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Abstract  

Background 

Profiling of mRNA expression is an important method to identify biomarkers but complicated 

by limited correlations between mRNA expression and protein abundance. We hypothesised 

that these correlations could be improved by mathematical models based on measuring splice 

variants and time delay in protein translation.  

Methods 

We characterised time-series of primary human naïve CD4+ T cells during early T-helper type 

1 differentiation with RNA-sequencing and mass-spectrometry proteomics. We then 

performed computational time-series analysis in this system and in two other key human and 

murine immune cell types. Linear mathematical mixed time-delayed splice variant models 

were used to predict protein abundances, and the models were validated using out-of-sample 

predictions. Lastly, we re-analysed RNA-Seq datasets to evaluate biomarker discovery in five 

T-cell associated diseases, validating the findings for multiple sclerosis (MS) and asthma. 

Results 

The new models demonstrated median correlations of mRNA-to-protein abundance of 0.79-

0.94, significantly out-performing models not including the usage of multiple splice variants 

and time-delays, as shown in cross-validation tests. Our mathematical models provided more 

differentially expressed proteins between patients and controls in all five diseases. Moreover, 

analysis of these proteins in asthma and MS supported their relevance. One marker, sCD27, 

was clinically validated in MS using two independent cohorts, for treatment response and 

prognosis. 

Conclusion 

Our splice variant and time-delay models substantially improved the prediction of protein 

abundance from mRNA data in three immune cell-types. The models provided valuable 

biomarker candidates, which were validated in clinical studies of MS and asthma. We propose 

that our strategy is generally applicable for biomarker discovery.   
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Introduction 

A key problem in genome medicine is to find reliable disease biomarkers and therapeutical 

targets. An important reason is that common diseases involve thousands of proteins across 

multiple cell types. Proteins are regarded as optimal biomarkers as they are the main drivers 

of the crucial functions necessary for life, and thus directly connected to patho-physiological 

processes[1]. Furthermore, many proteins can be readily measured in biological fluids. 

However, proteome-wide analyses are difficult to perform in clinical studies due to the large 

quantities of material needed. On the other hand, gene expression profiling can be performed 

using a range of techniques, such as microarrays or RNA-sequencing. Another advantage of 

using mRNA expression as a core vehicle for biomarker discovery is that mRNA profiling 

can be performed even if only samples of limited amount, like biopsies, are available.  

Combinations of mRNAs can have high diagnostic efficacy in multiple diseases[2, 3]. An 

ideal solution could therefore be to perform mRNA profiling to identify protein biomarkers 

that are needed for diagnosing and subtyping of diseases, as well for the personalisation and 

monitoring of treatments. However, this approach is complicated by the low correlation 

between mRNA and protein expression[4-7], which can be tackled with different strategies[8, 

9]. The discrepancy between mRNA and protein abundance is due to several factors, 

including but not limited to differences in the rates of translation and degradation between 

proteins and cell-types[10]. Moreover, the data resolution of mRNA splice variants and 

protein isoforms further complicates such analyses, as in the cases of unequal contribution of 

individual splice variants to the production of a given protein[11], and cell-type specific 

differences in splice variant use[12]. 

Thus, the inability to predict protein abundance from mRNA abundance represents a major 

limitation in biomarker discovery. To this end, we developed a novel method to infer protein 

levels from mRNA expression data. Our procedure was derived by experimentally analysing 

early human T helper 1 (TH1) differentiation and constructing a machine learning modelling 

approach for time-series RNA-Seq and proteomics data from a dynamical perturbation of the 

cell-type of interest. TH differentiation is an optimal model system to dissect the relationship 

between mRNA and protein as (i) primary human naïve TH (NTH) cells can be isolated in high 

purity and large quantity from human blood (ii), all NTH cells are synchronised in the G1 

phase of the cell cycle, further reducing inter-cell heterogeneity[13] and (iii) easy access to 

large quantities of material allows changes in mRNA and associated protein abundance to be 

assayed over time[14]. Moreover, TH cells are important regulators of immunity and thereby 
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associated with many complex diseases, and TH1 differentiation itself is pathogenetically 

relevant in several diseases[15]. The utilised models were based on a time-delayed linear 

model between mRNA splice-variants of the same gene and protein levels. We generalised 

the model by applying it onto recent data from human regulatory T (Treg) cell and murine B 

cell differentiation. By combining the strength of time-series analysis and RNA-sequencing, 

we were able to increase median mRNA-protein correlations significantly from the initial 0.21 

to 0.86. Next, we showed the potential clinical usefulness of our derived models by detecting 

potential biomarkers in five complex diseases. This application revealed significantly more 

predicted biomarkers than by using off-the-shelf methods for RNA-Seq data analysis only. 

Analysis of these predicted proteins in asthma and MS supported their biological relevance. 

