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Summary4

Divisive normalization has long been used to account for computations in vari-5

ous neural processes and behaviours. The model proposes that inputs into a neural6

system are divisively normalized by the total activity of the system. More recently,7

dynamical versions of divisive normalization have been shown to account for how8

neural activity evolves over time in value-based decision making. Despite its ubiq-9

uity, divisive normalization has not been studied in decisions that require evidence10

to be integrated over time. Such decisions are important when we do not have all11

the information available at once. A key feature of such decisions is how evidence is12

weighted over time, known as the integration ‘kernel’. Here we provide a formal ex-13

pression for the integration kernel in divisive normalization, and show that divisive14

normalization can quantitatively account for the perceptual decision making be-15

haviour of 133 human participants, performing as well as the state-of-the-art Drift16

Diffusion Model, the predominant model for perceptual evidence accumulation.17

Keywords: divisive normalization, evidence accumulation, computational modeling18

1 Introduction19

Divisive normalization has been proposed as a canonical computation in the brain [1]. In these20

models, the firing rate of an individual neuron is computed as a ratio between its response to21

an input and the summed activity of a pool of neurons receiving similar inputs. For example,22

activity of a visual cortex neuron fi responding to an input ui can be computed as the input23

divided by a constant S plus a normalization factor — the sum of inputs received by the total24

pool of neurons [1]:25

fi =
ui

S +
∑

j uj
(1)

Divisive normalization models such as described in equation 1 have been used successfully26

to describe both neural firing and behavior across a wide range of tasks — from sensory pro-27

cessing in visual and olfactory systems [2–5], to context-dependent value encoding in premotor28

and parietal areas [6]. For example, in the visual domain, divisive normalization explains sur-29

round suppression in primary visual cortex, where the response of a neuron to a stimulus in30
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the receptive field is suppressed when there are additional stimuli in the surrounding region [7].31

Analogously, in economic decision making, divisive normalization explains how activity in pari-32

etal cortex encodes the value of a choice option relative to other available alternatives instead33

of the absolute value [6]. More recently, dynamic divisive normalization models have been used34

to describe how neural activity in economic decision making tasks evolves over time [8, 9].35

Despite the success of divisive normalization models, they have never been studied in situa-36

tions that require evidence to be integrated over time. Such ‘evidence accumulation’ is important37

in many decisions when we do not have all the information available at once, such as when we38

integrate visual information from moment to moment as our eyes scan a scene.39

In the lab setting, evidence accumulation has typically been studied in perceptual decision40

making tasks over short periods of time. In one such task, called the Poisson Clicks Task [10],41

participants make a judgment about a train of auditory clicks. Each click comes into either42

the left or right ear, and at the end of the train of clicks participants must decide which ear43

received more clicks. The optimal strategy in this task is to ‘count,’ i.e. integrate, the clicks on44

each side and choose the side with the most clicks.45

A key feature of any evidence accumulation strategy is how evidence is weighted over time,46

which is also known as the ‘kernel’ of integration. For example in the optimal model of counting,47

each click contributes equally to the decision, i.e., all clicks are weighed equally over time. In48

this case, the integration kernel is flat — the weight of every click is the same. While such49

flat integration kernels have been observed in rats and highly trained humans [10], there is50

considerable variability across species and individuals. For example, [11] showed that monkeys51

exhibit a strong primacy kernel, in which early evidence is over weighed. An opposite, recency52

kernel, where early evidence is under weighed, was observed in humans [12, 13]. Recently, in a53

large scale study of over 100 humans, we found that different people use different kernels with54

examples among the population of flat, primacy and recency effects. Intriguingly, however, the55

most popular kernel in our experiment was a ‘bump’ shaped kernel in which evidence in the56

middle of the stimulus is weighed more than either the beginning or the end [14].57

In this work we show how dynamic divisive normalization [8] can act as a model for evidence58

accumulation in perceptual decision making. We provide theoretical results for how the model59

integrates evidence over time and show how dynamic divisive normalization can generate all of60

the four integration kernel shapes: primacy, recency, flat, and (most importantly) the bump61
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kernel which is the main behavioral phenotype in our task [14]. In addition, we provide ex-62

perimental evidence that divisive normalization can quantitatively account for human behavior63

in an auditory perceptual decision making task. Finally, with formal model comparison, we64

show that divisive normalization fits the data quantitatively as well as the state-of-the-art Drift65

Diffusion Model (DDM), the predominant model for perceptual evidence accumulation, with66

the same number of parameters.67

2 Results68

2.1 A divisive model of evidence accumulation69

Our model architecture was inspired by the dynamic version of divisive normalization developed70

by Louie and colleagues to model neural activity during value based decision making [8]. We71

assume that the decision is made by comparing the activity in two pools of excitatory units,72

Rleft and Rright (Figure 1a). These pools receive time varying input Cleft and Cright. In the73

