744
negative pairs. Recently, Govindaraj and Brylinski (2018) proposed a
large dataset, TOUGH-M1, of roughly one million pairs of protein-ligand
binding sites curated from the PDB. Specifically, the authors considered
a subset of the PDB including protein structures binding a single “drug-
like” ligand. Structures were clustered based on sequence similarity and
representative structures bound to a diverse set of ligands were chosen
from each cluster. Since the dataset is designed with the prospective use
case in mind, in which the location of ligand binding is not available,
pocket definition was performed using Fpocket (Le Guilloux et al., 2009)
and predicted cavities having the greatest overlap with known binding
residues were selected. Finally, bound ligands were also clustered and
globally dissimilar protein pairs were identified either within (positive) or
between (negative) each ligand cluster. The resulting TOUGH-M1 dataset
consists of 505,116 positive pocket pairs and 556,810 negative pocket
pairs.

In this work, we choose to train our approach on the TOUGH-
M1 dataset. From a machine learning perspective, TOUGH-M1 has the
advantages of being large, balanced and offers pocket-level similarities.
Notwithstanding, this dataset represents a specific method for defining
pocket similarities and it is thus unclear if a trained method can generalize
to other datasets, constructed in possibly different ways. We will return to
this question in Section 3 and answer it affirmatively.

Finally, let us emphasize that while it is often functional binding sites
that are of biological interest, we refer to protein cavities indiscriminately
as pockets, since the method discussed is agnostic to the biological
relevance of the pockets analyzed.

2.2 Volumetric Input Representation

Similarly to recent works addressing pocket detection (Jiménez et al.,
2017) and protein-ligand affinity prediction (Jiménez et al., 2018;
Stepniewska-Dziubinska et al., 2018), we regard protein structures as 3D
images with c channels f : R3 → Rc (4D tensors). This is analogous to
the treatment of color images in computer vision as functions assigning a
vector of intensities of three primary colors to each pixel, R2 → R3.

There are c = 8 feature channels assigned to every point in the
3D image, expressing the presence or absence (occupancy) of atoms in
general as well as the presence of atoms exhibiting seven pharmacophoric
properties: hydrophobicity, aromaticity, ability to accept or donate a
hydrogen bond, positive or negative ionizability, and being metallic.
Each atom is thus assigned to at least one feature channel. Occupancy
information is given by a smooth indication function of the van der Waals
radii of atoms. More precisely, occupancy f(x)h at point x ∈ R3 in
channel h ∈ {1, .., c} corresponds to the strongest indication function
over the protein atomsAh assigned to that channel, formally:

f(x)h = max
a∈Ah

1− exp(−(ra/||x− xa||2)12), (1)

where ra is van der Waals radius and xa is the position of atom a.
Protein structures are retrieved from the PDB, and molecules that are

not annotated as part of the main-chain are ignored (e.g. water, ligands).
This featurization process is analogous to that used for DeepSite (Jiménez
et al., 2017) and is based on AutoDock 4 atom types (Morris et al., 2009)
and computed using the high-throughput molecular dynamics (HTMD)
package (Doerr et al., 2016).

A pocket is represented as tensorp ∈ Rc×d×d×d created by sampling
the corresponding protein structure image f over a grid of shape d×d×d
with step sÅ. To denote the representation of a particular pocket in f
centered at point µ ∈ R3 and seen under angle φ, we use the functional
notation p = p(f,µ, φ). In our datasets of interest, µ is either the
geometric center of a pocket, i.e. the centroid of convex hull of alpha
spheres in the case of pockets detected with Fpocket 2.0 (Le Guilloux
et al., 2009) or the centroid of convex hull of surrounding residues laying
within 8Å of non-hydrogen ligand atoms in the case of pockets defined
by their bound ligands.

2.3 Learning Pocket Descriptors

We draw inspiration from computer vision, where comparing local
image descriptors is the cornerstone of many tasks, such as stereo
reconstruction or image retrieval (Szeliski, 2010). There, carefully hand-
crafted descriptors such as SIFT (Lowe, 1999) have been recently matched
in performance by descriptors learned from raw data (Schönberger et al.,
2017; Balntas et al., 2017).