Finally, we validated one of the predicted biomarkers using two independent multiple 

sclerosis cohorts, which showed a remarkably better stratification between patients and 

controls than any of our previously reported protein biomarkers. The application of our 

approach to multiple different cell types, species and diseases shows its general applicability 

to increase the power of RNA-Seq based studies for biomarker discovery. 
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Results 

A significant portion of T-cell genes showed diverse correlations between RNA splice 

variants and proteins  

In order to generate accurate mRNA and protein models, taking into account the major factors 

of time-delay and splice variant usage, we first developed a model analysing early T-helper 

type 1 (TH1) differentiation. This was done by performing time-series RNA-sequencing and 

mass-spectrometry proteomics of primary human NTH cells (Figure 1A, S1, S2). RNA-seq (> 

40x 106 reads per sample) and proteome profiling was performed to detect differentially 

expressed mRNA splice variants and proteins at six time points from 30 minutes to five days 

of TH1 differentiation (Figure 1A, S1, S2). This approach detected 6909 proteins, of which 

4920 could be mapped to genes expressed in the RNA-Seq data. As expected, a significant 

fraction of the genes showed a significant positive correlation between mRNA and protein 

levels (n=407, expected 123 out of 4920 proteins, binomial test P<10-93) during TH1 cell 

differentiation. Interestingly, a significant fraction of negatively correlated genes was also 

observed (n=205, expected 123, P<10-11) (Figure 1B, Table S1). Remarkably, the overall 

median Pearson correlation (rho) between mRNA and protein was only 0.21. We 

hypothesised that this could depend on variable correlations between mRNA splice variants of 

each gene and the protein it encoded.  Indeed, we found both positive and negative 

correlations between splice variants and their corresponding proteins (binomial test for 

enrichment of significant negative correlation P<1.3 x 10-3, odds ratio= 1.48). For example, 

the known TH cell associated genes, IL7R and STX12[16] contained multiple splice variants, 

of which several were positively or negatively correlated to their corresponding protein levels 

(Figure 1C). Given the large variation in correlation between different splice-variants of a 

given gene and its corresponding protein, we proceeded to construct predictive splice-variant 

models of protein abundance. 

 

A linear model combining the expressions of multiple splice variant transcripts showed 

substantially stronger correlations with protein abundance than individual transcripts 

In order to construct generally applicable and predictive mRNA-to-protein models, we 

applied a simple linear relation between the protein abundance of a gene and its associated 

mRNA splice-variants. Furthermore, we allowed for different translation times for each gene. 

Firstly, we used a cross-validated L1 penalised linear regression model to favour simple 

models using single splices without any time-delays (Methods, Figure 1D). The rationale for 
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the L1 penalty was to effectively remove splice variants that carry little or no predictive 

power over protein abundance. This simple model resulted in a median gene-protein 

correlation of rhoTH1 = 0.86 (Figure 2A), far in excess of previously reported gene-protein 

prediction models in mammals[5, 7, 10, 11]. Likewise, we also trained similar models for two 

existing mRNA-protein time-series datasets with similar results, that is from human TREG 

cells[14](rhoTREG = 0.79) and mouse B cells (GSE75417) (rhoBcell = 0.94) (Figure 2A). In 

order to test whether the increase in correlation was due to the incorporation of negatively 

correlating splice variants, multiple transcripts, or time-delay we also constructed such models 

without each of these effects. Importantly, our model out-performed models with one splice 

variant for each gene (rhoTH1 = 0.71, rhoTREG = 0.44, rhoBcell = 0.52), and models using 

multiple transcripts but without a time delay (rhoTH1 = 0.74, rhoTREG = 0.69, rhoBcell = 0.45) 

(Figure 2B-C), thus demonstrating that both multiple dynamical splice variants and time 

delay are needed for optimal performance.  In order to define the optimal time-delays between 

splice-variants and proteins, we analysed the time delay distributions and found it to have a 

mean of 8h 17 min, 6h 18 min and 8h 49 min for TH1, TREG and murine B cells, respectively. 

The detailed parameters of our models are fully displayed in Table S1.Next, by using cross-

validation we confirmed that our models could do out-of-sample prediction significantly 

better than gene expression-based models of protein abundance (binomial test; PTH1= 10-152, 

PTREG= 10-247, Pmice B= 10-59), and better than static splice-variant models which did not 

include time-delays (PTH1=10-1459, PTREG= 10-8, Pmice B= 5x 10-4, Fig. 2B). To evaluate mRNA-

protein associations in steady state across tissues, we used mRNA expression data from the 

human protein atlas[17]. We found only marginal improvements by using splicing 

information in the multi-tissue models with respect to what had previously reported in the 

literature[5](rhoProtAtlas= 0.27, see Figure S3). This lack of correlation may be explained by 

the lack of dynamic data, and by the presence of different cell types, and we speculate that 

differences in splice variant specificity between tissues effectively hinders this type of 

models. In further support of cell type specificity, we found only marginal correlations (rho = 

0.09) when comparing the correlation coefficients of our two T-cell datasets of TH1and TREG 

cells. Thus, a common unifying model for many cell-types remains a challenge (Table S1). In 

summary, we have revealed that by using a simple linear model of mRNA splice variants and 

time delay, we could predict protein abundances accurately.  