Clicks Task (below), these inputs correspond to the left and right clicks, more generally they74

reflect the momentary evidence in favor of one choice over the other. An inhibitory gain control75

unit G, which is driven by the total activity in the excitatory network, divisively inhibits the R76

unit activity. The time varying dynamics of the model can be described by the following system77

of differential equations:78

τR
dRi
dt

= −Ri +
Ci

1 +G
(2)

79

τG
dG

dt
= −G+ ωI

N∑
i=1

Ri (3)

A decision is formed by comparing the difference in activity δ between the two R units80

δ = Rleft −Rright (4)

. Example simulated dynamics of the R and G units for punctate inputs (of the form used in81

the Clicks Task) are shown in Figure 1b. The model has three free parameters: τR, τG, and82

ωI . As is clear from this plot, the R unit activity integrates the input, C, over time, with each83

input increasing the corresponding R unit activity. In addition, closer inspection of Figure 1b84

reveals that the inputs have different effects on R over time — for example, compare the effect85
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of the first input on the right, which increases Rright considerably, to that of the last input on86

the right, which increases Rright much less. This suggests that the model with these parameter87

settings integrates evidence over time, but with an uneven weighting for each input.88
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Figure 1: Dynamic divisive normalization schematic and simulated model dynamics. (a)
Schematic of dynamic divisive normalization model. The two excitatory R units integrate
punctate inputs C respective to left and right. The inhibitory G unit receives the sum of
the two R unit activity weighted by ωI , and in turn divisively normalizes the input to R.
(b) Results of the model activity simulated with τR = 2.27, τG = 11.10, and ωI = 36.20

2.2 Dynamic divisive normalization generates different integra-89

tion kernel shapes90

How can we quantify the integration kernel — how much each piece of evidence weighs — given91

by a circuit that generates divisively normalized coding? We integrate the set of differential92

equations to provide an explicit expression for the integration kernel. We first consider the93

evolution of the difference in activity, δ, over time In particular, from equation (2) and (4), we94

can write95

τR
dδ

dt
= −δ +

∆C

1 +G
(5)

where ∆C is the difference in input,96

∆C = Cleft − Cright (6)
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We can then integrate equation 5 using the ansatz97

δ(t) = e−λRtδ̃(t) (7)

to compute the the following formal solution for δ as a function of time (for details of derivation98

see Methods Section 4.5):99

δ(t) =

∫ t

0
K(t, t′)∆C(t′)dt′, where K(t, t′) =

1

τR

exp(−(t− t′)/τR)

1 +G(t′)
(8)

This expression shows explicitly that the activity of the network acts to integrate the inputs100

∆C over time, weighing each input by the integration kernel function K(t, t′). Importantly,101

K(t, t′) represents the degree to which evidence ∆C at time t′ contributes to the decision.102

While clearly not a closed form expression for the integration kernel (notably K(t, t′) still103

depends on G(t)), equation (8) gives some intuition in how evidence is accumulated over time in104

this model. In particular, the kernel can be written as a product of two factors: an exponential105

function (Figure 2a left panel) and the inverse of the G activity (Figure 2a middle panel).106

The exponential function is increasing over time, and since G is increasing with time (Figure107

1b)), the inverse of G is decreasing over time. Under the right conditions, the product of these108

increasing and decreasing functions can produce a bump shaped kernel, Figure 2a right panel.109

More intuitively, we can consider integration kernel as being affected by two processes: the110

leaky integration in R and the increasing inhibition by G. If we consider the start of the train111

of clicks when G is small, the model acts as a leaky integrator (equation (2)), which creates a112

recency bias since earlier evidence is ‘forgotten’ through the leak. Over time, as G unit activity113

increases, G exerts an increasing inhibition on R, and when inhibition overcomes the leaky114

integration, later evidence was weighed less than the preceding evidence.115

These intuitions suggest that the shape of the integration kernel is determined by a balance116

between how fast the leaky integration in R happens (the rate of R) and how fast the inhibitory117

G activity grows (the rate of G). These two rates are determined by the the inverse of the time118

constants τR and τG respectively — i.e. when τ is large, the rate is slow. The balance between119

the rate of R and the rate of G can then be described as the ratio τR/τG — i.e. when τR is120

larger than τG, R activity is slower than G activity, and similarly; when τR is smaller than τG,121

R activity is faster than G activity.122
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Figure 2: How divisive normalization generates different integration kernel shapes. (a)
Example simulation demonstrates how the two components in the integration kernel K
(equation (8) combines to generate a bump shaped kernel. K (right panel) is a product
of an increasing exponential function (left panel) and the inverse of 1 +G (middle panel)
which is decreasing over time. (b) Simulations of primacy, bump, flat, and recency
integration kernels using decreasing log ratios of τR and τG to demonstrate that the
shape of the integration kernel is determined by a balance between the rate of the leaky
integration in R and the rate of the G inhibition.
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To investigate how integration kernels can change depending on a ratio between the rate of123

