
Pan-Cancer Exploration of mRNA Mediated Dysregulated 
Pathways in the Cancer Genomics Cloud  
Margaret Linan​1​, Junwen Wang​2,3​, Valentin Dinu​2,3 

1​Icahn School of Medicine at Mount Sinai, New York, New York, United States of America 
2​Mayo Clinic, Department of Health Sciences Research, Scottsdale, Arizona, United States of America 
3​Department of Biomedical Informatics, Arizona State University, Tempe, Arizona, United States of 
America 

Corresponding author: 
Margaret Linan​1 

 

Email address: ​mlinan@asu.edu 

Icahn School of Medicine at Mount Sinai, New York, New York 10029 

 

Abstract 

We performed a comprehensive pan-cancer analysis in the Cancer Genomics Cloud of 
HTSeq-FPKM normalized protein coding mRNA data from 17 cancer projects in the Cancer 
Genome Atlas, these are Adrenal Gland, Bile Duct, Bladder, Brain, Breast, Cervix, Colorectal, 
Esophagus, Head and Neck, Kidney, Liver, Lung, Pancreas, Prostate, Stomach, Thyroid and 
Uterus. The PoTRA algorithm was applied to the normalized mRNA protein coding data and 
detected dysregulated pathways that can be implicated in the pathogenesis of these cancers. Then 
the PageRank algorithm was applied to the PoTRA results to find the most influential 
dysregulated pathways among all 17 cancer types. Pathways in cancer is the most common 
dysregulated pathway, and the MAPK signaling pathway is the most influential (PageRank score 
= 0.2034) while the purine metabolism pathway is the most significantly dysregulated metabolic 
pathway.  

 

INTRODUCTION 

Recent studies have shown that both dysregulated or frequently mutated pathways should be 
used for the characterization of cancers instead of driver mutations (Zhang, Chien, Yong and 
Kuang, 2017). Network biology is an important approach that can detect frequently dysregulated 
pathways in distinct cancer types (Zhang, Chien, Yong and Kuang, 2017). Dysregulated 
pathways are biological networks that have collections of hub genes that are significantly 
different between cancer and normal tissues. Hub genes can act individually to impact the 
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function of other genes or entire biological networks (Flintoft, 2004).  Functional alterations in 
tumors have also been found to cause a cascade of alterations in pathway networks 
(Sanchez-Vega et al., 2018). These alterations target pathways that are advantageous for the 
tumors and thus avoid targeting pathways that may lead to cellular death (Sanchez-Vega et al., 
2018). Identifying mRNA mediated dysregulated pathways through the analysis of large scale 
gene expression data has been done with TCGA data before but only with smaller numbers of 
cancer types that did not further consider the subtypes of these cancers or their intra-tumoral 
variation. In the present work, the Pathways of Topological Rank Analysis (PoTRA) algorithm 
was used to build correlation based gene networks from TCGA open-access data for 17 cancer 
types. Specifically, the PoTRA algorithm finds the correlation between each phenotypes gene 
expression set and the genes associated with each KEGG pathway then constructs networks for 
each (Li, Liu and Dinu, 2018). Next, the dysregulated KEGG pathways with topologically 
ranked hub genes that are significantly different between normal and cancer are detected using 
Fisher’s exact test (Li, Liu and Dinu, 2018). Additionally, dysregulated KEGG pathways with 
significantly different distributions of PageRank scores of topologically ranked genes are also 
detected using the Kolmogorov–Smirnov test  (Li, Liu and Dinu, 2018). The PoTRA algorithm 
focuses on protein-coding messenger RNA (mRNA) mediated dysregulated pathways because 
mRNAs are part of the stress response at the translational level and also because they are 
mediators of carcinogenesis (Vaklavas, Blume and Grizzle, 2017).  

Other network based methods for detecting dysregulated pathways includes multi-omics 
approaches where both gene mutations with high coverage and no gene overlap (single 
nucleotide variants, copy numbers) and gene expression data are analyzed with the Dendrix and 
Markov Chain Monte Carlo algorithms (Wu, Dong and Wei, 2017). Additional approaches 
include using subnetworks from pathway interaction networks to detect dysregulated pathways 
by treating the detection as a feature selection task (Liu, Liu, Hao, Chen and Zhao, 2012). 
Another approach uses a combination of methylation and gene expression data with an 
autoencoder to identify dysregulated pathways by using the differential expression profiles of 
select genes (Visakh and Nazeer, 2018).  