 

Applying the model to clinical datasets revealed potential biomarkers which were 
validated in multiple sclerosis and asthma 
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Lastly, we aimed to test the potential usefulness of our derived models for the identification of 

protein biomarkers by applying them on available RNA-Seq datasets from human total CD4+ 

T cells. We found data-sets for five different diseases[18-21]; asthma, allergic rhinitis, 

obesity-induced asthma, pro-lymphocytic leukaemia, and multiple sclerosis (MS), as well as 

corresponding controls. Because our models correlated well to protein abundances, we 

hypothesised that differential expression tests using the predicted proteins between patients 

and controls to be more sensitive than testing directly on the mRNA expression for all splice 

variants individually.  Indeed, we observed that the fraction of nominally differentially 

expressed genes was higher than using an individual differential expression analysis for all ten 

comparisons (binomial P< 9.8 x 10-4) (Figure 3A). Moreover, we consistently observed a 

higher enrichment for the TH1 model compared to the TREG model (P<0.03), with the highest 

enrichments in MS and asthma. We therefore proceeded to use our TH1 model on MS and 

asthma.   

For MS, we found 20 genes with FDR<0.05, of which none could be found by testing for 

differential expression on the mRNA expression data directly (Table S2). Interestingly, eight 

of the 20 proteins had previously been associated with MS (Figure 4)[22-31]. In order to 

further justify the relevance of the added proteins as potential biomarkers, we proceeded to 

study three secreted proteins that our model predicted to be differentially expressed in the MS 

dataset (Annexin A1, sCD40L and sCD27). Notably, these proteins have been associated with 

MS previously[22, 23, 25]. We analysed if cerebrospinal fluid (CSF) levels of these proteins 

related to clinical outcome and immunomodulatory treatment in two independent cohorts, 

namely newly diagnosed MS patients (clinically isolated syndrome (CIS) and 

relapsing/remitting MS, n=41) vs healthy controls (HC, n=23), and response to Natalizumab 

treatment in relapsing remitting MS patients (see supplementary notes, n=16). In both cohorts, 

only sCD27 was present at a detectable level, while Annexin A1 and sCD40L were not. 

Analysis of all patients (n=57) vs HC (n=23) showed high separation (AUC=0.88, non-

parametric P=3.0 x 10-8, Figure 3B), and treatment with Natalizumab reduced the sCD27 

levels by 34% (P=4.9 x 10-4). Notably, sCD27 levels at baseline of newly diagnosed MS 

patients were able to predict disease activity after four years follow up (AUC= 0.87, P=1.2 x 

10-3, Figure 3B), which was a stronger prediction than that of all our previously reported 14 

biomarkers[32]. Taken together, using the splice variants-to-protein model we were able to 

uniquely identify and validate biomarkers of MS in an independent patient cohort, while these 
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genes could not be discovered using previous state-of-the-art test for differential gene 

expression.  

For asthma we found six of the top 20 genes that were differentially expressed to previously 

be reported for the disease (Table S3). Next, we analysed asthma genes uniquely identified by 

our model and found seven genes that had previously also been reported to be associated with 

disease[33-38] and are currently being evaluated as potential therapeutic targets (Figure 4; 

Table S4). Examples of those genes include NDRG1, which regulates Th2 differentiation, a 

key driver in asthmatic disease, downstream of the mTORC2 complex[39, 40], ADAM17, a 

metalloproteinase involved in lung inflammation[35], PIEZO1, a mechanosensor regulating T 

cell activation[41] and pulmonary inflammatory responses[42], and the P-selectin ligand 

encoding gene SELPLG, important for recruitment of lymphocytes to the airways[43, 44]. 

Furthermore, the immunomodulatory genes TNFAIP8 and ARHGAP15 were identified in 

GWAS studies as shared risk variants for several IgE-mediated diseases including asthma, 

allergic rhinitis and atopic eczema[34]. Thus, we have validated that our model can identify 

important biomarkers and therapeutical targets also in the context of another immune-

mediated disease, i.e. asthma.  

Discussion 

In the present study we have shown that simple mRNA-protein models, in which the protein 

expression is defined as a linear combination of the splice variants of a gene with a time-delay 

accounting for the dynamical effect induced by post-transcriptional processes and protein 

synthesis, can profoundly improve our ability to predict protein abundance from mRNA 

abundance. Furthermore, we demonstrated the impact that this finding can have within 

genome medicine by predicting and validating biomarkers for MS and asthma.   

