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Abstract  
By following explicit instructions humans can instantaneously get the hang of tasks they have never 
performed before. Here, we used a specially calibrated multivariate analysis technique to uncover 
the elusive representational states following newly instructed arbitrary behavioural rules such as ‘for 
coffee, press red button’, while transitioning from ‘knowing what to do’ to ‘actually doing it’. Subtle 
variation in distributed neural activity patterns reflected rule-specific representations within the 
ventrolateral prefrontal cortex (VLPFC), confined to instructed stimulus-response learning in contrast 
to incidental learning involving the same stimuli and responses.  VLPFC representations were 
established right after first-time instruction and remained stable across early implementation trials. 
More and more fluent application of novel rule representations was channelled through increasing 
cooperation between VLPFC and anterior striatum. These findings inform representational theories 
on how the prefrontal cortex supports behavioural flexibility by enabling ad-hoc coding of novel task 
rules without recourse to familiar sub-routines 
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Introduction 
The prefrontal cortex (PFC) has been considered crucial for flexibly mastering the abundance of non-
routine problems we are often facing 1-5. The implementation of completely novel tasks for the very 
first time is a pivotal example of operating without routine solutions, as those are by definition 
unavailable 5,6.  Moreover, it is essential to acquire novel tasks as rapidly as possible to ensure 
efficient performance and sometimes even physical integrity and ultimately survival.  Humans are 
equipped with the highly developed ability of symbolic communication which is perfectly suited to 
acquire novel tasks in ‘one shot’ 7,8 simply by following explicit instructions. Thereby, more time-
consuming and potentially costly trial-and-error learning can be avoided 9-11.  

Earlier research has generated first insights into the neural basis of instruction-based learning or 
‘rapid instructed task learning’ 12-14. However, it has remained elusive whether and, if so, how the 
concrete rules of newly instructed tasks are initially represented in the human PFC right after their 
first-time instruction. By addressing these questions, the present study set out to inform 
representational theories of PFC functioning regarding the type and the timescale of task-related 
information coded within PFC regions.  Specifically, we sought to identify distributed neural activity 
patterns associated with subtle representational differences regarding newly instructed individual 
rule identities such as ‘if the word BUTTER is displayed on the screen, then flex the middle finger’ or 
‘if the word MONKEY is displayed on the screen, then flex the index finger’. To this end, we employed 
a newly developed multivariate pattern analysis technique (MVPA) specifically calibrated to uncover 
the rapidly evolving representational dynamics following novel rule instructions 15.  

Tracking these fine-grained representational dynamics is crucial for a comprehensive understanding 
of the rapid neural re-organization processes that are taking place right after first-time task 
instruction. Such rapid neural re-organization processes have been evidenced in terms of both mean 
activity dynamics 16-19 and connectivity dynamics 20-23.  Specifically, conventional univariate analysis of 
mean activity has shown that lateral PFC engagement was maximal right after instruction, followed 
by a rapid decline across the first few implementation trials 16,17,23. This was paralleled by increasing 
fronto-striatal functional connectivity 20,24. Together, these earlier observations suggested that short-
term task automatization processes enable increasingly fluent task implementation by support of 
increasing inter-regional cooperation 25,26.  

Crucially, however, based on general methodological considerations 27, mean activity and 
connectivity dynamics are uninformative regarding the rule-specific representational dynamics being 
expressed in spatially distributed activity patterns. These can only be uncovered via time-resolved 
MVPA and by testing a number of alternative scenarios. To start with, newly instructed task rules 
might be coded within prefrontal cortex right after their first time instruction. If so, the next question 
then regards the stability of these initially formed representations. One possibility is that initial 
representations are rapidly fading at the same pace as cognitive control requirements are decreasing 
(as evidenced by rapidly decreasing mean PFC activity). Alternatively, stable prefrontal rule 
representations might continue to be important for successful task implementation as their more 
and more fluent application is increasingly channeled through fronto-striatal inter-regional 
cooperation. A radically different possibility is that novel prefrontal task representations are not yet 
in place immediately after instruction but are instead being built over the first few implementation 
trials again based on increasing fronto-striatal cooperation but this time with a leading role of striatal 
areas. This would be consistent with results in non-human primates during trial-and-error learning 
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showing that successful rule acquisition occurred a few trials before rule-specific neural coding could 
be detected in the lateral PFC 28,29.  

Importantly, if any of these scenarios could be confirmed empirically, this provided first-time 
evidence for human PFC representing entirely novel task rules in the initial phase of task practice.  
This contrasts with existing MVPA studies, which have shown that prefrontal cortex regions flexibly 
code currently task-relevant information, but this was confined to already well-familiarized task 
features 4,30,31. A few pioneering studies have shown that such prefrontal representations are 
retrieved and re-cycled in the service of newly instructed tasks that rely on, or are recomposed of 
familiar task elements 32-34. Yet, as of now, it remains unknown whether similar regions code entirely 
novel task rules if these are not composed of familiar task elements.  