 

MATERIALS AND METHODS 

Google Cloud and Docker were utilized in the creation of containers for multiple data 
management and analysis algorithms including PoTRA. Rabix composer was utilized to match 
these containers with their corresponding command lines and to port the applications to the 
Cancer Genomics Cloud where they were implemented The applications were applied to TCGA 
transcriptome profiling gene expression quantification HTSeq-FPKM normalized samples 
(normal and tumor) from 17 primary sites. These are Adrenal Gland, Bile Duct, Bladder, Brain, 
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Breast, Cervix, Colorectal, Esophagus, Head and Neck, Kidney, Liver, Lung, Pancreas, Prostate, 
Stomach, Thyroid and Uterus.  

The pre-processing algorithms removes the last few lines of statistical metrics from each sample, 
adds a header and then comma delimits the data. The purpose of the inner join stage is to join all 
of the tumor and normal data by their ENSG ID. The gene conversion stage converts the ENSG 
ID column in the joined data set to Entrez IDs. The random resampling stage creates new 
balanced data sets with equal numbers of tumor and normal samples. The PoTRA algorithm 
“PoTRA_CorN” applies Fisher’s exact and Kolmogorov-Smirnoff tests as well as calculates the 
number of hubs and edges to support the detection of dysregulated pathways.  

It also applies the PageRank algorithm (Page et al., 1999) to determine the topological 
importance of each pathway gene for both normal and tumor samples. Finally, it ranks the 
pathways and arrives at an average rank, then averages the metrics for the hubs and edges for 
normal and tumor samples. The post-processing aggregation algorithm applies the log sum 
function to p-values from the Fisher’s exact and Kolmogorov-Smirnoff tests. The list of 
significantly dysregulated pathways (Fisher’s Exact P-values < 0.05) from the 17 cancer projects 
were binned into six categories: Top 10, Top 20, Top 30, Top 40, Top 50, Top 60 then visualized 
in Neo4J, where they were further analyzed with the PageRank algorithm. Principal components 
analysis was performed to determine the distribution of normal and tumor for each primary site. 

Different combinations of normal and tumor were tested to determine the optimal sample sizes 
for both phenotypes so that the average standard deviation in the ranks of the dysregulated 
pathways was minimized (Linan, Wang and Dinu, 2018).  

 

 

The KEGG database was queried to determine how much of an overlap there is between the 
reported dysregulated pathways for each cancer type and the dysregulated pathways that were 
detected and ranked by PoTRA. A literature search was performed to validate the reported 
dysregulated pathways.  
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RESULTS 

TCGA Samples 

Only 17 primary sites of cancer had at least 3 samples for normal and tumor samples (Table 1). 
All of the HTSEQ FPKM normalized datasets that were created from the normal and tumor 
samples for each cancer type had more tumor samples than normal, and therefore were 
considered to be unbalanced.  

 

Cancer Subtypes 

Only 6 of the 17 cancer types (Table 1) have subtypes that are available as TCGA projects.  

1. Adrenal Gland: Adrenocortical Carcinoma (ACC), Pheochromocytoma and Paraganglioma (PCPG) 

2. Brain: Glioblastoma Multiforme (GBM), Brain Lower Grade Glioma (LGG) 

3. Colorectal: Colon Adenocarcinoma, Rectum Adenocarcinoma 

4. Kidney: Kidney Renal Clear Cell Carcinoma (KIRC), Kidney Chromophobe (KICH), Kidney Renal 
Papillary Cell Carcinoma (KIRP) 

5. Lung: Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC) 

6. Uterus: Uterine Carcinosarcoma (UCS), Uterine Corpus Endometrial Carcinoma (UCEC)  
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Among the 13 cancer subtypes, (Figures 2-4) the subtypes where normal and tumor groups 
overlap are: 

● ACC Tumor / PCPG Normal and Tumor 
● COAD/READ Normal - COAD/READ Tumor 
● GBM Normal - LGG Tumor  
● KICH/KIRC Normal - KIRC Tumor 
● KIRP Normal - KICH Tumor 
● LUAD/LUSC Normal - LUAD/LUSC Tumor 
● UCEC Normal - UCEC/UCS Tumor 