Despite being part of the central dogma and of uttermost importance in biology and medicine, 

the prediction of protein levels from mRNA levels has long been associated with low 

precision, which has been a matter of debate[4]. Due to the complex process of mRNA-to-

protein translation, there are several aspects that need to be considered[8]. In this paper we 

thoroughly addressed two presumed main aspects; (1) how to incorporate splice variants into 

the prediction protein expression, and (2) how to deal with the time-delay of the translation 

between mRNA and protein expression. Interestingly, both aspects were found to impact 

prediction of protein abundance, as shown in our combined model, although the incorporation 

of splice variants influenced the protein abundance prediction the most. Herein, we report 
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splice variants to have a wider correlation profile, both positive and negative, than what 

would be expected, and our novel approach takes advantage of this anti-correlation between 

splice variants and proteins. In previous work, the impact of incorporating splice variants into 

protein predictions has been analysed. These studies have focused on mechanistic cell-type 

independent factors such as splice variant-specific degradation rates[45].  Instead, we found 

that the correlations were cell-type specific and we constructed data-driven predictive models. 

In order to construct those models, we performed activation of NTH cells followed by time-

series analysis, which enabled us to infer the system based on its dynamics. These models 

were simplistic linear and time-delayed and validated through low out-of-sample prediction 

error. We found that usage of these models in complex disease enabled identification of more 

differentially expressed genes, which we therefore predicted as potential biomarkers. One 

such protein was validated as a biomarker for the MS disease prognosis. Thus, a main 

biological message is that intra-gene splice variant expressions influence translation, but the 

multifaceted nature of this mechanism remains too complex to capture with linear regression 

models.  

Although incorporating splice variant information into the model was the main influential 

factor on the correlation, time delay also had an impact. The kinetics in translation of mRNA 

to protein is of general interest given its crucial importance in the design of experiments, for 

example in verifying relevance of mRNA expression to protein expression. Given that time-

series experiments are time- and labor intensive, as well as expensive, a database that 

provides the relevant time delay between mRNA expression and the expression of its 

corresponding protein would be immensely valuable. Here, we present such an atlas, 

comprising almost 5000 gene expression-to-protein translation kinetics (Table S1).  

A limitation with the paper is that we investigated few cell types, namely TH1 cells, TREG cells 

and B cells.  We also only performed wet lab experiments in one of these cell types, but were 

able to transfer the approach to two other cell types in silico, showing the robustness of the 

model assumptions. Furthermore, the chosen cell types are central in regulation of immune 

responses, and the TH cells indeed are involved in many complex and common illnesses, like 

infectious, allergic, autoimmune and cardiovascular diseases and cancer.  

In conclusion, we have constructed data-driven linear models incorporating splice variant 

information and time delay to with high accuracy predict protein expression from mRNA 

expression.  We have shown the general applicability of our approach by developing models 

for datasets from several cell types and shown the robustness of our approach. In addition, the 
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general principle of the model should be applicable to other cell types and can be used when 

that data becomes available. However, our data show that the model should be applied in a 

cell-specific manner given the low correlation in mixed tissue samples. We expect this 

modelling strategy to be generally applicable to other cellular differentiation systems, such as 

embryonic stem cell differentiation, and to be increasingly useful for understanding basic 

biology and identification of new biomarkers as more RNA-Seq and proteomic data sets 

become publicly available. Finally, we have shown that approach is of clinical relevance 

through applying it to predict validated biomarkers.  

 

Data availability statement 

The raw and processed RNA-seq data was submitted to the EMBL-EBI sequencing archive 

arrayexpress and is available under the accession number E-MTAB-7775. The proteomics 

data was submitted to the EMBL-EBI proteomics repository PRIDE under the accession 

PXD013361. 

Ethics consent and permissions 

The study was approved by the Regional Ethics Committee in Linköping, Sweden (Dnr 

M180-07 and M2-09). All patients were recruited at the Department of Neurology, Linköping, 

University Hospital Sweden and both patients and controls gave written consent prior to 

inclusion.  

Competing interests 

The authors declare that they have no competing interests. 

Acknowledgements 

Funding: This work was supported by the Swedish Cancer Society grants (CAN 2017/625), 

East Gothia Regional Funding, Åke Wiberg foundation, Neuro Sweden, the Swedish 

Research Council grants 2015-02575, 2015-03495, 2015-03807, 2016-07108, 2018-02776, 

National Research foundation of Korea, and the Swedish foundation for strategic research.  