Descriptor learning is usually formulated as a supervised learning
problem. Given set P = {{(f (i)1 ,µ

(i)
1 ), (f

(i)
2 ,µ

(i)
2 )}}Ai=0 of positive

pocket pairs and setN = {{(f (i)1 ,µ
(i)
1 ), (f

(i)
2 ,µ

(i)
2 )}}Bi=0 of negative

pairs, the goal is to learn a representation such that the descriptors of
structurally similar pockets are close to one another in the learned vector
space while descriptors of dissimilar pockets are kept far apart. Several
objective (loss) functions have been introduced in past work that typically
operate on pairs or triplets of descriptors. Triplets are formed by selecting
a positive and a negative partner for a chosen anchor (Wang et al., 2014;
Hoffer and Ailon, 2015), which is problematic in a pocket matching
scenario, as the ground truth relationship between most pocket pairs is
unknown: in fact, only 3,991 out of 505,116 positive pairs in TOUGH-M1
can be used for constructing such triplets. Therefore, we build on the pair-
wise setup following Simo-Serra et al. (2015), which has shown success
in computer vision tasks (Balntas et al., 2017). Specifically, given a pair of
pocketsQ = {(f1,µ1), (f2,µ2)} and orientationsφ1, φ2, we minimize
the following contrastive loss function (Hadsell et al., 2006) for a pair of
pocket representations p1 = p(f1,µ1, φ1) and p2 = p(f2,µ2, φ2):

Lc(p1,p2) =

{
||dθ(p1)− dθ(p2)||22, Q ∈ P.
max(0,m− ||dθ(p1)− dθ(p2)||2)2, Q ∈ N .

(2)
where dθ : Rc×d×d×d → Rn is the description function (a
neural network) with learnable parameters θ computing n-dimensional
descriptors of pockets. The loss encourages the descriptors of positive
pairs to be identical while separating those of negative pairs at least by
margin m > 0 in Euclidean space. The ability to compute descriptors
independently (and in parallel, taking advantage of modern GPUs) and
compare them efficiently by evaluating the L2 norm of their difference is
very advantageous especially for large-scale searches and all-against-all
scenarios.

2.4 Towards Descriptor Robustness

A highly desirable property of pocket matching tools is robustness with
respect to the the chosen pocket representation and the inherent variability
in pocket definition. In particular, this includes discretization artifacts due
to input grid resolution s, the orientation of pockets in 3D space φ (there
is no canonical orientation of proteins nor their pockets in space) and their
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Table 1. The architecture of network used in the experiments, in top down
order. SCB denotes a steerable 3D convolution block with batch normalization
and ReLU scalar and sigmoid gate activation (Weiler et al., 2018) and C
denotes a standard 3D convolution layer preceded by ReLU activation and
batch normalization (Ioffe and Szegedy, 2015).

SCB kernel size 7, padding 3, stride 2, 4×16 fields of order 0-3
SCB kernel size 3, padding 1, stride 1, 4×32 fields of order 0-3
SCB kernel size 3, padding 1, stride 2, 4×48 fields of order 0-3
SCB kernel size 3, padding 0, stride 1, 4×64 fields of order 0-3
SCB kernel size 3, padding 0, stride 2, 256 fields of order 0

C kernel size 1, padding 0, stride 1, n output channels

precise delimitation (the inclusion or exclusion of a small number of atoms)
affecting the position of their geometric centers µ. Robustness here would
also render the network stable to protein conformational variability.

Robustness has been traditionally addressed by using fuzzy
featurization schemes and explicit alignment techniques in previous pocket
matching tools, see Naderi et al. (2018) for a review, and by using data
augmentation in machine learning methods (Kauderer-Abrams, 2017). The
latter strategy is also applicable in our case, where data augmentation
amounts to randomly samplingφ (implemented as random rotation around
a random axis) and adding a random vector ε, ||ε||2 ≤ 2Å, to µ for each
pocket seen during training in order to stimulate the descriptor function dθ
to become invariant to such perturbations. However, we have not been able
to achieve a sufficient level of invariance in practical experiments with only
this approach, which we consider related to series of observations of the
vulnerability of neural networks to small geometric input transformations
in both adversarial (Fawzi and Frossard, 2015) and benign settings (Azulay
and Weiss, 2018).