R and the rate of G, we simulated the integration kernel using different τR/τG ratios, and show124

that integration kernel shape changes from primacy, to bump, to flat, and then to recency as125

τR/τG decreases (Figure 2b). When τR/τG is much larger than 1, rate of integration is much126

slower than rate of inhibition by G. This inhibition suppresses input from later evidence, thus127

producing a primacy kernel. As τR/τG decreases towards one — τR decreases and τG increases,128

inhibition slows down and allows for leaky integration to happen, thus producing a bump kernel.129

When τR/τG reaches one, i.e. the two rates balances out, a flat kernel is generated. Finally,130

when τR/τG decreases to below one, leaky integration overcomes inhibition, generating a recency131

kernel.132

2.3 Humans exhibit uneven integration kernels in a perceptual133

decision making task134

To examine the model in the context of behaviour, we looked at behavioural data from 133135

human participants. Most of this data (108 subjects) was previously published [14]. We ob-136

served that a large cohort of human participants weighed evidence unevenly when performing137

an auditory decision making task adapted from Poisson Clicks Task [10]. In this task, on every138

trial participants listened to a train of twenty clicks over one second at 20 Hz (Figure 3a). Each139

click was on either the left or the right side. At the end of the train of clicks participants decided140

which side had more clicks. Participants performed between 666 and 938 trials (mean 750.8)141

over the course of approximately one hour. Basic behaviour in this task was comparable to142

that in similar perceptual decision making tasks in previous studies [10, 11]. Choice exhibited143

a characteristic sigmoidal dependence on net difference in clicks between left and right (Figure144

3b).145

We quantified the integration kernel, i.e. the impact of every click on choice, with logistic146

regression in which the probability of choosing left on trial t was given by147

logit(pleft at trial t) =

20∑
i=1

βclicki ∆Ci + βbias (9)

where ∆Ci was difference between left and right for the the ith click (i.e. ∆Ci = ∆Cleft,i −148

∆Cright,i, therefore, ∆Ci was +1 for a left click and -1 for right). The integration kernel was149
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Figure 3: Humans exhibit uneven integration kernels in a perceptual decision making
task. Task design, psychometric function, and different integration kernel shapes in
human participants. Participants listened to a train of twenty clicks coming in either the
left (L, black bars) or right (R, grey bars) ear for one second, and decided which side
had more clicks. (b) Psychometric curve — choice probability (probability of choosing
left) — showed sigmoidal relationship with difficulty (the difference in number of clicks
between left and right). Error bars indicate s.e.m. across participants. Size of grey dots
is proportional to number of trials. Dotted line indicates sigmoidal function fit. Shaded
area indicate s.e.m. across participants. (c) Integration kernel, as βclick

i s, estimated from
logistic regression (equation (9), averaged across all participants. (d) Plots of participants’
integration kernels grouped into four groups of different integration kernel shapes. All
shaded areas indicate s.e.m. across participants.
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quantified by the regression weights βclicki , and βbias characterized the overall bias.150

We found that participants weighed the clicks unevenly over time (repeated measures151

ANOVA on βclicki : F (19, 2508) = 34.47, p < 0.00001). Importantly, post-hoc Tukey’s test152

showed that the middle of the kernel was significantly higher than either the beginning or the153

end of the click (3rd–9th clicks were higher than the 1st click, and 10th–12th clicks were higher154

than 16th–20th clicks, p < 0.00001), which indicated that on average participants tended to155

weigh the middle of the click train more than the beginning or the end, forming a ‘bump’ shaped156

kernel (Figure 3c). This uneven kernel shape contributed as a source of approximately 27% of157

the total errors in participants’ choices (see Supplementary Materials S1 and Figure S1).158

To explore individual differences in integration kernels, we furthered quantified the shape of159

the integration kernel for each participant (for detailed description of categorization of integra-160

tion kernels into shapes, see Supplementary Materials S2 and Figure S2). Specifically, we found161

that participants exhibited one of four distinct kernels: bump (n = 71, 53%), primacy (n = 41,162

31%), flat (n = 16, 12%), and recency (n = 5, 4%) (Figure 3d).163

2.4 Dynamic divisive normalization accounts for different inte-164

gration kernels in human behavioural data165

To investigate whether our divisive model could account for the range of integration kernels ob-166

served in human behavior, we fit the model to participants’ choices using a maximum likelihood167

approach. To fit the model to human behavior we assumed that a choice is made by comparing168

the activity in the two R units (i.e., δ = Rleft − Rright) with some noise, parameterized by σ,169

and an overall side bias (i.e. overall bias to either left or right). We also added an additional170

offset parameter µ to the kernel. With equation (8), the probability of choosing left is given by171

logit(pleft) = δ′(t)/σ + bias, where δ′(t) =

∫ t

0
(K(t, t′) + µ)∆C(t′)dt′ (10)