 

Author contributions 

MG initiated and supervised the study. RM and OR performed bioinformatics analyses, and 

RM performed the modelling. These analyses were led by MG, CA, JT, and DGC. OR 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2020. ; https://doi.org/10.1101/599373doi: bioRxiv preprint 

https://doi.org/10.1101/599373
http://creativecommons.org/licenses/by/4.0/


performed experimental work on T-cell differentiation, which were supervised by CEN, MCJ, 

JE and MB. MJK and CHN performed the proteomics analysis, which was supervised by 

MSK. FP and JM recruited patients and collected clinical material, and SH performed and 

analysed the biomarker validation assays, which were led by IK, MCJ, and JE. All authors 

contributed to and approved the final draft for publication. 

 

Reference list 

1. Clancy S, Brown W: Translation: DNA to mRNA to Protein. Nature Education 2008, 1: 

101. 

2. Gustafsson M, Edstrom M, Gawel D, Nestor CE, Wang H, Zhang H, Barrenas F, Tojo J, 

Kockum I, Olsson T, Serra-Musach J, Bonifaci N, Pujana MA, Ernerudh J, Benson M: 

Integrated genomic and prospective clinical studies show the importance of modular 

pleiotropy for disease susceptibility, diagnosis and treatment. Genome Med 2014, 6: 17. 

3. Gawel DR, Serra-Musach J, Lilja S, Aagesen J, Arenas A, Asking B, Bengner M, Bjorkander 

J, Biggs S, Ernerudh J, Hjortswang H, Karlsson JE, Kopsen M, Lee EJ, Lentini A, Li X, 

Magnusson M, Martinez-Enguita D, Matussek A, Nestor CE, Schafer S, Seifert O, Sonmez C, 

Stjernman H, Tjarnberg A, Wu S, Akesson K, Shalek AK, Stenmarker M, Zhang H, 

Gustafsson M, Benson M: A validated single-cell-based strategy to identify diagnostic and 

therapeutic targets in complex diseases. Genome Med 2019, 11: 47. 

4. Fortelny N, Overall CM, Pavlidis P, Freue GVC: Can we predict protein from mRNA 

levels? Nature 2017, 547: E19-E20. 

5. Maier T, Guell M, Serrano L: Correlation of mRNA and protein in complex biological 

samples. FEBS Lett 2009, 583: 3966-73. 

6. de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C: Global signatures of protein and 

mRNA expression levels. Mol Biosyst 2009, 5: 1512-26. 

7. Vogel C, Marcotte EM: Insights into the regulation of protein abundance from proteomic 

and transcriptomic analyses. Nat Rev Genet 2012, 13: 227-32. 

8. Liu Y, Beyer A, Aebersold R: On the Dependency of Cellular Protein Levels on mRNA 

Abundance. Cell 2016, 165: 535-50. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2020. ; https://doi.org/10.1101/599373doi: bioRxiv preprint 

https://doi.org/10.1101/599373
http://creativecommons.org/licenses/by/4.0/


9. Zhao J, Qin B, Nikolay R, Spahn CMT, Zhang G: Translatomics: The Global View of 

Translation. Int J Mol Sci 2019, 20. 

10. Wethmar K, Smink JJ, Leutz A: Upstream open reading frames: molecular switches in 

(patho)physiology. Bioessays 2010, 32: 885-93. 

11. Floor SN, Doudna JA: Tunable protein synthesis by transcript isoforms in human cells. 

Elife 2016, 5. 

12. Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, Slobodeniuc V, 

Kutter C, Watt S, Colak R, Kim T, Misquitta-Ali CM, Wilson MD, Kim PM, Odom DT, Frey 

BJ, Blencowe BJ: The evolutionary landscape of alternative splicing in vertebrate species. 

Science 2012, 338: 1587-93. 

13. Sprent J, Tough DF: Lymphocyte life-span and memory. Science 1994, 265: 1395-400. 

14. Schmidt A, Marabita F, Kiani NA, Gross CC, Johansson HJ, Elias S, Rautio S, Eriksson M, 

Fernandes SJ, Silberberg G, Ullah U, Bhatia U, Lahdesmaki H, Lehtio J, Gomez-Cabrero D, 

Wiendl H, Lahesmaa R, Tegner J: Time-resolved transcriptome and proteome landscape 

of human regulatory T cell (Treg) differentiation reveals novel regulators of FOXP3. 

BMC Biol 2018, 16: 47. 

15. Raphael I, Nalawade S, Eagar TN, Forsthuber TG: T cell subsets and their signature 

cytokines in autoimmune and inflammatory diseases. Cytokine 2015, 74: 5-17. 

16. Kanduri K, Tripathi S, Larjo A, Mannerstrom H, Ullah U, Lund R, Hawkins RD, Ren B, 

Lahdesmaki H, Lahesmaa R: Identification of global regulators of T-helper cell lineage 

specification. Genome Med 2015, 7: 122. 

17. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, 

Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, 

Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, 

Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, 

Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F: Proteomics. Tissue-

based map of the human proteome. Science 2015, 347: 1260419. 

