
Boukouvalas et al.

OscoNet: Inferring oscillatory gene networks
Alexis Boukouvalas1*, Luisa Cutillo2, Elli Marinopoulou1, Nancy Papalopulu1 and Magnus Rattray1

Abstract

Motivation: Oscillatory genes, with periodic expression at the mRNA and/or protein level, have been shown
to play a pivotal role in many biological contexts. However, with the exception of the circadian clock and cell
cycle, only a few such genes are known. Detecting oscillatory genes from snapshot single-cell experiments is a
challenging task due to the lack of time information. Oscope is a recently proposed method to identify
co-oscillatory gene pairs using single-cell RNA-seq data. Although promising, the current implementation of
Oscope does not provide a principled statistical criterion for selecting oscillatory genes.

Results: We improve the optimisation scheme underlying Oscope and provide a well-calibrated non-parametric
hypothesis test to select oscillatory genes at a given FDR threshold. We evaluate performance on synthetic
data and three real datasets and show that our approach is more sensitive than the original Oscope
formulation, discovering larger sets of known oscillators while-avoiding the need for less interpretable
thresholds. We also describe how our proposed pseudo-time estimation method is more accurate in recovering
the true cell order for each gene cluster while-requiring substantially less computation time than the extended
nearest insertion approach.

Conclusion: OscoNet is a robust and versatile approach to detect oscillatory gene networks from snapshot
single-cell data addressing many of the limitations of the original Oscope method.

Keywords: single-cell; Network analysis; Non-parametric hypothesis test

Background
Oscillating genes are expressed in a periodic manner
leading to alternating appearance and disappearance
of the corresponding mRNA and protein. Oscillatory
genes have been shown to play a pivotal role in many
developmental processes, by enabling individual sys-
tems to implement diverse functions [11]. To iden-
tify oscillatory genes a combination of time-lapse mi-
croscopy techniques and fluorescent reporter genes is
required, which prohibits the assaying of a large num-
ber of potential oscillators. In turn, this limits the abil-
ity of the experimenter to uncover novel oscillators.

Recent developments in single-cell transcriptomics
provide the potential to capture genome-wide tran-
scriptional events. However, single-cell RNA-seq ex-
periments, even when done as time series, pose chal-
lenges associated in identifying oscillating genes be-
cause cells may be asynchronous in vivo or may lose
synchronisation in the time required for sample prepa-
ration and sequencing.

To overcome these problems, Leng et al. [10] have
proposed a computational approach to identify oscil-
lating genes in static, unsynchronised scRNA-seq ex-
periments. They construct a parameterised distance
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between pairs of putative oscillating genes which is
minimised for co-oscillating pairs that have the same
temporal profile but different phase. Their approach
allows gene-pairs to be ranked by how close they are
according to this co-oscillation distance. However, they
do not provide a statistical test to decide which gene
pairs are oscillatory.

In this contribution, we provide a well-calibrated
hypothesis test which allows us to remove the less
interpretable cut-off in the first step of the Oscope
pipeline [10]. We do this by selecting gene-pairs accord-
ing to a false discovery rate (FDR) cut-off. Our non-
parametric bootstrap approach requires us to optimise
the gene-pair distance many times, and therefore we
have implemented an efficient optimisation algorithm
to minimise the gene-pair distance function. We then
construct an undirected network of co-oscillating genes
based on all gene-pairs which pass the FDR threshold.
Community extraction and network analysis methods
can then be used to identify statistically significant
co-oscillating groups of genes. We also discuss three
distinct statistical tests that can be employed to as-
sess the significance of different aspects of the inferred
network communities, namely community distinctive-
ness and enrichment, in terms of both genes (graph
vertices) and their co-oscillations (graph edges). We
conclude with a description of a simple method to in-
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fer pseudo-time for each gene community, inferring a
cyclical ordering on a low-dimensional projection.

Review of the Oscope method
The Oscope method [10] uses a paired-sine model and
K-medoids clustering to identify groups of oscillatory
genes. For each oscillatory group, an extended near-
est insertion algorithm is used to construct the cyclic
order of cells, defined as the order that specifies each
cell’s position within one cycle of the oscillation of that
group [1]. The method requires normalised gene ex-
pression and the use of only high mean, high variance
genes is recommended [1].

The method relies on the computation of a pair-
wise gene expression similarity. Let two genes be X =
sin (ωt+ φ) and Y = sin (ωt+ φ+ ΨXY ), that is they
have identical profiles except for a phase shift ΨXY .
For N cells the co-oscillation distance is d (X,Y |ΨXY ):

N∑
s=1

[
Y 2
s +X2

s − 2YsXs cos (ΨXY )− sin2 (ΨXY )
]

(1)

The derivation is provided in the supplementary mate-
rial (Section 3). The assumed sinusoidal form is not a
major restriction, given that the time t is not required
in the co-oscillation distance[1]. This is the crucial step
in the algorithm as it allows the gene-pair similarity to
be estimated without knowledge of the pseudo-time.