We conducted two inter-related fMRI experiment both involving a large number of different learning 
blocks each comprising a new and unique set of instructed stimulus-response (S-R) rules (see Figures 
1 and 2). MVPA was used to identify activity patterns sensitive to individual stimulus-response rule 
identities across the first few implementation trials (see Figure 3). This was done separately for each 
task block before aggregation across blocks.  

Besides the primary goal to examine rule-specific representational dynamics, experiment 1 was 
additionally designed to explore the relationship between the strength or integrity of prefrontal rule 
representations and the commission of performance errors. To this end, the proportion of 
performance errors was manipulating by varying the complexity or difficulty of S-R instructions. If 
performance errors were due to compromised integrity of S-R rule representations, a higher 
percentage of error trials included in the MVPA following more difficult instructions should imply 
weaker rule-specific activity patterns 35,36. Alternatively, according to the notion of ‘goal neglect’ 
asserting that ‘knowing’ is not necessarily the same as ‘doing’ 37,38, more complex instructions might 
induce more errors despite largely intact prefrontal rule representations. Instead, more complex 
instructions might absorb control resources that are then missing to prevent competing (e.g., 
perseverative) response tendencies from overriding the instructed response. In this case, rule-
specific activity patterns should remain unaffected by error rate differences induced by more or less 
complex instructions. 

Experiment 2 was designed as a follow-up to experiment 1 to specifically test the hypothesis that 
prefrontal cortex representations are confined to intentional learning conditions involving instructed 
stimulus-response rules as compared to an incidental learning control condition involving the same 
contingencies between stimuli and responses but without the necessity to memorize these 
contingencies for correct performance. 
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Figure 1. Stimulus-response (S-R) learning task used in experiment 1 exemplarily depicted for one of 
18 blocks per condition (easy and difficult). Each block consisted of an instruction phase and an 
implementation phase. During the instruction phase participants were presented with 4 (easy 
instruction) or 10 (difficult instruction) pairings between disyllabic nouns and manual responses. The 
vertical bars framing the nouns indicated the correct response (e.g. Bottle - left). During the 
subsequent implementation phase (here, selectively shown for the easy condition), each nouns was 
presented 4 times in random order without the vertical bars and participants had to respond as 
instructed. Irrespective of S-R rule difficulty (4 vs. 10 nouns in the instruction phase), a constant 
number of 4 different nouns was presented in the implementation phase.  At the end of each block, 
feedback specifying the percentage of correctly answered trials was displayed. 

 

bottle

Left

[ 16 Trials ]

water

Right

water

Right

100% 
correct

Performance 
Feedback

1. 2. 3.

[ … ]Implementation
Phase

Required
Response

Trial # 4.-16.

Left

Left

Middle

Right

|bottle |
Easy

Instruction
(4 S-R links)

|cattle |

|paper|

Difficult 
Instruction

(10 S-R links)

1000 ms

|tiger |

2000 ms

|picture|

| coffee|

|husband|

| water|

[ … ]

Instruction
Phase

or

Experiment 1

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/598276doi: bioRxiv preprint 

https://doi.org/10.1101/598276
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

 

Figure 2. Stimulus-response (S-R) learning task used in Experiment 2 exemplarily depicted for one of 
12 blocks per condition (instructed vs. control). As in experiment 1, each block consisted of an 
instruction phase and an implementation phase. The instructed condition was identical to the easy 
condition of experiment 1 (i.e., 4 instructed S-R rules) except that each S-R rule needed to be 
implemented 8 times instead of 4 times. In the control condition the response cues (i.e. the vertical 
bars) were omitted during the instruction phase and were instead presented during the subsequent 
implementation phase. At the end of each block, feedback specifying the percentage of correctly 
answered trials was displayed 
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Figure 3. Schematic illustration depicting how identity-specific multi-voxel pattern similarity was 
computed exemplarily for one learning stage in one learning block.  For illustrative purposes, only two 
stimuli (S1 and S2) each occurring twice are considered here (instead of 4 stimuli in reality). Bottom 
left: For each stimulus occurrence voxel-wise beta estimates (visualized by grayscale values) are 
arranged in vectors that constitute the basis of multi-voxel pattern correlations.  Bottom right: matrix 
values depict multi-voxel pattern correlations for all combinations of trials. Green cells denote 
correlations between same stimuli, orange cells denote correlations between different stimuli. Top 
right: Identity-specific pattern similarity is defined by significantly greater mean correlations in green 
cells compared to orange cells.  