The subtypes with the most overlap between tumor groups are: 

● COAD and READ 
● KIRP, KIRC and KICH 
● LUAD and LUSC 
● UCS and UCEC 

The subtypes with the least overlap between tumor groups are: 

● ACC and PCPG 
● GBM and LGG 
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Dysregulated Pathways 

The results of the pan-cancer analysis are a list of ranked mRNA mediated dysregulated 
pathways for 17 cancer types. Thus the results (Figure 5) can be interpreted as how many binned 
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dysregulated pathways (logsum(Fisher’s Exact P-Value) < 0.05 and Rank >= 60) are associated 
with a cancer.   

The Pathways in cancer, mitogen-activated protein kinase (MAPK), Ras signaling pathways as 
well as the Axon guidance and Regulation of actin cytoskeleton pathways were the most 
represented in the Top 10 category for most dysregulated pathways. In KEGG, the Pathways in 
cancer network contains 15 signaling pathways, that also includes the MAPK signaling pathway 
(Kanehisa, Furumichi & Tanabe et al., 2017; Kanehisa, Sato & Kawashima et al., 2016; 
Kanehisa & Goto, 2000). The MAPK signaling pathway is highly conserved and involved in the 
regulation of several cellular functions such as proliferation, differentiation, migration and 
transformation (Lake et al., 2016; Kanehisa, Furumichi & Tanabe et al., 2017; Kanehisa, Sato & 
Kawashima et al., 2016; Kanehisa & Goto, 2000; Slattery et al., 2018). Similarly, the Ras 
signaling pathway controls the regulation of cellular processes such as proliferation, 
differentiation, migration, survival and growth (Kanehisa, Furumichi & Tanabe et al., 2017; 
Kanehisa, Sato & Kawashima et al., 2016; Kanehisa & Goto, 2000). The Axon guidance 
pathway regulates the formation of the neuronal network and includes the MAPK signaling and 
regulation of actin cytoskeleton pathways in the axon repulsion process  (Kanehisa, Furumichi & 
Tanabe et al., 2017; Kanehisa, Sato & Kawashima et al., 2016; Kanehisa & Goto, 2000). The 
Regulation of actin cytoskeleton pathway encompasses a number of processes that are vital for 
several cellular functions (Lee and Dominguez, 2010). The malfunction and disorganization of 
cytoskeletal proteins has been implicated in pathogenesis of many diseases and increased 
tumorigenicity (Segarra, Yavorski and Blanck, 2017).  

The KEGG pathway known as Pathways in cancer, is the most common pathway in the Top 10 
most dysregulated pathways in 11 of 17 TCGA cancer types. However, it was in the top 60 most 
dysregulated pathways for the Glioblastoma Multiforme and the Brain Lower Grade Glioma 
cancers. The MAPK signaling pathway is the most common (14 cancer projects / 17 total) and 
influential (PageRank score = 0.2034) among all of the significant topologically ranked 
dysregulated pathways for each of the 17 cancer projects (Table 2).  

The MAPK signaling pathway is in the top 10 most dysregulated pathways list for the following 
cancers: Breast Invasive Carcinoma (BRCA), Esophageal Carcinoma (ESCA), Head and Neck 
Squamous Cell Carcinoma (HNSC), Liver Hepatocellular Carcinoma (LIHC), Colon and Rectum 
Carcinomas (COAD and READ), Kidney Renal Clear Cell Carcinoma (KIRC), Kidney 
Chromophobe (KICH), Kidney Renal Papillary Cell Carcinoma (KIRP), Lung Adenocarcinoma 
(LUAD), Lung Squamous Cell Carcinoma (LUSC), Stomach Adenocarcinoma (STAD), Thyroid 
Carcinoma (THCA), Uterine Carcinosarcoma (UCS) and Uterine Corpus Endometrial 
Carcinoma (UCEC).  
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The second most common and influential pathways are Axon guidance and Ras signaling 
pathways (tie) (Table 2). The Ras signaling pathway is in the top 10 most dysregulated pathways 
list for the following cancers:  Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma 
(LUSC), Thyroid Carcinoma (THCA), Breast Invasive Carcinoma (BRCA). The Axon guidance 
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pathway is in the top 10 most dysregulated pathways list for the following cancers: Esophageal 
Carcinoma (ESCA) and Bladder Urothelial Carcinoma (BLCA).  
 