A limitation of this approach is that the cell pop-
ulation is assumed to be homogeneous. Including cell
populations that are not relevant to the process under
investigation will result in reduced accuracy as the co-
oscillation distance will be averaged across both infor-
mative and non-informative cells. We therefore recom-
mend irrelevant cell populations are removed prior to
the application of the Oscope and OscoNet methods.
This can be accomplished by visualisation and clus-
tering methods such as t-SNE and k-means to identify
cell populations and using gene markers or other in-
formation to characterise each cell cluster.

In the original Oscope approach, only genes that ap-
pear in the top T% of the ranked pairwise similarity
list are selected for the subsequent K-medoids clus-
tering step. The choice of T can have a significant
impact on downstream analysis. However, the opti-
mal choice of T is not obvious and will likely differ
depending on characteristics of the data, e.g. number
of co-oscillatory pairs, technical/biological noise levels,
number of cells in the dataset etc. In our work, we in-
stead propose to use a well-calibrated non-parametric
test to select gene-pairs with a given false discovery

[1]Intuitively, any monotonic transformation of time
will not alter the value of the objective function.

rate (FDR). Genes that contribute to these gene-pairs
are then selected for further downstream analysis.

A further limitation of the Oscope approach is that
genes which are linearly correlated cannot be disam-
biguated from genes pairs with 0 or π phase shift.
Therefore a heuristic is used to remove clusters that
have a high proportion of similarities with 0 or π phase
shift.

Finally, the extended nearest insertion (ENI) algo-
rithm is used to estimate pseudo-time per gene cluster.
The use of the ENI algorithm is not critical to the algo-
rithm and can be replaced by a computationally more
efficient probabilistic approach as we describe below.

Methods
Our overall approach is summarised in Figure 1. Fol-
lowing a quality control step (see Appendix), we pro-
pose three main phases, namely: building a network of
gene co-oscillations using a non-parametric hypothesis
test, identify the statistically significant communities
in the resulting network and infer pseudo-time for each
gene community.

Non-parametric test on co-oscillation
The key insight in the Oscope algorithm is that a gene-
pair oscillation score can be defined without requiring
a prior estimation of pseudo-time. Rather than speci-
fying a threshold on the number of genes to keep, here
we develop a non-parametric hypothesis test to assess
the significance of two genes co-oscillating.

We employ a bootstrap approach which randomly
permutes the order of cells for one of the genes in the
gene-pair distance estimation in order to perform a sta-
tistical test. The cell index is permuted for one gene in
a pair and we calculate the resulting pairwise gene sim-
ilarity d (X,P (Y ) |ΨXY ) (recall Equation (1)) where
P (Y ) is the permuted cell order for gene Y . For each
randomisation, we estimate the phase shift by min-
imising the pairwise distance,

dperm = min
ΨXY

d (X,P (Y ) |ΨXY ) . (2)

The p-value estimate for the gene pair XY is the frac-
tion of times dperm < d. Specifically for B randomisa-
tions the bootstrap p-value is

p-valueXY =
1

B

B∑
i=1

I
(
diperm < d

)
, (3)

where diperm the ith randomisation, d = d (X,Y |ΨXY )
the unpermuted pairwise distance and I(.) the indica-
tor function, which is 1 when the inequality is true and
0 otherwise.
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Figure 1 Overall approach: A statistical test is used to identify co-oscillatory gene-pairs at a given FDR threshold. Genes
contributing to these gene-pairs are included in a co-oscillation network. The q-value from our co-oscillation test provides an
estimate of the number of false links in this network. We can then identify communities in this network and infer the pseudo-time
assciated with each community.

In our approach we need to correct for the effect of
multiple hypothesis tests since we are testing many
gene-pairs. We have selected to use the q-value ap-
proach of [18] which controls for the false discovery
rate (FDR). The simple Bonferroni correction is too
conservative in the case of very large numbers of tests
and is also based on an unrealistic assumption that
tests are independent. The q-value is an adjustment
of the traditional p-value where the FDR is minimised
based on the distribution of the p-values across all the
tests performed. The q-value is an estimate of the FDR
at a given p-value threshold obtained from modelling
background (null) and signal contributions to the p-
value distribution. This approach does not assume in-
dependent tests and has been shown to perform well
in applications with very large numbers of tests. The
q-value provides an estimate of the number of false
edges in our co-oscillation network.