This motivates us to introduce an additional, explicit stability
objective (Zheng et al., 2016). Given two perturbed representations of the
same pocket (f,µ), ṗ = p(f,µ + ε1, φ1) and p̈ = p(f,µ + ε2, φ2),
we encourage their descriptors to be identical by minimizing the following
stability loss:

Ls(ṗ, p̈) = ||dθ(ṗ)− dθ(p̈)||2 (3)

The contrastive and the stability loss are then minimized jointly in a linear
combination weighted with hyperparameter λ > 0 as:

L(ṗ1, p̈1, ṗ2, p̈2) = Lc(ṗ1, ṗ2) + λ(Ls(ṗ1, p̈1) + Ls(ṗ2, p̈2))

(4)

2.5 Network Architecture

Our description function dθ is a relatively shallow CNN. CNNs are
hierarchical machine learning models consisting of layers of several types,
see e.g. Goodfellow et al. (2016) for an overview. To support the above
mentioned desire for translationally and rotationally invariant descriptors,
we draw on the recent progress in learning rotationally equivariant features.
Concretely, we use 3D steerable CNNs (Weiler et al., 2018), where
3D convolutional filters are parameterized as a linear combination of a
complete steerable kernel basis. Such a technique for parameter sharing
allowed us to considerably decrease the number of learnable parameters
down to the order of 105 and therefore to reduce possible overfitting.

The network, described in detail in Table 1, consists of six
convolutional layers. We prefer striding preceded by low-pass filtering,
as recommended by Azulay and Weiss (2018), over pooling, which has
empirically led to more stable networks. The computed descriptors are
additionally normalized to have unit length, as per usual practice (Lowe,
1999; Balntas et al., 2017).

2.6 Training Details

Besides the strategies for rotational and translational data augmentation
described above, random points are sampled with probability 0.1 instead
of pocket centersµ in negative pairs to increase the variability of negatives
and regularize the behavior of the network outside pockets over the whole
protein. We set margin m = 1, loss weight λ = 1 and descriptor
dimensionality n = 128. Networks are trained on balanced batches of 16
quadruples for 6000 iterations with a variant of stochastic gradient descent,
Adam (Kingma and Ba, 2014), with weight decay of 5× 10−4 and
learning rate of 0.001 step-wise annealed after 4000 iterations. Training
takes about 1.5 days on a single GPU. We observe that higher resolution and
larger spatial context are generally beneficial and set d = 24 and s = 1Å
as a compromise between computational efficiency and performance in
this work. Finally, let us remark that we use the same architecture and
training parameters for all networks presented in this work.

3 Results and Discussion

3.1 TOUGH-M1 Dataset

TOUGH-M1 (Govindaraj and Brylinski, 2018) is a dataset of 505,116
positive and 556,810 negative protein pocket pairs defined from 7,524
protein structures. Pockets are defined computationally with Fpocket
2.0 (Le Guilloux et al., 2009) and filtered to include only predicted cavities
having the greatest overlap with known binding residues, see Section 2.1.
As the TOUGH-M1 dataset is used for both training and evaluation but
has not been used in a machine learning setting previously, we first define
a sensible data splitting strategy before we report our results and compare
to several baseline methods.

Training and evaluation strategy The definition of independent subsets
of data, as desired for meaningful evaluation of machine learning-based
methods, is not straightforward in this case. Indeed, a number of recent
works have commented on the need for robust splitting methodologies
when working with protein structure data (Li and Yang, 2017; Feinberg
et al., 2018). A single protein structure may take part in multiple pairwise
relationships, some possibly being in the training set and some in the test
set, leading to a potential for information leakage. In addition, TOUGH-
M1 may contain multiple structures representing a single protein family.
Here, we propose to split at the structure level (instead of pairs), devoting
80% of structures for training and hyperparameter tuning and reserving
the remaining 20% (1,457 structures, 40,296 pairs) as a hold-out test set.
Any pairs connecting training and testing protein structures are discarded.
Structures assigned to a common UniProt accession number (determined
using the SIFTS database (Velankar et al., 2012)) are always allocated to
the same subset. 220 PDB IDs to which no UniProt accession number
could be assigned were removed.