18. Seumois G, Zapardiel-Gonzalo J, White B, Singh D, Schulten V, Dillon M, Hinz D, Broide 

DH, Sette A, Peters B, Vijayanand P: Transcriptional Profiling of Th2 Cells Identifies 

Pathogenic Features Associated with Asthma. J Immunol 2016, 197: 655-64. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2020. ; https://doi.org/10.1101/599373doi: bioRxiv preprint 

https://doi.org/10.1101/599373
http://creativecommons.org/licenses/by/4.0/


19. Rastogi D, Nico J, Johnston AD, Tobias TAM, Jorge Y, Macian F, Greally JM: CDC42-

related genes are upregulated in helper T cells from obese asthmatic children. J Allergy 

Clin Immunol 2018, 141: 539-548 e7. 

20. Johansson P, Klein-Hitpass L, Choidas A, Habenberger P, Mahboubi B, Kim B, Bergmann A, 

Scholtysik R, Brauser M, Lollies A, Siebert R, Zenz T, Duhrsen U, Kuppers R, Durig J: 

SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia. Blood Cancer J 

2018, 8: 11. 

21. James T, Linden M, Morikawa H, Fernandes SJ, Ruhrmann S, Huss M, Brandi M, Piehl F, 

Jagodic M, Tegner J, Khademi M, Olsson T, Gomez-Cabrero D, Kockum I: Impact of genetic 

risk loci for multiple sclerosis on expression of proximal genes in patients. Hum Mol 

Genet 2018, 27: 912-928. 

22. Colamatteo A, Maggioli E, Azevedo Loiola R, Hamid Sheikh M, Cali G, Bruzzese D, 

Maniscalco GT, Centonze D, Buttari F, Lanzillo R, Perna F, Zuccarelli B, Mottola M, 

Cassano S, Galgani M, Solito E, De Rosa V: Reduced Annexin A1 Expression Associates 

with Disease Severity and Inflammation in Multiple Sclerosis Patients. J Immunol 2019, 

203: 1753-1765. 

23. van der Vuurst de Vries RM, Mescheriakova JY, Runia TF, Jafari N, Siepman TA, Hintzen 

RQ: Soluble CD27 Levels in Cerebrospinal Fluid as a Prognostic Biomarker in Clinically 

Isolated Syndrome. JAMA Neurol 2017, 74: 286-292. 

24. Wong YYM, van der Vuurst de Vries RM, van Pelt ED, Ketelslegers IA, Melief MJ, 

Wierenga AF, Catsman-Berrevoets CE, Neuteboom RF, Hintzen RQ: T-cell activation 

marker sCD27 is associated with clinically definite multiple sclerosis in childhood-

acquired demyelinating syndromes. Mult Scler 2018, 24: 1715-1724. 

25. Masuda H, Mori M, Uchida T, Uzawa A, Ohtani R, Kuwabara S: Soluble CD40 ligand 

contributes to blood-brain barrier breakdown and central nervous system inflammation 

in multiple sclerosis and neuromyelitis optica spectrum disorder. J Neuroimmunol 2017, 

305: 102-107. 

26. Wanke F, Moos S, Croxford AL, Heinen AP, Graf S, Kalt B, Tischner D, Zhang J, Christen I, 

Bruttger J, Yogev N, Tang Y, Zayoud M, Israel N, Karram K, Reissig S, Lacher SM, 

Reichhold C, Mufazalov IA, Ben-Nun A, Kuhlmann T, Wettschureck N, Sailer AW, 

Rajewsky K, Casola S, Waisman A, Kurschus FC: EBI2 Is Highly Expressed in Multiple 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2020. ; https://doi.org/10.1101/599373doi: bioRxiv preprint 

https://doi.org/10.1101/599373
http://creativecommons.org/licenses/by/4.0/


Sclerosis Lesions and Promotes Early CNS Migration of Encephalitogenic CD4 T Cells. 

Cell Rep 2017, 18: 1270-1284. 

27. Bomprezzi R, Ringner M, Kim S, Bittner ML, Khan J, Chen Y, Elkahloun A, Yu A, 

Bielekova B, Meltzer PS, Martin R, McFarland HF, Trent JM: Gene expression profile in 

multiple sclerosis patients and healthy controls: identifying pathways relevant to disease. 

Hum Mol Genet 2003, 12: 2191-9. 

28. Aquino DA, Capello E, Weisstein J, Sanders V, Lopez C, Tourtellotte WW, Brosnan CF, 

Raine CS, Norton WT: Multiple sclerosis: altered expression of 70- and 27-kDa heat shock 

proteins in lesions and myelin. J Neuropathol Exp Neurol 1997, 56: 664-72. 