As the bootstrap approach is computationally de-
manding, we have expressed the distance measure us-
ing matrix operations and we provide an efficient im-
plementation. We have implemented the bootstrap test
in Python using NumPy vector operations and we have
also implemented a faster version in Cython, which al-
lows C code to be called from Python. A performance
comparison of the different implementations is given
in Figure 2 wherein we compare our implementation
of the pairwise distance calculation (NumPy, Cython)

to the standard Oscope [10] R implementation. As all
three implementations are able to leverage multi-core
parallelism, our test is performed across 12 CPU cores.
We see that both Numpy and Cython are substantially
faster than the iterative R version which uses the Os-
cope bioconductor package. The Numpy and Cython
implementations achieve an average speed-up of 6.5
and 93 respectively. The significant performance im-
provement allows for the practical use of the bootstrap
algorithm. The computational penalty for a fully non-
parametric significance test is therefore minimised.

Network analysis
We use the gene-pair test to construct a network of
genes in which connections denote statistically signifi-
cant co-oscillation. In the network setting, a variety of
algorithms have been developed to extract communi-
ties within the entire network. The problem of commu-
nity detection, or graph partitioning, in a network has
been widely studied in a variety of research fields. In
the present work we consider community extraction al-
gorithms based on maximising modularity, a measure
of community distinctiveness. The modularity, often
referred to as Q, was defined by Newman and Girvan
[13] as the fraction of the edges that fall within a given
groups of nodes (community partition) minus the ex-
pected fraction if edges were distributed at random.
The concept of modularity is based on the idea that a
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Figure 2 Performance comparison of different Oscope implementations on computing the pairwise oscillating distance. Vertical axis
is elapsed time in seconds and horizontal axis is number of genes (G). Standard Oscope Leng et al. [10] is an R implementation. All
methods use 12 cores and the minimum elapsed time from 2 runs is reported.

random graph is not expected to have a cluster struc-
ture. In the Synthetic study section, we compare three
popular community extraction algorithms[2], namely:
walktrap [14], fast-greedy [3] and infomap [16], and
find the walktrap algorithm to be the most robust.

Once our network is estimated, it is still a complex
network and we need to take a sense out of it. A com-
mon approach to address this issue is finding an under-
lying community structure, if it exists [6]. The identi-
fied Communities will allow us to create a large scale
map of our network [4]. We aim to use individual
communities to shed light on the function of the co-
oscillation represented by the network itself. Indeed, in
biological networks, communities often correspond to
functional units of a system. For example in metabolic
networks [9], such functional groups correspond to cy-
cles or pathways whereas in the protein-protein inter-
action networks [7], communities correspond to pro-
teins with similar functionality inside a biological cell.

To assess significance of each community, we em-
ploy three statistical tests that examine different as-
pects of the community structure. Firstly we apply a
Wilcoxon test to compare the distribution of edges in-
side each community to the distribution of edges that
have crossed the community boundary, i.e. one node
connected within the community and the other with-
out. This tests allows to assess how well-defined a com-
munity is and complements the maximisation of the
modularity objective during the community extraction
stage.

We then validate our results cross-referencing with a
list of known oscillating targets. To this end, for each

[2]These are available in the R package igraph.

identified community, we perform a set of gene enrich-
ment tests with respect to Cell Cycle (CC) related
genes (Gene Ontology term GO:0007049). Firstly, we
test each community for standard gene enrichment us-
ing a hypergeometric test; this test checks whether the
genes in every single community are significantly en-
riched in the list of CC related genes. However this
test only considers membership to a community and
does not take into account the within community con-
nections corresponding to gene co-oscillations. For a
more stringent test we also employ a network enrich-
ment test [17]. For every community that contains
CC related genes, we are performing a network enrich-
ment test between two lists of genes, namely: list A
- the list of CC related genes in the community, list
B - the list of all the genes in the community. This
test aims at looking at the connection between our
target genes to see if their links are statistically signif-
icant, hence if there is an enrichment. The main idea
behind this test is that, under the null hypothesis of
no enrichment, the number of links between two gene
sets A and B follows an hypergeometric distribution.
This test considers the connectedness among CC re-
lated genes within a single community. Therefore it
may be more stringent than the hypergeometric test,
given that CC enriched communities where the related
CC genes are only connected through intermediaries
are not found to be directly co-oscillating. In our re-
sults, we show the validation of communities in terms
of the Wilcoxon test and the CC enrichment in terms
of network enrichment test [17].

We also introduce an index, community density, ex-
pressing the fraction of the actual number of edges in a
community with respect to the total number of edges
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in the network. We also provide a relative community
density, defined as the fraction of edges in a commu-
nity given the maximum number of edges feasible in a
community of that size.

Pseudo-time estimation
We use Laplace Eigenmaps [2] to reduce the gene ex-
pression space to a two dimensional latent representa-
tion. Laplace Eigenmaps, also known as spectral em-
bedding, is a non-linear dimension reduction method
using a spectral decomposition of the graph Laplacian
to preserve local distances in the gene expression space.
The method is fast to compute as it involves a partial
eigenvalue decomposition of a sparse graph matrix,
namely the graph Laplacian. Further, the minimisa-
tion problem has a unique solution and therefore does
not suffer from local minima. As Belkin and Niyogi
[2] discuss, the method is robust to outliers and noise
as only local distances are used to estimate the neigh-
bourhood graph.