After hyperparameter search rounds, we retrain our network on the
whole training set (5,847 structures, 628,234 pairs). Following Govindaraj
and Brylinski (2018), the performance is measured with the Receiver
Operating Characteristic (ROC) and the corresponding Area Under the
Curve (AUC) is reported. To estimate the sensitivity to the choice of
particular splits, we use repeated random sub-sampling (Monte Carlo)
validation (Dubitzky et al., 2007). Having finalized the hyperparameters,
we repeat splitting and training on ten random permutations of TOUGH-
M1 and measure the standard error over the respective test sets.

Baselines We compare DeeplyTough to three alignment-based methods
chosen by the authors of the TOUGH-M1 dataset and to an additional
alignment-free approach. APoc (Gao and Skolnick, 2013) optimizes
the alignment between pocket pairs by iterative dynamic and integer
programming, considering the secondary structure and fragment fitting.
G-LoSA (Lee and Im, 2017) uses iterative maximum clique search and
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fragment superposition. SiteEngine (Shulman-Peleg et al., 2005) uses
geometric hashing and matching of triangles of physicochemical property
centers. Last, PocketMatch (Yeturu and Chandra, 2008) is an alignment-
free method which represents pockets as lists of sorted distances encoding
their shape and chemical properties. While we reuse the list of matching
scores published by Govindaraj and Brylinski (2018) for each alignment-
based method and split them into folds according to our evaluation strategy,
we compute matching scores for PocketMatch ourselves.

Results The measured ROC curves for the TOUGH-M1 dataset are shown
in Figure 2. DeeplyTough achieves an AUC of 0.933, outperforming
by far all other approaches and achieving a substantial improvement
over the second best performing method, SiteEngine (AUC 0.733). The
remaining two alignment-based methods, G-LoSA and APoc, achieve
greater AUCs than PocketMatch, the alignment-free approach, with AUCs
of 0.683, 0.662 and 0.611, respectively. Furthermore, the performance of
all methods is fairly stable across different test (and training) sets, with
DeeplyTough achieving the lowest standard error.

Analysis of the TOUGH-M1 positive pocket pairs that were assigned
large distances (false negatives) highlights potentially ambiguous ground
truths in the dataset. In particular, the bound ligands of false negative
pockets show enrichment of biologically versatile endogenous molecules
such as nucleotides (ATP, ACO), amino acid monomers (TYR, PRO,
ASP) and sugars (GLC, NDG), as well as a number of non-biologically
relevant ligands involved in the production of protein structure data
such as crystallization agents (MPD, MRD), purification agents (CIT,
FLC) and buffer solutions (TRS, B3P). While these pocket pairs do
represent instances where related ligands are bound to unrelated proteins
(constituting the definition of a positive pocket pair), we argue that in
some cases there is limited structural similarity between pockets, and
shared binding may be attributed to the conformational flexibility (Haupt
et al., 2013) or non-specificity of the bound ligand. These cases may be
considered a limitation of the current dataset. On the other hand, analysis
of TOUGH-M1 negative pocket pairs that were assigned small distances
(false positives), revealed a large interconnected network of pocket pairs
that were predicted similar. Inherently, there is a high potential for false
positives in pocket pair datasets since the absence of common bound
ligands in extant data does not render it impossible for two binding sites to
bind related ligands. Of the false positive pocket pairs examined, we found
that many pockets were bound to polar ligand moieties containing anionic
groups such as phosphates (2P0, T3P, S6P), sulfonamides (E49, 3JW),
and carboxylates (G39, BES). Furthermore, false positive pockets seem
to be enriched with polar residues suggesting that there may be similarity
between these pockets, despite their negative labels.

DeeplyTough performs well on the TOUGH-M1 dataset, however,
it must be remembered that this is a trained method, and while results
are calculated for data held-out from training, the data is still drawn
from the same underlying distribution. It is therefore interesting to
evaluate the performance of DeeplyTough on further datasets constructed
independently.