We computed the probability of a choice on a given trial at t = T , where T is the time at the172

end of the stimulus. The model has a total of six free parameters (τR, τG, inhibition weight ωI ,173

noise σ, offset µ, and an overall bias). Using parameters that best fitted to each participant’s174

choice, we first reconstructed integration kernel from divisive normalization for each participant175

from the kernel function (equations (8) and (10)). Divisive normalization can account for all176
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Figure 4: Dynamic divisive normalization accounts for integration kernels and psycho-
metric curves in human participants. (a) Integration kernels generated by divisive nor-
malization model fitted to human participants’ choices, compared to human integration
kernels. Plots are grouped into groups of four different integration kernel shapes. Grey
line indicates human integration kernels. Red line indicates model generated kernels.
All shaded areas indicate s.e.m. across participants. (b) Psychometric curves generated
by divisive normalization model compared to human psychometric curve. Grey circle
indicates human psychometric curve. Red circle indicates model generated psychometric
curve. Error bars indicate s.e.m. across participants. (c) Log ratios of fitted τR and τG
values averaged within each integration kernel shape group. Log ratios of fitted τR and τG
change significantly across kernel shape groups (∗∗∗: one-way ANOVA F (3, 129) = 25.06,
p < 0.001). Error bars indicate s.e.m. across participants within each group.
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four types of integration kernel in human participants (Figure 4a and Supplementary Figure177

S3). We also used divisive normalization to generate simulated choices for each participant for178

each trial using the best fitting parameters, and showed that the resulting psychometric curve179

also matched well to that of human participants (Figure 4b and Supplementary Figure S4). The180

distribution of best fitted parameters is plotted in Supplementary Figure S5.181

Our simulations in the previous section suggested that by shifting the balance between the182

integration and inhibition time constants (the ratio τR/τG), divisive normalization can generate183

the four types of kernel. We therefore examined the fitted parameter values in terms of τR/τG.184

As shown in Figure 4c log(τR/τG) is significantly different across kernel shapes (one-way ANOVA185

F (3, 129) = 25.06, p = 8 × 10−13). In particular, post-hoc Tukey test showed that log(τR/τG)186

in participants with bump, primacy, and flat kernels are significantly different from each other.187

Participants with bump or primacy kernels also have a significantly different log(τR/τG) from188

participants with recency kernel.189

2.5 Dynamic divisive normalization performs as well as Drift190

Diffusion Model does in formal model comparison191

Finally, to demonstrate that divisive normalization is comparable to an established model for192

such evidence accumulation tasks, we compared our model quantitatively with state-of-the-art193

Drift Diffusion Model (DDM) developed by Brunton, et al[10].194

In its simplest form, the DDM assumes that an accumulator integrates incoming evidence195

over time (for example in our task the evidence +1 for a left click and -1 for a right click), with196

some amount of noise σa added at every time step. In addition, a bias term is added to describe197

an overall bias to choosing either left or right. In an interrogation paradigm such as ours, a198

decision is made by comparing the accumulator activity with the bias when the stimulus ends,199

e.g. in our task, if the accumulator activity is larger than the bias, the model chooses left.200

Later work added a ‘memory parameter’ λ to describe the extent to which the model is201

‘forgetful,’ or ‘impulsive’ [15]. In particular a leaky accumulator (λ < 0) ‘forgets’ previous202

evidence and exhibits recency effect, while an impulsive accumulator (λ > 0) overweights early203

evidence and exhibits a primacy effect. When there is no memory noise (λ = 0), the integration204

kernel is flat.205
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Brunton and colleagues extended this standard DDM to include additional processes [10]:206

First, a bound, B, that describes the threshold of evidence at which the model makes a decision.207

In the context of an interrogation paradigm, evidence coming after the bound has been crossed208

is ignored. Second, a sensory adaptation process which controls the impact of successive clicks209

on the same size. This process is controlled by two adaptation parameters: 1) the direction of210

adaptation φ, which dictates whether the impact of a click on one side either increases (φ > 1)211

or decreases (φ < 1) with the number of clicks that were previously on the same side; and 2) a212

time constant τφ, that determines how quickly the adapted impact recovers to 1.213

Overall the Brunton model has six free parameters — neuronal noise, memory noise, bound,214

two parameters controlling sensory adaptation, and bias. We fit these parameters using the215

maximum likelihood procedure described in [10] and following code from [16]. We generated216

choices for each participant using the best fitting parameters, and computed an integration217

kernel for each participant using these model generated choices.218

We found that divisive normalization can account for the behavioral data as well as the219

Brunton DDM can, both in formal model comparison using log likelihood, AIC, and BIC (Ta-220

ble 1), and in integration kernel and choice curve (Supplementary Materials S5 and Figure221

S7). Importantly, we show that the full Brunton DDM as reported in [10] with nine param-222

eters accounts for the behavioral data equally well (Supplementary Materials S5 and Figure223