The method consists of
1 Graph Construction: create sparse adjacency ma-

trix A using n nearest neighbours.
2 Graph Laplacian Construction: L = D−A, where

D is the degree matrix, the number of edges at-
tached to each vertex.

3 Partial Eigenvalue Decomposition. Find top-Q
eigenvalues of sparse matrix where Q is the di-
mensionality of the latent space. In our case this
is always Q = 2.

The critical parameter in the algorithm is n, the
number of nearest neighbours. Our pseudo-time es-
timation algorithm consists of a search on a grid of
values specified by a minimum m and maximum value
M . For n ∈ {m, . . . ,M}:
1 Compute Laplacian eigenmap on 2 dimensions.
2 pseudo-time: compute angle in radians [−π, π] by

arc tangent. Convert to [0, 1].
The latter step imposes a periodic constraint on the
pseudo-time: pseudo-time is defined as the angle of a
cell in a circle.

To select the best value for the number of neighbours
n, we apply a probabilistic periodic model to assess
each pseudo-time for all genes in the cluster. We em-
ploy a Bayesian Gaussian process latent variable model
[20] with a one-dimensional periodic kernel. All hy-
perparameters are optimised except the pseudo-time.
We use 25 inducing points to ensure efficient optimisa-
tion and calculation of the model likelihood. We then
use the marginal model likelihood to select the best
pseudo-time and the number of neighbours n.

Results
In order to validate our overall approach and compare
to the original results in [10], we evaluate the ability

of OscoNet to identify oscillating groups of genes by
applying it both to synthetic data, a microarray time-
series study of oscillating genes [21] and to the profiles
of single undifferentiated human embryonic stem cells
(hESCs) [19]. For the biological data, we evaluate the
enrichment of the discovered clusters with respect to
the Gene Ontology Cell Cycle (CC) biological process
related genes (Gene Ontology term: 0007049).

Synthetic study
We generate a synthetic dataset of 1,000 genes and 100
cells following the setup in Leng et al. [10]. We simulate
1000 genes of which 180 are samples from a sinusoidal
function with additive Gaussian noise. The 180 oscil-
lators are simulated in 3 frequency groups, each group
containing 60 genes. The relative frequencies of the 3
groups are proportional to 2:3:6.

For each group, genes were further simulated having
strong and weak signals. Half of the oscillatory genes
were simulated as strong oscillators with noise variance
σ2 . The other half were simulated as weak oscillators
with σ2

wk = (2σ)2 . The starting phase Φ varies in dif-
ferent genes within a frequency group. The remaining
genes were simulated as independent Gaussian noise.

Hypothesis test
We calculate the false discovery rate on all gene pairs,
defined as:

FDR =
F

S
. (4)

where S is the estimated number of significant gene
pairs and F the number of false positive pairs. This is
a more stringent criterion than in [10] where the num-
ber of oscillating genes was used and not co-oscillating
pairs.

The accuracy of the non-parametric test with dif-
ferent number of bootstrap samples and the original
Oscope method is shown in Figure 3 (a) for noise level
of σ2 = 0.05. When considering higher noise levels the
results are similar (see supplementary). When a very
small number of bootstrap samples is used (B = 100)
the test is not well-calibrated. However when the num-
ber of samples is increased the bootstrap test better
approximates the true FDR.

However in all cases, we observe an elbow effect when
decreasing the desired level of FDR. At a certain point
of significance, the observed FDR is not further re-
duced as we decrease the desired FDR. This occurs at
increasingly smaller thresholds as the number of boot-
strap samples is increased. However we suspect that
the number of cells and the variability of gene expres-
sion also play a role; when increasing the number of
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Figure 3 False discovery rate (FDR) for the synthetic study. The synthetic data was generated using noise variances
σ2 = [0.05, 0.1, 0.2, 0.3, 0.4]. Vertical axis is achieved FDR and horizontal axis the significance level used. Plot (a) gives the FDR for
noise level σ2 = 0.05 for different number of bootstrap samples and the Oscope method for different cut-offs. Plot (b) compares the
effect of different noise levels on the FDR of the bootstrap hypothesis test using 2000 samples. Magnus: put achieved FDR on
y-axes and q-value on x-axese here

cells for instance, statistical power is expected to in-
crease as we get higher resolution on the tails of the
null distribution. Another factor is the amount of noise
in the data as is demonstrated in Figure 3 (b) where we
show the effect of different noise levels on the threshold
value of the elbow after which no improvement in FDR
is observed. As the noise level decreases, the statistical
test is able to achieve lower FDR.

A possible improvement on our test would be to in-
troduce an explicit model for the tails of the null dis-
tribution. Such a semi-parametric bootstrap approach
would allow for lower achievable FDR levels as long as
the modelling assumptions are accurate.