3.2 Vertex Dataset

The Vertex dataset introduced by Chen et al. (2016) comprises 6,598
positive and 379 negative protein pairs defined from 6,029 protein
structures. The protocol for annotation of protein pairs derives from
commonalities (or lack thereof) among experimentally measured ligand
activities. In this benchmark, predicted protein-level similarities are
obtained from a set of pocket-level similarities. In particular, the smallest of
k× l predicted pocket distances is assigned to each protein pair of interest
with k ligand binding sites collected across different PDB structures for
one protein and l for the other. For the Vertex dataset, this amounts to
1,461,668 positive and 102,935 negative pocket comparisons in total.
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Fig. 2. ROC plot with associated AUC values evaluating the performance of pocket
matching algorithms on the TOUGH-M1 test set (40,296 pairs). Standard error, denoted as
se, is measured over ten random splits. The dashed line represents random predictions.

Unlike in TOUGH-M1, where binding sites are obtained from predicted
cavities, the Vertex dataset defines pockets using their bound ligands
directly. Specifically, we define a pocket as all complete protein residues
with any atom falling within 8Å of any ligand atom.

Training and evaluation strategy The network is trained on the whole
TOUGH-M1 dataset. However, to prevent information leakage, we discard
all structures having their UniProt accession number found in the Vertex
dataset as well as 220 PDBs to which no UniProt accession number could
be assigned, resulting in 6,979 structures and 820,140 pairs left for training.
Following Chen et al. (2016), we measure performance with the ROC curve
and corresponding AUC.

Baselines We compare our approach to SiteHopper (Batista et al., 2014),
a structure-based pocket matching method chosen by the authors of
the dataset. SiteHopper is an alignment-based method which represents
binding sites as sets of points describing the molecular surface and nearby
physicochemical features, which are aligned by maximizing the overlap
of point-centered Gaussian functions. We also compare to PocketMatch,
as for the TOUGH-M1 analysis. G-LoSA was omitted from this study
due to running time of hundreds of days on a single processor. Results
for SiteHopper were kindly provided in personal communication by Chen
et al. (2016).

Results The measured ROC curves are shown for the Vertex dataset in
Figure 3. We can see that both SiteHopper (AUC 0.887) and DeeplyTough
(AUC 0.818) achieve good performance on the dataset, while the gap to
PocketMatch is large (AUC 0.604). Importantly, the result indicates that
our method generalizes well across two different methods for defining
binding site geometric centers (computational and ligand-based). These
results also hint that the ground truth pocket similarities in TOUGH-M1
and Vertex are comparable, despite being derived by different protocols.

3.3 ProSPECCTs Datasets

ProSPECCTs (Ehrt et al., 2018) is a collection of ten benchmarks recently
assembled to better understand the performance of pocket matching for
various practical applications. As for the Vertex dataset above, binding
sites are defined by their bound ligands and we include complete protein
residues with any atom that falls within 8Å of any ligand atom.

Training and evaluation strategy The network is trained on the whole
TOUGH-M1 dataset. To prevent information leakage, we discard all
structures having their UniProt accession number found in any of the
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Fig. 3. ROC plot with associated AUC values evaluating the performance of pocket
matching algorithms on the Vertex dataset (6,977 protein pairs). The dashed line represents
random predictions.

ProSPECCTs datasets as well as 220 PDB IDs to which no UniProt
accession number could be assigned, resulting in 6,369 structures
and 715,520 pairs left for training. Following Ehrt et al. (2018), the
performance is measured with ROC curves and the corresponding AUC.

Baselines We compare our approach to a diverse set of 21 pocket matching
methods chosen by the authors of the benchmark, directly reusing their
published results.

Results The measured AUC scores for the ProSPECCTs datasets are given
in Table 2 and compactly visualized in Figure 4.

Dataset P1 evaluates the sensitivity to the binding site definition by
comparing structures with identical sequences which bind to chemically
different ligands at identical sites. Dataset P1.2 measures this exclusively
for chemically similar ligands. By reaching AUCs of 0.96 and 0.97,
respectively, we can conclude that DeeplyTough is fairly robust to varying
pocket definitions, which may be attributed to our stability loss as well as
our data augmentation strategy. In Table 3, we observe that the stability
loss alone is responsible for more than AUC 0.1 difference across multiple
ProSPECCTs datasets. In addition, the box plot in Figure 5 illustrates a
clear distance-dependent distinction between identical and non-matching
binding site pairs, likely a virtue of our margin-based contrastive loss
function.