S8), suggesting that increasing the number of parameters did not improve model performance224

significantly. We also show that the standard form of DDM without bound or sensory adap-225

tation does not account for participants’ choices as well as divisive normalization, even after226

accounting for the number of parameters with AIC and BIC (Supplementary Materials S5, Fig-227

ure S6, and Table S1), suggesting that decreasing the number of parameters worsens the model228

performance. This result that divisive normalization can account for behavior as well as DDM229

can further supports divisive normalization as a model for evidence accumulation.230

model log likelihood AIC BIC

Divisive normalization (6 param) -357.8 727.5 755.2
Brunton et al. DDM (6 param) [10] -358.5 729.5 756.8

Table 1: Dynamic divisive normalization performs as well as Drift Diffusion Model does
in formal model comparison. Comparison of log likelihood, AIC, and BIC scores between
divisive normalization and DDM.
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3 Discussion231

In this work we proposed dynamic divisive normalization as a model for perceptual evidence232

accumulation. Theoretically, we provided a formal expression for the integration kernel —233

how this model weighs information over time — and how the shape of integration kernel is234

determined by the ratio of time constants within the model. Experimentally, we showed how235

dynamic divisive normalization can account for the integration kernels of human participants in236

an auditory perceptual decision making task. In addition, with quantitative model comparison,237

we show that dynamic divisive normalization explains participants’ choices as well as the state-238

of-the-art Drift Diffusion Model (DDM), the predominant model for such perceptual evidence239

accumulation tasks. Together, these results suggest that evidence accumulation can arise from240

a divisive normalization computation achieved through the interactions within a local circuit.241

While our findings suggest that our model accounts well for human behavior in this one242

task, an obvious question is whether dynamic divisive normalization is at play in other types243

of evidence accumulation and in other decisions? For example, the drift diffusion model has244

been used to model evidence accumulation in a number of paradigms (from auditory clicks245

[10, 16, 17], to visual discrimination [18–20], to random dot motion [21–24]). Likewise the246

DDM can account for choice and reaction time data in quite different settings such as memory247

retrieval [25], cognitive control [26], and economic and value-based decision making [27–32].248

Is divisive normalization also at play in these cases? If divisive normalization is a canonical249

neural computation, then the simple answer is ‘it must be,’ but whether its influence extends250

to behavior is largely unknown (although see the emerging literature on divisive normalization251

in economic and value-based decisions [6, 8, 33]).252

If people are using divisive normalization in these decisions then what computational pur-253

pose does it serve? From a computational perspective, the DDM is grounded in the sequential254

probability sampling test (SPRT) which is the optimal solution to evidence accumulation prob-255

lems for two-alternative decisions under certain assumptions [21, 34]. Is divisive normalization256

optimal under other decision making constraints? In this regard an intriguing finding by Tajima257

and colleagues suggest that divisive normalization may be almost optimal for multi-alternative258

decisions [35]. Other advantages of divisive normalization may be its ability to encode the state259

of the accumulator over a wide dynamic range of evidence [1, 36], or its relation to optimal260

Bayesian inference in some cases [37]. Of course an alternate account is that divisive normal-261
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ization is necessary for other functions (e.g. balancing excitation and inhibition [1]) and the262

behavior we observe is simply the exhaust fumes of this function leaking out into behavior.263

At the neural level, an obvious question is whether our neural model can explain neural264

data? In this regard it is notable that our model was adapted from Louie et al.’s model of265

lateral intraparietal (LIP) area neurons [8]. LIP has long been thought to contain a neural266

representation of the state of the accumulator [38–40] and it is likely that, just like Louie’s267

model accounts for the firing of LIP neurons in his task, our model may well be consistent268

with many of these past results. However, the accumulator account of LIP has recently been269

challenged [41–44] and other areas in prefrontal cortex [45–48] and striatum [49] have been270

implicated in evidence accumulation. Whether our divisive normalization explains neural firing271

in these areas is unknown.272

Finally, we note that other neural network models of evidence integration have also been273

proposed, perhaps most importantly the model of Wang [50]. In its simplest form, the Wang274

model also considers two mutually inhibiting units that, superficially, look similar to the R units275

in Figure 1. However, the dynamics of the Wang model and the way it makes decisions are quite276

different. In particular, the mutual inhibition is calibrated in such a way that the Wang network277

has two stable attractor states corresponding to the outputs of the decision (e.g. left or right).278

The input, combined with the dynamics of the network, pushes the network into one of the two279

attractor states, which corresponds to the decision the network makes. Because the attraction280

of an attractor gets stronger the closer the network gets to it, the initial input to the model281

has a strong effect on the ultimate decision leading to a pronounced primacy effect in the Wang282

model. In contrast to Wang attractor model, our dynamic divisive normalization is essentially283

a line attractor network, with a single fixed point in A-G space which is stable for all values284

of δ (Supplementary Materials S6). This structure allows divisive normalization to exhibit a285

number of different integration kernels as shown in Figure 2 depending on the parameters.286