The poor performance of standard Oscope can be un-
derstood by the nature of the threshold used. At the
lowest noise level (0.05) the method correctly iden-
tifies all the co-oscillating gene pairs at the default
5% threshold achieving a perfect true positive rate
(TPR = 1.0) as does the OscoNet hypothesis test.
However the former gets a false positive rate of 10%
(FPR = 0.10) while the latter achieves a lower rate of
0.1% (FPR = 0.001). The resulting FDR for Oscope
is 0.91 and for OscoNet is 0.09 reflecting the high-
est sensitivity of the latter. The large FPR achieved
by Oscope demonstrates the deficiency of setting such
a threshold. In the supplementary (Section 1), we
present the FDR, FPR and TPR achieved across all
noise levels.

Note that a bootstrap test is implemented in the Os-
cope pipeline after the clustering step to flag clusters
that should be removed prior to downstream analy-
sis. As this test is applied after the threshold of the
top ranked pairs of genes, the choice of threshold has
significant impact on the results. In addition, by ap-
plying the bootstrap test on the cluster level, an entire

cluster is either kept or removed whereas our approach
maintains all significant gene pairs. We argue our ap-
proach is logically more coherent, since the clustering
should be applied on only significant gene pairs rather
than testing for significance after the clustering is com-
pleted.

Comparing community extraction methods
In order to validate our approach, we want to find
densely connected subgraphs, also called communi-
ties, in the constructed synthetic graphs. To this aim
we compare three well known network clustering al-
gorithms available in the R package igraph, namely:
walktrap, fastgreedy and infomap. In walktrap the
communities are assigned via random walks [14]. The
idea is that short random walks tend to stay in
the same community. In fastgreedy, the communi-
ties are estimated via directly optimising a modularity
score [3]. On the other end, infomap aims to find a
community structure that minimises the expected de-
scription length of a random walker trajectory [16].
We refer to the original papers for a detailed descrip-
tion. In an ideal case, true simulated oscillating genes
should be clustered in the same community. For each of
the five noise levels, as defined in the Synthetic study
section , and for each one of the three community de-
tection algorithms, we compare the recovered network
partition to the true underlying one computing the
Adjusted Rand index (ARI). This measure is a scalar
comparing two partitions on the same network. The
ARI index, first introduced in Hubert and Arabie [8],
has zero expected value in the case of random parti-
tion, and it is 1 in the case of perfect agreement be-
tween two partitions. As depicted in Figure 4, the in-
dex decreases when the level of noise increases and the
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most stable results are achieved by the walktrap algo-
rithm. We therefore select the walktrap as the com-
munity extraction method in the clustering step of our
overall approach.

cDNA microarray time course
We applied OscoNet to a microarray time-series study
of oscillating genes studied in [21].

Following Leng et al. [10], we use experiment 3 from
the original study [21] where double thymidine block
was used to synchronise HeLa cells which were profiled
at 48 time points following synchronisation. We start
with a set of 41508 transcripts containing 1134 cell
cycle (CC) oscillators [21]. This corresponds to a set
of 9559 genes containing 874 oscillating genes [21].

We filter transcripts using variance based filtering
with a cut-off of 0.9 [5] This results to 4151 probes con-
taining 360 CC oscillators. This filtering step is more
stringent than the default test on mean and variance of
expression used in the Oscope paper. This filtering step
also ensures that the set of transcripts we consider does
not include high error measurements and includes the
most informative genes only. In both cases, the data is
normalised to [-1, 1].

Finally, we identify a total of 3884 genes that have
at least one significant co-oscillation where the total
number co-oscillations is 185,548. This corresponds to
a highly sparse network; specifically the sparseness is
0.0123 calculated as the ratio of the number of extant
network edges to the maximum number possible. All
the 60 CC oscillators are present in the network.

In the following, we summarise the results when ap-
plying the standard Oscope approach or respectively
our approach. The Oscope approach was applied to the
exact same data using the same normalisation. We ap-
ply the standard paired sine model and only gene pairs
with similarity score in the top 5%. This corresponds
to the default setting recommended in Oscope. We ap-
ply K-medoids with the maximum number of clusters
set to K = 5. Finally, we remove clusters flagged by
Oscope as having mostly linear effects.

The application of standard Oscope led to the iden-
tification of two significant clusters of transcripts: one
of size 72, of which 70 are cell cycle related and one of
size 136 respectively, of which 13 are cell cycle related.
We note that no clusters were removed by the linear
filtering step of the Oscope pipeline.

The application of OscoNet to the same dataset led
to the identification of 5 significant clusters, according
to the Wilcoxon test (significance α = 0.01) described
in the previous section. Singleton communities with a
single gene are excluded.

In Table 1 we show all the significant clusters ac-
cording to the Wilcoxon test ranked by the relative

density. Of these 5, 3 have at least one CC transcript.
Of those 3, only 1 is enriched according to the NEAT
and hypergeometric tests with α = 0.01.