Dataset P2 assesses the sensitivity to binding site flexibility by
comparing the pockets of Nuclear Magnetic Resonance (NMR) structures
with more than one model in the structure ensemble. DeeplyTough
achieves AUC 0.93, which indicates a slight susceptibility to the
conformational variability of proteins. We believe this could be addressed
by introducing an appropriate data augmentation strategy in the training
process.

Next, two decoy datasets evaluate the discrimination between nearly
identical binding sites differing by five artificial mutations leading to
different physicochemical properties (Dataset P3) or both physicochemical
and shape properties (Dataset P4). Performing at AUC 0.72, DeeplyTough
has some difficulty ranking original binding sites pairs with identical
sequences, higher than pairs consisting of an original structure and a decoy
structure. This suggests that the learned network might be overly robust and
may not pay enough attention to modifications in the sites. When compared
to existing approaches, however, our approach ranks proportionally well as
fifth and eighth, respectively. Moreover, the performance is well correlated
with the number of mutations in the sites (AUC 0.55, 0.63, 0.65, 0.72 and
AUC 0.53, 0.60, 0.66, 0.68 for one to four mutations in Dataset P3 and

Table 2. AUC values for 22 pocket matching methods on each of ten
ProSPECCTs datasets.

P1 P1.2 P2 P3 P4 P5 P5.2 P6 P6.2 P7
Cavbase 0.98 0.91 0.87 0.65 0.64 0.60 0.57 0.55 0.55 0.82
FuzCav 0.94 0.99 0.99 0.69 0.58 0.55 0.54 0.67 0.73 0.77

FuzCav (PDB) 0.94 0.99 0.98 0.69 0.58 0.56 0.54 0.65 0.72 0.77
Grim 0.69 0.97 0.92 0.55 0.56 0.69 0.61 0.45 0.65 0.70

Grim (PDB) 0.62 0.83 0.85 0.57 0.56 0.61 0.58 0.45 0.50 0.64
IsoMIF 0.77 0.97 0.70 0.59 0.59 0.75 0.81 0.62 0.62 0.87
KRIPO 0.91 1.00 0.96 0.60 0.61 0.76 0.77 0.73 0.74 0.85

PocketMatch 0.82 0.98 0.96 0.59 0.57 0.66 0.60 0.51 0.51 0.82
ProBiS 1.00 1.00 1.00 0.47 0.46 0.54 0.55 0.50 0.50 0.85

RAPMAD 0.85 0.83 0.82 0.61 0.63 0.55 0.52 0.60 0.60 0.74
Shaper 0.96 0.93 0.93 0.71 0.76 0.65 0.65 0.54 0.65 0.75

Shaper (PDB) 0.96 0.93 0.93 0.71 0.76 0.66 0.64 0.54 0.65 0.75
VolSite/Shaper 0.93 0.99 0.78 0.68 0.76 0.56 0.58 0.71 0.76 0.77

VolSite/Shaper (PDB) 0.94 1.00 0.76 0.68 0.76 0.57 0.56 0.50 0.57 0.72
SiteAlign 0.97 1.00 1.00 0.85 0.80 0.59 0.57 0.44 0.56 0.87

SiteEngine 0.96 1.00 1.00 0.82 0.79 0.64 0.57 0.55 0.55 0.86
SiteHopper 0.98 0.94 1.00 0.75 0.75 0.72 0.81 0.56 0.54 0.77

SMAP 1.00 1.00 1.00 0.76 0.65 0.62 0.54 0.68 0.68 0.86
TIFP 0.66 0.90 0.91 0.66 0.66 0.71 0.63 0.55 0.60 0.71

TIFP (PDB) 0.55 0.74 0.78 0.56 0.57 0.54 0.53 0.56 0.61 0.66
TM-align 1.00 1.00 1.00 0.49 0.49 0.66 0.62 0.59 0.59 0.88

DeeplyTough 0.96 0.97 0.93 0.72 0.72 0.66 0.61 0.59 0.59 0.80
rank 7-10 12-14 11-13 5 8 6-9 8-9 8-9 13-14 8-9

P4, respectively), consistent with the intuition that pockets that have been
more heavily mutated should be easier to differentiate.