29. Bonetti B, Stegagno C, Cannella B, Rizzuto N, Moretto G, Raine CS: Activation of NF-

kappaB and c-jun transcription factors in multiple sclerosis lesions. Implications for 

oligodendrocyte pathology. Am J Pathol 1999, 155: 1433-8. 

30. Achiron A, Feldman A, Mandel M, Gurevich M: Impaired expression of peripheral blood 

apoptotic-related gene transcripts in acute multiple sclerosis relapse. Ann N Y Acad Sci 

2007, 1107: 155-67. 

31. de JG-GJ, Rojas-Mayorquin AE, Valle Y, Padilla-Gutierrez JR, Castaneda-Moreno VA, 

Mireles-Ramirez MA, Munoz-Valle JF, Ortuno-Sahagun D: Decreased serum levels of 

sCD40L and IL-31 correlate in treated patients with Relapsing-Remitting Multiple 

Sclerosis. Immunobiology 2018, 223: 135-141. 

32. Håkansson I, Tisell A, Cassel P, Blennow K, Zetterberg H, Lundberg P, Dahle C, Vrethem M, 

Ernerudh J: Neurofilament levels, disease activity and brain volume during follow-up in 

multiple sclerosis. J Neuroinflammation 2018, 15: 209. 

33. Nestor CE, Barrenas F, Wang H, Lentini A, Zhang H, Bruhn S, Jornsten R, Langston MA, 

Rogers G, Gustafsson M, Benson M: DNA methylation changes separate allergic patients 

from healthy controls and may reflect altered CD4+ T-cell population structure. PLoS 

Genet 2014, 10: e1004059. 

34. Ferreira MA, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, Helmer Q, Tillander 

A, Ullemar V, van Dongen J, Lu Y, Ruschendorf F, Esparza-Gordillo J, Medway CW, 

Mountjoy E, Burrows K, Hummel O, Grosche S, Brumpton BM, Witte JS, Hottenga JJ, 

Willemsen G, Zheng J, Rodriguez E, Hotze M, Franke A, Revez JA, Beesley J, Matheson 

MC, Dharmage SC, Bain LM, Fritsche LG, Gabrielsen ME, Balliu B, andMe Research T, 

collaborators A, consortium B, LifeLines Cohort S, Nielsen JB, Zhou W, Hveem K, 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2020. ; https://doi.org/10.1101/599373doi: bioRxiv preprint 

https://doi.org/10.1101/599373
http://creativecommons.org/licenses/by/4.0/


Langhammer A, Holmen OL, Loset M, Abecasis GR, Willer CJ, Arnold A, Homuth G, 

Schmidt CO, Thompson PJ, Martin NG, Duffy DL, Novak N, Schulz H, Karrasch S, Gieger 

C, Strauch K, Melles RB, Hinds DA, Hubner N, Weidinger S, Magnusson PKE, Jansen R, 

Jorgenson E, Lee YA, Boomsma DI, Almqvist C, Karlsson R, Koppelman GH, Paternoster L: 

Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease 

biology. Nat Genet 2017, 49: 1752-1757. 

35. Dreymueller D, Uhlig S, Ludwig A: ADAM-family metalloproteinases in lung 

inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2015, 

308: L325-43. 

36. Poole A, Urbanek C, Eng C, Schageman J, Jacobson S, O'Connor BP, Galanter JM, Gignoux 

CR, Roth LA, Kumar R, Lutz S, Liu AH, Fingerlin TE, Setterquist RA, Burchard EG, 

Rodriguez-Santana J, Seibold MA: Dissecting childhood asthma with nasal 

transcriptomics distinguishes subphenotypes of disease. J Allergy Clin Immunol 2014, 133: 

670-8 e12. 

37. Persson H, Kwon AT, Ramilowski JA, Silberberg G, Soderhall C, Orsmark-Pietras C, 

Nordlund B, Konradsen JR, de Hoon MJ, Melen E, Hayashizaki Y, Hedlin G, Kere J, Daub 

CO: Transcriptome analysis of controlled and therapy-resistant childhood asthma 

reveals distinct gene expression profiles. J Allergy Clin Immunol 2015, 136: 638-48. 

38. Enomoto Y, Orihara K, Takamasu T, Matsuda A, Gon Y, Saito H, Ra C, Okayama Y: Tissue 

remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the 

airway after an acute asthma attack. J Allergy Clin Immunol 2009, 124: 913-20 e1-7. 

39. Heikamp EB, Patel CH, Collins S, Waickman A, Oh MH, Sun IH, Illei P, Sharma A, Naray-

Fejes-Toth A, Fejes-Toth G, Misra-Sen J, Horton MR, Powell JD: The AGC kinase SGK1 

regulates TH1 and TH2 differentiation downstream of the mTORC2 complex. Nat 

Immunol 2014, 15: 457-64. 