The only CC enriched community has 239 CC genes
out of 265 and is the second-ranked community as
per relative density. This community is well-separated
from the network and is enriched in CC from both en-
richment perspectives, namely traditional enrichment
in terms of genes and the network interconnections be-
tween the CC genes present in the community.

Importantly, this community includes the 70 CC re-
lated transcripts identified as co-oscillating by Oscope.
Therefore this community is a more detailed and richer
description of the CC processes than that uncovered
by Oscope.

Pseudo-time
We evaluate the performance of the extended nearest
insertion (ENI) method of [10] and spectral methods
on estimating pseudo-time. We run the ENI method
using 30000 iterations, with a sliding polynomial of de-
gree 3 and 4 starting points for the polynomial fitting.
The pseudo-time order is not changed after approxi-
mately 6500 iterations in our experiments even when
setting the maximum number of iterations to 100k.
The ENI algorithm took on average 5-7 hours in our
experiments while the spectral method takes less than
1 minute including the time to search over the param-
eter space. This makes the method very easy to use in
practice in addition to the superior performance which
we now discuss.

We assess the performance of the method when
trained on the 72 gene cluster defined by Oscope and
the 265 gene cluster defined by OscoNet. We also eval-
uate the performance of the pseudo-time on both of
these clusters.

The dimensionality reduction and circle estimate by
the spectral method for the two gene clusters is shown
in Figure 5. In both cases the cells can be well de-
scribed by a circular path in the 2-D latent space pro-
jection of the data.

Our main validation measure is the Spearman corre-
lation of the estimated peak times in the reconstructed
gene expression to the ground truth (Table 2). The
ground truth has been constructed by folding the time
series in Whitfield et al. [21] along every period. ENI
provides consistently poor results despite the large it-
eration count (30k iterations). The spectral method is
simple and provides good results. It can also be easily
extended in an intuitive manner to cover more com-
plex cases - see the Discussion section. Comparing the
pseudo-time achieved by the different clusters using
the spectral method, we note that using the larger
gene cluster identified by OscoNet (265 genes) results
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Figure 4 Comparison of three clustering algorithms on the synthetic network. For each method the Adjusted Random Index (vertical
axis) is provided at different noise levels (horizontal axis).

Size CC Density Relative Density Neat hypergeometric
27 0 0.00 0.44 N/A N/A

265 239 0.08 0.41 < 1e− 6 < 1e− 6
1157 99 0.80 0.22 0.28 0.83
131 0 0.01 0.17 N/A N/A
82 1 0.00 0.11 1.00 1.00

Table 1 Microarray data: Relative ratio refers to the percentage of CC transcripts in the community.
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(b) OscoNet cluster 265 genes

Figure 5 Microarray data: spectral dimensionality reduction trained on the two different clusters. Each cell-dot is coloured by the
true base cycle stage. Axis denote the two latent dimensions estimated using the spectral method.
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in a more accurate pseudo-time. This is reflected in
the higher peak time rank correlation; the larger clus-
ter estimated by OscoNet is more informative on the
true time compared to the smaller cluster estimated
by Oscope. In the supplementary (Section 2), the esti-
mated and actual peak times for each gene are shown.

Predicting cluster peak time
Method Training 72 265

Spectral
72 0.94 0.81

265 0.99 0.83

ENI
72 0.17 0.28

265 -0.19 0.14
Table 2 Microarray data: spearman rank correlation of peak
times.

We also report on the roughness measure of the true
time series and the reconstructed version. This en-
capsulates how smooth a time series is by comparing
neighbouring values with smaller values corresponding
to a smoother time series; see Appendix for details. In
Table 3 we report the difference of the median rough-
ness of the estimated pseudo-time and true time. Over-
all the ENI results in an increase in the roughness mea-
sure while the Spectral method results in lower values
reflecting smoother time courses. The spectral method
achieves similar performance under both the smaller
Oscope cluster (72 genes) and the larger OscoNet clus-
ter (265). Therefore the differences reported above in
peak time accuracy are not caused by smoother time
courses.

Predicting gene set
Method Training 72 265

Spectral
72 -0.20 -0.09

265 -0.19 -0.10

ENI
72 0.50 0.38

265 0.56 0.39
Table 3 Microarray data: change in median roughness.

In Figure 6 we show the gene expression for three
genes using the experimental time. In Figures 7 we
show the reconstructed base cycle and estimated gene
expression. The pseudo-time methods have been esti-
mated using the larger OscoNet cluster. As expected,
the ENI profiles are poor due to the poor pseudo-time
estimate. The spectral pseudo-time is anticorrelated
and therefore provides a mirror image of the true time
series profile.

Single-cell embryonic stem cells
To evaluate OscoNet on scRNA-seq data, we analysed
profiles of single undifferentiated human embryonic
stem cells (hESCs) as described in [19]. In particular,
we analysed three replicate scRNA-seq experiments on
H1 hESCs, with a sample size n = 213.