A further two datasets contain sets of dissimilar proteins binding to
identical ligands and cofactors. Datasets P5 and P5.2 have been compiled
by Kahraman et al. (2007) and contain 100 structures bound to one of ten
ligands (excluding and including phosphate binding sites, respectively).
Datasets P6 and P6.2 contain pairs of unrelated proteins bound to identical
ligands, assembled by Barelier et al. (2015) (excluding and including
cofactors, respectively). Our method scores better on the kahraman dataset
(AUC 0.66) than on unrelated proteins (AUC 0.59), consistent with reports
that the kahraman dataset represents an easy benchmark since the chosen
ligands may be distinguished solely by their sizes (Hoffmann et al., 2010).

Finally, Dataset P7 is a retrieval experiment measuring the recovery
of known binding site similarities within a set of diverse proteins.
DeeplyTough reaches AUC 0.80 (average precision 0.44), which places
among the best performing half of the baseline approaches.

In summary, our method performs consistently well across
ProSPECCTs datasets although it does not attain the best performance
for any individual task. For practical applications, we suggest these results
support the use of DeeplyTough as a fast basic universal tool, rather than
a specialist one.

Running time In addition, Ehrt et al. (2018) published the running times for
each algorithm on Dataset P5 (100 pockets and 10,000 comparisons). The
runtime for DeeplyTough is 206.4 seconds in total, where the preprocessing
with AutoDock 4 (Morris et al., 2009) and HTMD (Doerr et al., 2016)
requires 191.4 seconds (serialized on a single CPU core) and the descriptor
computation and comparison takes 15 seconds on an Nvidia Titan X.
This makes ours the fourth fastest approach in the benchmark, behind
PocketMatch, RAPMAD, and TM-align. SiteHopper is a slower approach
with a total runtime of 3982.6 seconds (17th of the ProSPECCTs baseline
methods). For DeeplyTough, we expect that even further reduced runtimes
may be achieved through full parallelism of the initial preprocessing.

Protein binding site space T-distributed Stochastic Neighbor Embedding
(t-SNE) (Maaten and Hinton, 2008) can be used to visualize the
learned descriptor space obtained by DeeplyTough. Figure 6 shows the
embeddings of pockets in Dataset P1 colored by their UniProt accession
numbers. For the most part, protein pockets derived from the same
protein family are clustered together, suggesting that the network embeds
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non-matching binding sites of structures with identical sequences (ProSPECCTs Dataset
P1).

similar pockets close to each other in the descriptor space. Similar
conclusions can be drawn for protein pockets derived from the Vertex
dataset in Figure 7, wherein pockets are colored by their respective top-
level SCOPe classifications (Fox et al., 2013). These embeddings suggest
that DeeplyTough can be useful for large-scale analyses of protein binding
site space (Meyers et al., 2016).

3.4 Training Data Ablation

Deep learning models are proverbially known to require large amounts
of data for training. To provide an insight into the dependence of
DeeplyTough on the large scale of the TOUGH-M1 dataset, we experiment
by artificially limiting the training dataset size using two approaches,
in both cases validating on ProSPECCTs as an independent set. For
simplicity, all training and network hyperparameters are kept fixed.

First, we investigate restricting the number of relationships the network
is allowed to see. Thus, pairs of random subsets of size between 1,000 and
100,000 are sampled from the positive and negative set of pocket pairs
present in the original training set. The results shown in the upper part of
Table 3 suggest the network does not strongly suffer from the removal of
training data in this way, even if the training set is smaller by two orders
of magnitude. We expect the likely cause of this is that even for a reduced
training set of only 2,000 pairs, the effective number of structures is still
relatively high (about 2,200 PDBs).

Hence, we look into constraining the pocket variability in the data.
Random subsets of size varying between 1,000 and 3,000 are sampled
from the original 6,369 structures available for training and only pairs
lying within these subsets are retained. The results shown in the bottom

Table 3. The effect of training dataset size, expressed by the amount of positive
and negative binding site pairs as well as unique PDB structures, and of stability
loss measured in AUC values on each of ten ProSPECCTs datasets, with
standard error if sensible.