 

  

The third most common and influential pathway is Regulation of actin cytoskeleton (Table 2). 
The Regulation of actin cytoskeleton pathway is in the top 10 most dysregulated pathways list 
for the following cancers: Head and Neck Squamous Cell Carcinoma (HNSC) and Uterine 
Carcinosarcoma (UCS) and Uterine Corpus Endometrial Carcinoma (UCEC). 
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Dysregulated Signaling Pathways 

In the present study, the PoTRA algorithm detected the most dysregulated signaling pathways 
(by rank) in the pan-cancer analysis and those are the MAPK and PI3K-Akt signaling pathway. 
In the literature, the RAS-MAPK signaling pathways are the most critical in cancer because of 
the roles they have in relevant cellular processes such as survival, differentiation and 
proliferation (Masliah-Planchon, Garinet and Pasmant, 2015). Interestingly, the genes in the 
PI3K-Akt signaling pathway are highly mutated in cancer, and when dysregulated is found to 
support tumorigenesis, drug resistance and cancer progression (Mayer and Arteaga, 2016). 
Therefore, the frequent presence of the MAPK and PI3K-Akt signaling pathways (Table 3) in the 
list of dysregulated pathways detected by PoTRA, correlates with what is currently known in 
cancer. 
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The PI3K-Akt signaling pathway is among the most dysregulated pathways in cancer, previous 
studies have reported somatic mutations in this pathway for liver, lung, prostate, thyroid cancers 
and an adrenal gland cancer subtype known as paraganglioma (Samuels and Velculescu, 2004; 
Grozinsky-Glasberg et al., 2008; Grozinsky-Glasberg et al., 2010; Harthill et al., 2002). The 
PoTRA algorithm also detected this highly ranked dysregulated pathway in the aforementioned 
cancer types (Table 3). 

In a recent cancer study (Sikdar, Datta and Datta, 2016), a differential network analysis 
identified target pathways in several cancer sets from the International Cancer Genome 
Consortium (ICGC). The ICGC projects included Head and Neck Squamous Cell Carcinoma 
(HNSC), Lung Adenocarcinoma (LUAD) and Kidney Renal Clear Cell Carcinoma (KIRC). 
Overall, the study concluded that the PI3K-Akt and Ras signaling pathways are the most critical 
for HNSC, LUAD and KIRC (Sikdar, Datta and Datta, 2016). These results agree with the 
pan-cancer results (Table 3), with the exception of the TCGA HNSC project where the MAPK 
signaling pathway is the most dysregulated for this project. However, Ras signaling pathway 
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does include the MAPK signaling pathway in it’s collection of pathways as seen in the KEGG 
DB (Kanehisa, Furumichi & Tanabe et al., 2017; Kanehisa, Sato & Kawashima et al., 2016; 
Kanehisa & Goto, 2000). 

In the present study, the PoTRA algorithm identified the Rap1 signaling pathway as the most 
dysregulated signaling pathway for the stomach adenocarcinoma (STAD) project. In a recent 
TCGA study, the KIT gene was identified as a biomarker for STAD and was also found to 
activate the Rap1 signaling pathway (Pan et al., 2017). In the literature, the Rap1 signaling 
pathway is a key regulator of the multi-step process known as tumorigenesis, where the 3 major 
steps includes tumor cell migration, invasion, and metastasis (Zhang et al., 2017).  

Other cancers such as BLCA and CHOL, are associated with cancer pathways in the literature 
such as PI3K-Akt signaling (Zheng et al., 2017) and MAPK as well as PI3K-Akt signaling 
(Rizvi et al., 2015) respectively. In the present study, the PoTRA algorithm identified 
dysregulated pathways such as Phosphatidylinositol signaling for BLCA and TNF signaling for 
CHOL that contain the reported pathways in their KEGG pathway networks (Kanehisa, 
Furumichi & Tanabe et al., 2017; Kanehisa, Sato & Kawashima et al., 2016; Kanehisa & Goto, 
2000).  