40. Murray JT, Campbell DG, Morrice N, Auld GC, Shpiro N, Marquez R, Peggie M, Bain J, 

Bloomberg GB, Grahammer F, Lang F, Wulff P, Kuhl D, Cohen P: Exploitation of 

KESTREL to identify NDRG family members as physiological substrates for SGK1 and 

GSK3. Biochem J 2004, 384: 477-88. 

41. Liu CSC, Raychaudhuri D, Paul B, Chakrabarty Y, Ghosh AR, Rahaman O, Talukdar A, 

Ganguly D: Cutting Edge: Piezo1 Mechanosensors Optimize Human T Cell Activation. J 

Immunol 2018, 200: 1255-1260. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2020. ; https://doi.org/10.1101/599373doi: bioRxiv preprint 

https://doi.org/10.1101/599373
http://creativecommons.org/licenses/by/4.0/


42. Solis AG, Bielecki P, Steach HR, Sharma L, Harman CCD, Yun S, de Zoete MR, Warnock 

JN, To SDF, York AG, Mack M, Schwartz MA, Dela Cruz CS, Palm NW, Jackson R, Flavell 

RA: Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. 

Nature 2019, 573: 69-74. 

43. Purwar R, Campbell J, Murphy G, Richards WG, Clark RA, Kupper TS: Resident memory T 

cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity. 

PLoS One 2011, 6: e16245. 

44. Leath TM, Singla M, Peters SP: Novel and emerging therapies for asthma. Drug Discov 

Today 2005, 10: 1647-55. 

45. Eraslan B, Wang D, Gusic M, Prokisch H, Hallstrom BM, Uhlen M, Asplund A, Ponten F, 

Wieland T, Hopf T, Hahne H, Kuster B, Gagneur J: Quantification and discovery of 

sequence determinants of protein-per-mRNA amount in 29 human tissues. Mol Syst Biol 

2019, 15: e8513. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2020. ; https://doi.org/10.1101/599373doi: bioRxiv preprint 

https://doi.org/10.1101/599373
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

Figure legends 

Fig 1. RNA-Seq and mass-spectrometry analysis of TH1 differentiation revealed highly 

variable correlations. (A) Experimental design. (B) Heat map of transcript and protein 

abundance dynamics in genes that show significant negative (left) and positive (right) 

correlations. (C) Examples of transcript splice variants showing that both STX12 (left) and 

IL7R (right) were significantly negatively and positively correlated with protein levels. (D) 

Illustration of the modelling procedure for resolving the poor correlation, using STX12 as an 

example.  

Fig 2. Multiple transcripts and time-delays increased mRNA and protein correlations 

significantly in multiple cell-types. (A) Gene/protein Pearson correlations in TH1 (left), Treg 

(middle left), and murine B-cell (middle right) differentiation. In the histogram, the grey 

curve shows the correlation distribution when the sum of all splice variant expressions of a 

transcript [4] is used to quantify mRNA abundance (median: dashed line), while in the blue 

histogram our time-delayed multiple splice variant based models are used (medians: solid 

lines at 0.86, 0.79, and 0.94 for TH1, Treg and murine B-cells, respectively). Only cross-

validated protein predictions are shown for the proteins for which the null-model could be 

rejected. (B) Out-of-sample cross validation prediction of the three models. Aiming to 

quantify the predictive power of each added input to the model, we observed that a linear 

model with gene-specific time-delays was the model that generated predictions with the 

smallest sum of squared residuals. (C) Median correlation coefficients (rho) for different 

mathematical protein prediction models derived from RNA with increasing protein abundance 

correlations. P-values were derived from predictions using leave-one-out cross-validation. 

Fig 3. Proteins models led to the discovery of new potential biomarkers of complex diseases that 

were validated in multiple sclerosis (MS). (A) Differential predicted protein (PP) analysis of five 

diseases using the TH1 (light blue) and Treg (dark blue) models showed higher fraction of nominally 

significant genes than that of normal differential gene expression tests. (B) Validation of PP from early 

MS (clinically isolated syndrome (CIS)) vs healthy controls (HC) and pre vs post one-year treatment 

with Natalizumab. Validation is performed measuring sCD40 in cerebrospinal fluid (CSF) and 
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stratifying on phenotyping. Left plots show healthy controls vs CIS showing patients with no evidence of 

disease activity (NEDA) at four years treatment with filled circles. (C) Receiver operating curve using 

sCD27 concentration as a single prognostic marker of NEDA at four (solid line) and two years (dashed 

line) after CIS. 
 

Fig 4. Overview of detected potential biomarkers in asthma and MS. The model 

identified several proteins that have previously been identified in MS and asthma. The upper 

panel shows the potential biomarkers identified in MS and the lower panel shows the same in 

asthma. *mRNA expression, ¤ identified in mice. PBMCs, peripheral blood mononuclear 

cells. References are given in the figure.  
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