In sum, dynamic divisive normalization can account for human behavior in an auditory287

perceptual decision making task, but much evidence remains to be accumulated before we can288

be sure that this model is correct!289
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4 Methods290

4.1 Participants.291

188 healthy participants (University of Arizona) took part in the experiment. We analyzed292

the data from 133 participants (55 participants were excluded due to poor performance —293

accuracy lower than 60%). All human participants provided informed written consent prior to294

the experiment, and both experiments were approved by the local ethics committee.295

4.2 Experimental procedures.296

Participants made a series of auditory perceptual decisions. On each trial they listened to a297

series of 20 auditory “clicks” presented over the course of 1 second. Clicks could be either ‘Left’298

or ‘Right’ clicks, presented in the left or right ear. Participants decided which ear received the299

most clicks. In contrast to the Poisson Clicks Task [10], in which the click timing was random,300

clicks in our task were presented every 50 ms with a fixed probability (p = 0.55) of occurring301

in the ‘correct’ ear. The correct side was determined with a fixed 50% probability.302

Participants performed the task on a desktop computer, while wearing headphones, and303

were positioned in chin rests to facilitate eye-tracking and pupillometry. They were instructed304

to fixate on a symbol displayed in the center of the screen, where response and outcome feedback305

was also displayed during trials, and made responses using a standard keyboard. Participants306

played until they made 500 correct responses or 50 minutes of total experiment time was reached.307

4.3 Psychometric curve.308

Psychometric curves show the probability of the participant responding leftward as a function309

of the difference between the number of left clicks and the number of right clicks Cleft−Cright.310

The identical procedure was used to produce model-predicted curves, where the model-predicted311

probability of choice on each trial was used instead of the participants’ responses.312

4.4 Integration kernel.313

To measure the contribution of each click to the participant’s choice on each trial (Figure 2A),314

we used logistic regression given by logit(Y ) = βX, where Y ∈ {0, 1} is a vector of the choice315
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on each trial and X is a matrix in which each row is the twenty clicks (∆C = Cleft −Cright) on316

that trial, coded as +1 for left and -1 for right. The identical procedure was used to produce317

model-predicted integration kernels, where the model-predicted choice on each trial was used318

instead of the participants’ responses.319

4.5 Derivation of kernel function of divisive normalization320

The model and the dynamical equations for R and G are described in the main text. These are321

reproduced here:322

τR
dRi(t)

dt
= −Ri(t) +

Ci(t)

1 +G(t)
(1)

323

τG
dG(t)

dt
= −G(t) + ωI

N∑
i=1

Ri(t) (2)

From equation (1) we can consider how the difference in activity δ(t) = Rleft(t) − Rright(t)324

changes over time:325

τR
dδ(t)

dt
= −δ(t) +

∆C(t)

1 +G(t)
(3)

where ∆C(t) = Cleft(t)− Cright(t) describes the difference in input over time.326

To derive a formal expression for the kernel function, we integrate equation (3) using the327

ansatz:328

δ(t) = e−λtδ̃(t) (4)

Taking the derivative of (4) and multiplying both sides with τR, we get:329

τR
dδ(t)

dt
= −τRλe−λtδ̃(t) + τRe

−λtdδ̃(t)

dt
(5)

Combining equations (3), (4), and (5), we get:330

λ = 1/τR (6)

17

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/598789doi: bioRxiv preprint 

https://doi.org/10.1101/598789
http://creativecommons.org/licenses/by-nc-nd/4.0/


τRe
−λtdδ̃(t)

dt
=

∆C(t)

1 +G(t)
(7)

Integrating equation (7) we get:331

δ̃(T ) =
1

τR

∫ T

0

eλt∆C(t)

1 +G(t)
dt (8)

Substituting equation (8) back into equation (4), we get332

δ(T ) =
1

τR

∫ T

0

exp(−(T − t)/τR)

1 +G(t)
∆C(t)dt (9)
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Supplementary Materials468

S1 Errors contributed by uneven integration kernel469

To understand how much error an uneven integration kernel introduces, we estimated error470

rates using simulations that keep the uneven integration kernel as the only source of error.471

We first used logistic regression to estimate the regression weights of each click for each472

participant, as described in Main Text equation (9), with the equation replicated here:473

logit(pleft at trial t) =
20∑
i=1

βclicki ∆Ci + βbias (1)

βclicki is the weight of the ith click on choice, and βbias is the weight of an overall side bias (i.e.474

the weight of always choosing left).475

We then simulated participants’ choices by reversing the logistic regression — for each476

participant, using the estimated betas, we computed pleft, the probability of that participant477

choosing left on a given trial, using the same equation (equation (1)). We then reproduced the478

participant’s choices by randomly drawing from a binomial distribution with the computed pleft479

for each trial.480

Then we compared the error rate of the simulated choices to participants’ actual choices.481