We apply our method to n = 213 samples with G =
2375 genes following the same steps as [10] in terms of
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Figure 6 Microarray data: oscillatory gene expression for
CDC6, PLK and CCNE1 genes. The true cyclical expression is
shown. The length of the base cycle is highlighted in blue
background.

quality control. In particular, genes have been filtered
by mean level and variance as in Leng et al. [10]. A
total of 1914 genes have at least one significant co-
oscillation with 5057 co-oscillatory pairs found. The
sparseness value for the network is 0.001, an order of
magnitude smaller than the previous study suggesting
a sparser network.

A total of 677 genes are used to test CC enrichment
(term GO : 0007049). A total of 153 CC genes are
present after the quality control step, 134 of which are
subsequently present in the co-oscillatory network.

The original algorithm in Oscope identified 29 genes
as co-oscillating, 21 of which are annotated as belong-
ing to the Gene Ontology Cell Cycle biological process.
The Oscope algorithm was run with default values as
reported in Leng et al. [10]. In total the k-medoids Os-
cope step finds 5 clusters, 2 of which are eliminated
by the subsequent linear filtering step. The CC enrich-
ment of each cluster is given in Table 4.

After applying OscoNet, we assess the significance
of each community using a Wilcoxon test as described
previously. The results are shown in Table 5. Hence we
identify 6 significant communities using the Wilcoxon
test (α = 0.01). As in the previous study, we eliminate
singleton communities that contain only one gene.

Only one community is both node and edge enriched
according to the hypergeometric and NEAT tests (α =
0.01). This community is enriched in CC with 32 genes
out of 77 belonging to the term GO : 0007049. This
community contains the standard Oscope cluster of 29
genes reported in Leng et al. [10]. As in the previous
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Figure 7 Microarray data: oscillatory gene expression for CDC6, PLK and CCNE1 genes. The cyclical expression and the
Oscope-ENI and spectral approach reconstructions are shown. The green vertical line denotes the peak oscillation time.

Size CC Significantly linear?
7 0 Yes

27 17 No
18 2 No
24 0 No
44 3 Yes

Table 4 Single-Cell RNA-seq: CC enrichment for each Oscope cluster.

study, we find the OscoNet approach is more sensitive
than Oscope identifying a cluster with a superset of
CC genes.

The two highest ranked communities in terms of rel-
ative density have a small size of only 4 and 6 genes
respectively. These are ranked highly because of their
exceptionally small size and are not CC enriched. A
threshold on the community size would exclude such
small communities.

pseudo-time

We compare pseudo-time using the 77 and 29 gene
clusters estimated by OscoNet and Oscope respec-
tively. ENI takes an average of 13 hours of comput-
ing time to estimate the pseudo-time for both clusters
while the spectral method requires approximately 30
minutes. The difference in computational time is that
ENI is leveraged the 2-opt algorithm to reduce the
likelihood of local minima. In contrast, the spectral
method has a unique solution for a given number of
neighbours n and is quick to evaluate leveraging ef-
ficient sparse eigenvalue solvers. The grid search we
perform over different values of n ensures the robust-
ness of the results.

In Figure 8 we show the fit for the spectral method
for both gene sets. There is more noise in the data
than in the previous case study, and the pattern is less
clearly circular. Despite this, the algorithm is able to
recover the cell cycle order as we now show.

We compare the performance of the algorithm esti-
mating pseudo–time using all 460 cells and assessing

the separation of cell cycle stages on the labelled sub-
set of cells which consists of 247 cells. After pseudo–
time estimation we apply the k-means algorithm with
K = 3 to identify the three clusters associated with
G1, G2 and S phase. We compute the adjusted rand
index to contrast the clustering results with the cell
cycle labels; the ARI measure is the range [0, 1] with
higher values reflecting better agreement between the
estimated and true cell cycle stages.

In Table 6 we show the ARI results to the spectral
and ENI method. The performance of the latter is poor
which can be validated when looking at the gene ex-
pression output (Figure 9). The spectral method pro-
vides better accuracy for both gene clusters with an
ARI of 0.43 when using the Oscope 29 gene cluster
and 0.49 when using the OscoNet 77 gene cluster. The
higher ARI for the latter, reflects the richer informa-
tion content of the OscoNet cluster compared to the
Oscope cluster; the OscoNet spectral ordering contains
fewer cells assigned to an incorrect cell cycle stage than
the Oscope spectral ordering as is evident in Figure 9
for four example genes.

The poor performance of the ENI algorithm is con-
firmed when looking at the roughness value (Table 7).
The ENI algorithm has higher roughness values for
all combinations examined while the spectral method
achieves similar roughness values with both clusters.