In recent studies, the cancers CESC (Chen et al., 2016) and PAAD (Logsdon and Lu, 2016) are 
both strongly associated with the dysregulated pathways identified by the PoTRA algorithm in 
this work, Hedgehog and Ras signaling pathways, respectively.  

For the ACC (Maira et al., 2008) and PCPG cancers, the PI3K-Akt signaling pathway is a 
therapeutic target because it supports the proliferation of adrenocortical cancer cells 
(Zhikrivetskaya et al., 2017). The PoTRA algorithm also identified these pathways as the most 
dysregulated for these combined subtypes of adrenal gland cancer.  

 

Dysregulated Metabolic Pathways 

The purine metabolism pathway is the most significantly dysregulated metabolic pathway (by 
rank) in 8 out of the 17 cancer types (Table 4). Although the purine metabolic pathway supports 
cellular proliferation and it is currently a therapeutic target for cancers, it’s biochemical 
regulators are still not fully understood (Pedley and Benkovic, 2017). However, the study of 
these biochemical mechanisms and how purine metabolism is dysregulated has increased the 
potential for new therapeutic approaches (Pedley and Benkovic, 2017). Although the purine 
metabolism pathway has been a therapeutic target for several years, many of the current 
therapeutics suffer from toxicity and thus motivates the study of purine metabolism pathway 
regulation (Pedley and Benkovic, 2017). 
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A recent study of dysregulated metabolic pathways in BLCA, identified the Inositol phosphate 
metabolism pathway as one of the most dysregulated (Rodrigues et al., 2016). The PoTRA 
algorithm has also identified the Inositol phosphate metabolism pathway as one of the most 
dysregulated metabolic pathways for BLCA (Table 4).  

For the COAD and READ cancers, the dysregulation of the Glycerophospholipid metabolism 
pathway is associated with cancer cell proliferation and tumorigenesis (Yan et al., 2016). This 
metabolic pathway was also identified by the PoTRA algorithm to be the most dysregulated 
pathway for the COAD and READ cancers (Table 4).  

In the literature, the THCA cancer cells ensure their survival and proliferation by increasing 
their rate of glutamate metabolism to support their increasing need for glutamine (Guimaraes 
Coelho, Fortunato and Caravalho, 2018). Glutamate metabolism is part of the Pyrimidine 
metabolism network ​(Kanehisa, Furumichi & Tanabe et al., 2017; Kanehisa, Sato & Kawashima 
et al., 2016; Kanehisa & Goto, 2000)​ and involves the synthesis of purines and pyrimidines 
(Guimaraes Coelho, Fortunato and Caravalho, 2018). The PoTRA algorithm identified the 
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Pyrimidine metabolism pathway as the most highly ranked dysregulated pathway for the THCA 
cancer type (Table 4). 

In another study, ACC tumors increased their production of inositol phosphate as a result of an 
interaction between an AT1 receptor and phosphoinositidase C in NCI-H295R human cell lines 
(Parmar, Kulharya and Rainey, 2010). This finding correlates with PoTRAs identification of 
Inositol phosphate metabolism as the most dysregulated metabolic pathway for the ACC cancer. 

For cancers such as PCPG, the mechanisms associated with the aggressiveness of this cancer are 
still not fully understood (Fliedner et al., 2012). However, a previous study found that PCPG 
patients with succinate dehydrogenase gene (SDHx) mutations have increased levels of inositol 
polyphosphate phosphatase 1 in their aggressive cancer cells as well as primary high-grade 
tumors (Fliedner et al., 2012). Additionally, a recent metabolites study found significantly 
increased levels of myoinositol in patients that were found to have SDHx mutations prior to 
developing PCPG (Imperiale et al., 2015). Therefore, PoTRAs identification of the inositol 
phosphate metabolism pathway as the most dysregulated pathway for PCPG has biological 
support.  

Kidney renal cell carcinoma has three subtypes known as KIRC, KICH and KIRP (Li et al., 
2018). In a recent study, the xenobiotic metabolism pathway was dysregulated in all 4 stages of 
the KIRC cancer (Li et al., 2018). Previous studies have associated the dysregulation of the 
xenobiotic metabolism pathway with drug resistance in KIRC cancer patients (Mitsui et al., 
2015; Narjoz et al., 2014). Another recent study, found that the TCGA KIRC and KIRP project 
gene expression data that the xenobiotic metabolism pathways are indeed enriched (Schaeffeler 
et al., 2018). However, in the study, the enrichment score plot for the TCGA KICH project does 
not list xenobiotic metabolism as an enriched pathway (Schaeffeler et al., 2018).  