We showed in the rightmost two data points in Figure S1 that we reproduced the same total482

error rate in simulations using the original estimated regression weights (20.6%) as the total483

error rate in human participants’ data (20.2%).484

We then removed the overall side bias by setting βside to be zero. We also removed overall485

noise by making the choices deterministic. That is, instead of randomly drawing from a binomial486

distribution using pleft, we asked whether logit(pleft) at a given trial is larger or smaller than zero:487

if logit(pleft) is larger than zero, choose left, and if logit(pleft) is smaller than zero, choose right.488

If logit(pleft) is equal to zero, then flip a coin with 50% probability. By removing these other489

sources of errors, we asked how much errors the uneven integration kernel shape contributes to.490

We showed that an uneven integration kernel shape contributed to 5.5% error rate (Figure S1),491

which accounted for 27.2% of the total error rate. We also showed that by removing the uneven492

integration kernel, simulations showed zero error rates.493
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Figure S1: Error rates from simulated choices compared to human participants. From
left to right: error rates of simulated choices with 1) no suboptimalities, 2) only uneven
integration kernel, and 3) original betas, and error rate of human participants.
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S2 Categorizing integration kernels into shapes494

To categorize the kernel for each participant into one of the four shapes, we fit polynomial495

functions with different degrees to participants’ choices, and selected the best fitting model with496

model comparison using the Akaike Information Criterion (AIC) to account for the different497

number of free parameters. In particular, we assume that the probability of choosing left at498

trial t is (the logit of) the weighted sum of clicks, where the weights are from a polynomial499

function, as shown in the following equation:500

logit(pleft at trial t) =
20∑
i=1

βpolyi ∆Ci , where βpolyi =
N∑
n=0

αni
n (2)

We fitted three different polynomial functions by changing N from 0 to 2: constant, linear, and501

quadratic. We then selected the best fitting function for each participant by comparing the fits502

from different polynomials with AIC. We categorized each participant’s integration kernel into503

one of the four shapes using the following criteria: (1) flat: kernel was best fit with the constant504

function; (2) primacy: kernel was best fit with linear function with a negative slope (α1), or505

with quadratic function with a minimum (α2 > 0) and the minimum is located later than the506

10th click, or with quadratic function with a maximum (α2 < 0) and the maximum is located507

earlier than the 2nd click; (3) recency: kernel was best fit with linear function with a positive508

slope, or with quadratic function with a minimum (α2 > 0) and the minimum is located earlier509

than the 10th click, or with quadratic function with a maximum (α2 < 0) and the maximum510

is located later than the 18th click; (4) bump: kernel that did not meet the previous three511

criteria (i.e. kernel was best fit with quadratic function and was neither primacy nor recency).512

Individual integration kernels and their categorizations are plotted in Figure S2.513

26

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/598789doi: bioRxiv preprint 

https://doi.org/10.1101/598789
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S2: Individual integration kernel plots. Colored lines are regression weights of
clicks from equation (9). Plots are sorted and color coded by kernel shape. Light grey
line shows smoothed integration kernel.
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S3 Individual plots of integration kernels and psychometric curves514

generated by divisive normalization515

Figure S3: Individual integration kernels generated by divisive normalization compared
to human integration kernels.
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Figure S4: Individual psychometric curves generated by divisive normalization compared
to human psychometric curves.
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S4 Histogram of fitted divisive normalization parameters516

Figure S5: Histogram of fitted divisive normalization parameters.
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S5 DDM517

S5.1 Standard DDM does not fit bump kernel518

We first tested how standard DDM fits to the behavioural data. Intuitively, the standard DDM519

(i.e. without a bound) should not be able to generate a ‘bump’ shaped integration kernel. The520

most standard form of DDM:521

da = C(t)dt+ σdW (3)

with only drift (input, i.e. clicks C) and diffusion (noise added by Wiener process W ), and522

without any bound, would predict that every piece of evidence over time is integrated with523

equal weight — i.e. a flat integration kernel. An extension can be added to the standard DDM524

in the form of a ‘memory noise’ to account for primacy or recency integration kernels as well.525

This ‘memory’ parameter λ arises out of leaky competitive accumulators (LCA) model under526

certain constraints [15, 21]:527

da = (λa+ C(t))dt+ σdW (4)

λ acts to maintain the memory of the evidence estimate. When memory is subtractive (λ < 0),528

DDM becomes leaky and earlier evidence is ‘forgotten’ and thus weighed less, creating a recency529

bias. When memory is additive (λ > 0), accumulator activity drifts exponentially over time,530

and the direction of the drift is determined by the initial stimulus, thus creating a primacy531

effect. When λ = 0, LCA (equation (4)) reduces to standard DDM (equation (3)).532

We fitted the standard DDM without bound to participants’ choices using a maximum533

likelihood approach. An analytical solution of the probability of choosing a certain side exists534

for DDM without bound under fixed decision time protocol [22]. Specifically, assuming the535

probability distribution of the initial accumulator state is Gaussian (with initial mean µ0 and536

initial variance v0), the probability distribution of the accumulator state at the end of the537

stimulus train is also Gaussian, and the mean and variance can be computed analytically.538