P1 P1.2 P2 P3 P4 P5 P5.2 P6 P6.2 P7

2 × 100k pairs
0.93 0.98 0.90 0.70 0.66 0.67 0.62 0.54 0.54 0.80
± 0.01 ± 0.00 ± 0.00 ± 0.01 ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.01

2 × 10k pairs
0.94 0.97 0.90 0.71 0.71 0.65 0.61 0.57 0.57 0.79
± 0.00 ± 0.00 ± 0.00 ± 0.02 ± 0.00 ± 0.01 ± 0.00 ± 0.04 ± 0.03 ± 0.00

2 × 1k pairs
0.90 0.93 0.82 0.67 0.66 0.64 0.60 0.61 0.60 0.80
± 0.00 ± 0.02 ± 0.01 ± 0.01 ± 0.01 ± 0.00 ± 0.00 ± 0.02 ± 0.02 ± 0.01

3k structures
0.93 0.94 0.83 0.71 0.70 0.64 0.59 0.59 0.60 0.75
± 0.01 ± 0.01 ± 0.00 ± 0.00 ± 0.02 ± 0.02 ± 0.01 ± 0.00 ± 0.00 ± 0.00

2k structures
0.93 0.93 0.82 0.68 0.66 0.60 0.57 0.58 0.58 0.67
± 0.00 ± 0.00 ± 0.02 ± 0.01 ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.01

1k structures
0.73 0.78 0.68 0.59 0.61 0.56 0.54 0.50 0.49 0.59
± 0.06 ± 0.06 ± 0.03 ± 0.01 ± 0.02 ± 0.00 ± 0.00 ± 0.06 ± 0.06 ± 0.01

no stability loss 0.85 0.82 0.80 0.61 0.57 0.62 0.57 0.61 0.61 0.73
proposed method 0.96 0.97 0.93 0.72 0.72 0.66 0.61 0.59 0.59 0.80

part of Table 3 indicate that the performance starts to severely deteriorate
once the number of structures drops below 2,000, even if this corresponds
to about 70,000 induced pairs. Therefore, we may conclude that for our
method, pocket diversity in the data is relatively more important than the
number of ground truth relationships. This observation suggests that it may
be appropriate to construct new pocket matching datasets using as many
structures from the PDB as possible, even if relatively few pocket pairs are
defined.

Finally, we reverse the settings and train on ProSPECCTs while
validating on the TOUGH-M1 and Vertex datasets (training on 77,665
pairs over 1,395 structures for the former and on 30,175 pairs over 1,246
structures for the latter). This results in major degradation of AUC scores,
0.740 on TOUGH-M1 (versus 0.933 when training on TOUGH-M1) and
0.709 on the Vertex dataset (versus 0.817). To summarize, it appears that
the large scale of TOUGH-M1 is a necessary condition for our method
to perform well. However, we expect pre-trained DeeplyTough to be
amenable to successful fine-tuning for smaller task-specific datasets.

4 Conclusion
In this work we have proposed a deep learning-based approach for pocket
matching. DeeplyTough encodes the 3D structure of protein binding sites
using a CNN into descriptors such that the similarity between binding sites
is reflected in the Euclidean distances between their descriptors. Once a
set of descriptors is computed, pocket matching is simple and efficient,
without any alignment operation taking place. In a thorough evaluation on
three benchmark datasets, we have demonstrated excellent performance
on held-out data coming from the training distribution (TOUGH-M1) and
competitive performance when the trained network needs to generalize
to independently constructed datasets (Vertex, ProSPECCTs). We have
taken advantage of several recent innovations such as rotationally and
translationally invariant CNNs, data augmentation and the inclusion of
an explicit stability loss function to encourage robustness of the network
with respect to nuisance variability of the input. Overall, we expect trained
methods for pocket matching to remove the bias associated with intuition-
based featurization schemes, and also enable effective large scale binding
site analyses.

Having presented one of the first trainable methods for pocket
matching, there are many exciting avenues of future research. Exploring
different methods for obtaining supervision is perhaps the most promising
direction. For example, binary labels could be replaced with continuous
labels based on chemical similarity of ligands. In addition, the problem
could be cast as multiple-instance learning in order to use protein-
level similarity coming from assays as a form of weak supervision.
Another direction is to investigate other input representations, such as
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Fig. 7. 2D t-SNE visualization of descriptors of binding sites in the Vertex dataset, labeled
by the top-level SCOPe class of their proteins.

graphs or surfaces. Finally, experiments with various model explainability
techniques will be important for giving practitioners insights into the
currently rather black-box nature of the algorithm.
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