Discussion
We have presented a well-calibrated hypothesis test
that avoids a need for a threshold cut-off on the pair-
wise distance matrix. Further, our implementation is
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Size CC Density Relative Density Hypergeometric Neat
4 1 < 1e− 4 0.50 0.01 1.00
6 0 < 1e− 4 0.33 N/A N/A

77 32 0.09 0.15 < 1e− 6 < 1e− 6
155 7 0.14 0.06 < 1e− 6 0.48
188 11 0.10 0.03 < 1e− 6 0.16
234 17 0.15 0.03 < 1e− 6 0.03

Table 5 Single-Cell RNA-seq: Relative ratio refers to the percentage of CC transcripts in the community.
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(b) OscoNet cluster 77 genes

Figure 8 Single-cell RNA-seq: spectral dimensionality reduction trained on the two different clusters. Each cell-dot is coloured by the
true base cycle stage, namely G1, G2 and S phase.
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Figure 9 Single-cell RNA-seq: Comparing pseudo–time estimation using ENI and the spectral method. Cells have been coloured by
the cell cycle stage or as grey when not known.
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Method Training ARI

Spectral
29 0.43
77 0.49

ENI
29 0.05
77 0.02

Table 6 Single-cell RNA-seq: Adjusted Rand Index (ARI) on
K = 3 K-mean clustering vs true cell-cycle stage.

Predicting gene set
Method Training 29 77

Spectral
29 1.25 1.35
77 1.23 1.35

ENI
29 1.41 1.41
77 1.42 1.40

Table 7 Microarray data: change in median roughness.

highly scalable as it employs a vectorised parallel im-
plementation that was demonstrated to be orders of
magnitude faster than the current Oscope implemen-
tation.

We have then performed network analysis to iden-
tify statistically significant communities of genes again
avoiding any need to set the maximum number of com-
munities as is needed in the K-medoids approach of
Leng et al. [10]. We have also been able to select the
significant communities based on a standard statistical
test and assess the significance of enrichment in terms
of both genes and their co-oscillatory relationship. We
have validated our approach on synthetic data demon-
strating that it is well-calibrated with respect to the
false discovery rate unlike Leng et al. [10].

We contrasted our approach to that of [10] on both
microarray and single-cell RNA seq data with known
oscillators. In both cases, we are able to recover the
original Oscope cluster of genes in addition to discov-
ering more oscillators.

We estimate a unique pseudo-time per gene com-
munity using a spectral approach that is is straight-
forward to apply, requires an order of magnitude less
computation than the ENI approach proposed in Leng
et al. [10] and is more accurate as reflected in both
peak time correlation in the microarray data and cell
cycle stage separation in the single-cell data.

One issue with our current approach is that for low
number of cells, the small number of possible permu-
tations in the similarity measure reduces the power of
the bootstrap hypothesis test resulting in a high min-
imum achievable FDR. A semi-parametric bootstrap
approach should help increase the power of the test
for small number of cells and low FDR that is typi-
cally required.

Finally, extending this approach as a probabilistic
model including effect of dropout which is prominent
in single-cell datasets, may further increase the accu-
racy of the method and allow for quantification of un-
certainty in the resulting co-oscillating gene clusters.

The pseudo-time model could be extended to use
a probabilistic model to jointly estimate pseudo-time
while-imposing a periodicity constraint. This will also
allow for selecting the number of latent dimensions by
maximising the model evidence. A probabilistic for-
mulation of Laplace Eigenmaps has already been de-
scribed in Lu et al. [12] where the Laplacian Eigenmaps
latent variable model is described. In future work, one
could extend this class of model, in the probabilistic
or deterministic formulation, to include a periodic con-
straint.

The method we have presented can be incorporated
in a single-cell analysis pipeline to allow biologists to
uncover novel periodic dynamic gene regulatory mech-
anisms. Our approach avoids less interpretable cut-offs
and relies on well-calibrated statistical tests. As the
availability and size of single-cell whole-transcriptome
data increases, the non-parametric and automatic na-
ture of our approach will allow for a corresponding in-
crease in resolution of the analysis resulting in a more
detailed description of oscillatory gene expression sys-
tems.
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Quality control
In any single-cell pipeline, it is necessary to perform some rudimentary

quality control to ensure downstream analysis is not affected by low-quality

measurements. In the Oscope pipeline [10], a threshold on the mean level

and a log-linear cut-off on the variance is applied.

We prefer using a simpler approach based on variance based filtering with a

high variance cut-off of 0.9 [5]. This ensures a simple and consistent quality

control mechanism that has been shown to remove low quality genes [5].

Roughness measure
Roughness for a particular gene was defined in [15] as

1

σg

√√√√ 1

C − 1

C−1∑
c=1

(
xg,zc − xg,zc+1

)2

where σg the standard deviation of gene expression and xg,zc is the gene

expression for gene g at pseudo-time order zc.

This metric measures the smoothness of the gene expression profile by

looking at the differences of consecutive measurements. Smaller values

indicate a smoother response.
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