Thus, the probability of choosing one side is the cumulative normal distribution.539

We used maximum likelihood approach to fit these five parameters in LCA: initial mean µ0,540

initial variance v0, memory noise λ, noise σ, and an overall bias. We generated choices from541

the model using best fitting parameters. Integration kernels from DDM can be reconstructed542

by regressing the stimulus onto model generated choices using logistic regression (equation (9)).543
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Figure S6: Standard DDM fits

Confirming our intuition, we show that the standard DDM can produce a primacy, recency, and544

flat effect, but cannot fit to the bump kernel (Figure ??a).545

S5.2 6 parameter Brunton et al. DDM fits participants’ behaviour546

We then fitted the Brunton et al. DDM [10] to the behavioural data. The key differences547

between the Brunton et al. DDM and standard LCA model is the addition of two processes.548

The first is a ‘sticky’ bound — that is, a decision is made either at the end of the stimulus549

train, or at the time when the accumulator hits the bound, depending on which event happens550

earlier. The second is a sensory adaptation process which controls the actual impact of a click551
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(without adaptation the impact of every click will always be 1). The process is controlled by two552

parameters: 1) the direction of adaptation — either no adaptation, depression (the impact of553

each click is smaller than 1, or facilitation (the impact is larger than 1), and 2) a time constant554

that determines how quickly the adapted impact recovers to 1.555

Figure S7: Brunton 6 param DDM fits.

To fit the Brunton el al. model, the probability distribution of accumulator state evolves556

over time following a similar logic to the standard DDM. To model the bound in the probability557

distribution space, a ‘sticky’ bound is added to DDM such that when the probability mass hits558

the bound, it sticks to the bound. The evolution of the probability distribution for each trial559

has to be computed numerically, until the end of the stimulus. Similar to the case of standard560

DDM, the probability of choosing one side is the cumulative distribution of the probability561
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distribution at the end of the stimulus train. This cumulative distribution is also computed562

numerically. We fitted the model to participants’ choices using code provided in [16]. We show563

that Brunton DDM fits to all four integration kernel shapes.564

S5.3 9 parameter Brunton et al. DDM fits behaviour as well as 6 param565

does566

The original model reported in Brunton et al. [10] has three additional parameters: 1) an567

additional noise parameter σs that characterizes the noise added at each incoming stimulus (i.e.568

click), 2) a noise parameter σi that characterizes the amount of noise in the initial state of the569

accumulator, and 3) a lapse rate that characterizes the probability of a random response being570

made. We fitted the Brunton et al. DDM with the nine parameters to our behavioural data571

and show that the DDM fit to the data as well as the DDM with six parameters.572
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Figure S8: Brunton 9 param DDM fits.

S5.4 Formal model comparison573

model log likelihood AIC BIC

Divisive normalization (6 param) -357.8 727.5 755.2
Brunton et al. DDM (6 param) [10] -358.5 729.5 756.8
Brunton et al. DDM (9 param) [10] -357.7 733.1 774.7

Standard DDM [22] -364.2 738.5 761.6

Table S1: scores
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S5.5 Histogram of fitted parameters of 6 param Brunton DDM574

Figure S9: Histogram of fitted DDM parameters.
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S6 Attractor space of divisive normalization575

We show that there is one attractor in the A-G space where A is the total network activity:576

A = Rleft +Rright (5)

Since with our experimental design, there is always a click input at each time point (so577

either Cleft = 1 or Cright = 1), the sum of inputs into the network is constant at 1 over time.578

Thus, the set of differential equations for the A-G space are:579

τR
dA

dt
= −A+

1

1 +G
(6)

580

τG
dG

dt
= −G+ ωI

N∑
i=1

Ri = −G+ ωIA (7)

Analytically, a full proof for the existence of a unique equilibrium point that is asymptotically581

stable for general families of this set of differential equations was provided by Louie, et al. [8].582

Numerically, we produce plots of vector field and model trajectory to demonstrate the stable583

equilibrium point for divisive normalization in the A-G space (Figure S10).584
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Figure S10: Characteristic model dynamics simulated with τR = 1, τG = 1, and ωI = 20.
(a) Example model vector field. Arrows indicate instantaneous change in the activities of
the (A, G) pair for certain values of A and G. The vector field shows a stable equilibrium
point in the A-G space. (b) Example network activity trajectory corresponding to the
vector field in (a), indicated by red solid line. Grey and black dashed lines indicate the
nullclines of the two differential equations for A and G respectively. The nullclines show
values at which either A or G activity does not experience a change in activity (regardless
of change in the activity in the other component). The intersection of the two nullclines
is where neither the activity of A nor G changes, again indicating the stable equilibrium
point of the network.
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