The PoTRA algorithm identified the metabolism of xenobiotics by cytochrome P450 pathway as 
the most dysregulated pathway for the combined KIRC, KICH and KIRP cancers (Table 4). In 
the literature, cytochrome P450 (CYP) is a drug metabolizing enzyme and is expressed in the 
kidneys and other tissues (Molina-Ortiz et al., 2014). In experiments, the CYP enzyme has been 
found to have important roles in solid tumor chemoresistance and has also been found to interact 
(activate/inactivate) with chemotherapies (McFadyen, Melvin and Murray, 2004; Molina-Ortiz et 
al., 2014).  

A recent BRCA study performed an integrated (proteomic and transcriptomic) enrichment 
analysis to determine if 228 untreated and primary BRCA tumor samples could be clustered into 
three metabolic groups (Mc1, Mc2 and Mc3) (Haukaas et al., 2016). The glycerophospholipid 
metabolic pathway is the most significantly different pathway between the subtypes Mc1 vs Mc3 
and among the most significantly different pathways between Mc1 vs Mc2  (Haukaas et al., 
2016). Therefore the glycerophospholipid metabolic pathway can be used to distinguish BRCA 
tumor subtypes (Haukaas et al., 2016). In the present study, the glycerophospholipid metabolic 
pathway was identified as the most dysregulated pathway for the TCGA BRCA project. 
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In a recent PAAD cancer study (Halbrook and Lyssiotis, 2017) proliferating cells used glutamine 
as the primary source of nitrogen and carbon, it was also found to maintain redox balance 
(Lyssiotis et al., 2013; Son et al., 2013). In redox balance, glutamine derived glutamate is 
utilized for glutathione synthesis (Halbrook and Lyssiotis, 2017). Another study identified 
glutathione as having a major role in cellular redox balance (DeBerardinis et al., 2007). Thus, the 
identification of the glutathione metabolism pathways as the most dysregulated pathway for the 
TCGA PAAD project has biological support.  

In the literature, the ESCA, GBM and LGG cancers have been reported to have dysregulated 
purine metabolic pathways (Zhu et al., 2017; Strickland and Stoll, 2017; Wang et al., 2017). This 
agrees with the PoTRA results where purine metabolic pathway is identified as the most 
dysregulated pathway for the ESCA, GBM and LGG cancers (Table 4).  

The CHOL cancer has been reported to have the N-glycan dysregulated pathway (Varki et al, 
2017). The biosynthesis of N-glycans is upregulated to meet the metabolic needs of the cancer 
cells, therefore it’s inhibition will result in the prevention of further tumor growth (Varki et al, 
2017). Thus, supporting PoTRAs identification of the N-Glycan pathway as the most 
dysregulated pathway for the CHOL cancer (Table 4).  

In a recent study the sphingolipid metabolic pathway was reported as dysregulated in the CESC 
cancer (Porcari et al., 2018). The dysregulation of the sphingolipid metabolic pathway may 
induce cellular processes known as apoptosis and cellular autophagy (Lizardo et al., 2017). This 
finding supports PoTRA’s identification of the sphingolipid metabolic pathway as the most 
dysregulated pathway in the CESC cancer (Table 4). 

Most Highly Ranked Dysregulated Pathways 

Pathways in cancer is the most common dysregulated pathway in 8 of 17 cancer types in the 
pan-cancer analysis, ranking in the top 10 (Table 5). Pathways in cancer encompasses a set of 
pathways often dysregulated in cancer, including MAPK, PI3K-Akt, TGFB and Jak-Stat 
signaling, etc (Kanehisa, Furumichi & Tanabe et al., 2017; Kanehisa, Sato & Kawashima et al., 
2016; Kanehisa & Goto, 2000). Therefore, it’s not surprising that multiple cancer projects were 
found to be associated with the pathway known as Pathways in cancer.  
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In the literature, the THCA cancer is associated with a dysregulated PI3K-Akt signaling pathway 
(Jin et al., 2013). The dysregulated PI3K-Akt signaling pathway supports the survival response 
in THCA cancer cells, therefore this pathway has served as a therapeutic target multiple times 
(Jin et al., 2013). This supports PoTRAs identification of this pathway as the most dysregulated 
for the THCA project (Table 5). 

In two recent studies, low fluid shear stress was found to induce tumor cell metastasis in cancer 
(Huang et al., 2018) and in at least one study, tumor metastasis was driven by the stimulation of 
the YAP1 gene, in the PRAD cancer (Lee et al., 2017). Thus supporting PoTRA’s conclusion 
that the fluid shear stress and atherosclerosis pathway is the most dysregulated pathway for the 
TCGA PRAD project (Table 5). 

In the BLCA cancer the Autophagy - animal pathway is dysregulated to support the survival of 
cancer cells during metabolic stress (Chandrasekar and Evans, 2016; Chen and Karantza, 2011; 
Leone and Amaravadi, 2013). Therefore, PoTRA’s identification of the Autophagy - animal 
pathway as the most dysregulated pathway in the TCGA BLCA project (Table 5).  
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In a recent TCGA study, oxidative phosphorylation is altered and targeted for inhibition in 
CHOL cancer (Farshidfar et al., 2017). Thus supporting PoTRA’s identification of the Vibrio 
Cholerae Infection pathway as the most dysregulated pathway in the TCGA CHOL project, 
because oxidative phosphorylation is part of the Vibrio Cholerae Infection pathway network 
(Table 5).  

Many cancer cells have a dysregulated Necroptosis pathway, this includes CESC cancer cells (Su 
et al., 2016). Cancer cells eliminate necroptosis mechanisms and/or develop resistance against 
them (Su et al., 2016). This supports PoTRA’s conclusion that the Necroptosis pathway is the 
most dysregulated pathway in the TCGA CESC project (Table 5).  

The dysregulated pathways Inositol phosphate metabolism and Purine metabolism for the ACC 
and PCPG as well as ESCA cancers were discussed in the Dysregulated Metabolic Pathways 
section. The dysregulated MAPK and Ras signaling pathways for the GBM and LGG as well as 
PAAD cancers were discussed in the Dysregulated Signaling Pathways section.  

  

DISCUSSION 

Carcinogenesis is induced by a combination of damaging environmental stresses that includes 
exposures to carcinogens, UV radiation and heat shock,  (NIH-NCI 2015; Sonenberg and 
Hinnebusch 2009) and intracellular cues such as the dysregulation of key pathway genes (Wilk 
and Braun, 2018). The purpose of the PoTRA algorithm is to use Google’s PageRank algorithm 
to find the hub genes in normal and tumor pathway networks, and to thus determine if there is 
truly a difference between these networks (i.e., determine if the pathway is dysregulated).  

Overall, the PoTRA tool can accurately identify dysregulated pathways even in tumor samples 
with intratumoral heterogeneity by using a majority-rules approach. Interestingly, tumors such as 
those from the TCGA projects ACC, PCPG and GBM, LGG have different gene expression 
profiles (as seen in PCA plots) yet are still associated with the same dysregulated pathways 
respectively.  

Also, the PoTRA algorithm can identify dysregulated pathways by using only protein-coding 
mRNA while other algorithms arrive at similar conclusions by using a multi-omics approach. 
The robustness of the PoTRA algorithm (i.e., the least average standard deviation in the ranks of 
the detected mRNA dysregulated pathways) can be guaranteed only if the dataset is balanced and 
has a minimum of 50 samples per phenotype. Thus, the most consistent ranks were found for the 
following primary sites: Breast, Colorectal, Kidney, Liver, Lung, Prostate and Thyroid. 
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FUTURE DIRECTION 

The PoTRA algorithm will continue to be developed so that it can utilize a more comprehensive 
and integrated approach to determine how that can impact the accuracy of dysregulated pathway 
identification. Additionally, visualizations for the graph networks will also be further developed.  

 

CONCLUSION 

The PoTRA algorithm accurately identified the dysregulated pathways associated with each 
TCGA cancer project. It was also easily used in the cancer genomics cloud and therefore is 
suited for large scale analyses.  
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