 

 

  

S1
(1st)

S1
(2nd)

S2
(1st)

rS1xS2 = .10

multi-voxel pattern 
correlations

S2
(2nd)

Voxel
#

rS1xS1 = .82

multi-voxel activations 
(single-trial beta 
estimates) for each 
stimulus occurrence

identity-specific pattern similarity 
=

mean (correlations same stimulus)
minus

mean (correlations different stimuli)

identity-specific 
pattern similiarity

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/598276doi: bioRxiv preprint 

https://doi.org/10.1101/598276
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

RESULTS 

Behavioral performance (experiment 1) 
RTs and response accuracies from experiment 1 were analyzed with repeated measures ANOVAs. 
Each ANOVA included the independent variables stimulus repetition (with the levels 1 to 4) and 
instruction difficulty (with the levels easy and difficult).  Greenhouse-Geisser correction was applied 
where necessary. The results are visualized in Figure 4.  

The ANOVA for RTs revealed a significant RT decrease across stimulus repetitions (F3,192=224.87; 
p(F)<.001; ɳp

2=.78; linear contrast: F1,64=290.67 p(F)<.001; ɳp
2=.82) which was more pronounced for 

difficult compared to easy instruction blocks (F3,192=137.94; p(F)<.001; ɳp
2=.68; linear contrast: 

F1,64=252.69; p(F)<.001; ɳp
2=.80) on top of generally slower RTs (F1,64=175.15; p(F)<.001; ɳp

2=.73). 
Even at stimulus repetition 4, RTs were still significantly slower for difficult blocks relative to easy 
blocks (t=4.60; p(t)<.001).  

The ANOVA for response accuracies revealed a significant increase in accuracies across stimulus 
repetitions (F3,192=71.43; p(F)<.001; ɳp

2=.53; linear contrast: F1,64=111.52 p(F)<.001; ɳp
2=.64).This 

increase was more pronounced for difficult compared to easy instruction blocks (F3,192=80.14; 
p(F)<.001; ɳp

2=.56; linear contrast: F1,64=156.40; p(F)<.001; ɳp
2=.71) on top of generally higher 

accuracies for easy blocks than difficult blocks (F1,64=202.81; p(F)<.001; ɳp
2=.76). Even at stimulus 

repetition 4, accuracies were still significantly higher for easy blocks relative to difficult blocks 
(t=6.26; p(t)<.001).  

Accuracy was positively correlated with the progressive matrices intelligence score, both for easy 
instructions (r=.32; p=.005 one-tailed) as well as for difficult instructions (r=.35; p=.002 one-tailed). 
The correlation between the intelligence score and the accuracy difference between easy and 
difficult instructions showed a trend towards significance (r=-.19; p=.066 one-tailed) indicating that 
more intelligent participants suffered less from more difficult instructions relative to the easier 
instructions. Analogous correlations between accuracies and forward and backward simple digit span 
scores were all non-significant (all p(r)>.14).  
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Figure 4. Behavioral performance data for experiment 1 and experiment 2. Error bars represent 90% 
confidence intervals. 

 

Behavioral performance (experiment 2) 
The behavioral data from experiment 2 were analyzed with repeated measures ANOVAs including 
the independent variables stimulus repetition (with the levels 1 to 8) and instruction type (with the 
levels instructed and control). Greenhouse-Geisser correction was applied where necessary. The 
results are visualized in Figure 4. Entering mean response times (RT) as the dependent variable 
revealed a significant RT decrease across stimulus repetitions (F7,483=42.00; p(F)<.001; ɳp

2=.38; linear 
contrast: F1,69=79.25 p(F)<.001; ɳp

2=.54), which was more pronounced for instructed blocks compared 
to control blocks (F7,483=4.40; p(F)=.002; ɳp

2=.06; linear contrast: F1,69=6.93; p(F)=.010; ɳp
2=.09) on top 

of generally slower RTs (F1,69=181.17; p(F)<.001; ɳp
2=.72). At stimulus repetition 8, RTs were still 

significantly slower for instructed blocks relative to control blocks (t=12.34; p(t)<.001).  

Entering response accuracies as the dependent variable revealed a significant increase in accuracies 
across stimulus repetitions (F7,483=17.51; p(F)<.001; ɳp
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2=.42) on top of generally higher 

accuracies for control blocks than instructed blocks (F1,69=77.18; p(F)<.001; ɳp
2=.53). At stimulus 

repetition 8, accuracies were still significantly higher for control blocks relative to instructed blocks 
(t=5.40; p(t)<.001). 
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MVPA (experiment 1) 
ROI-based estimates of identity-specific activation patterns from experiment 1 were submitted to a 
4-factorial repeated-measures ANOVA including the independent variables learning stage (early vs. 
late) and difficulty (easy vs. diff) and additionally region (VLPFC vs. DLPFC) and hemisphere (left vs. 
right) in order to adequately account for potential regional differences 39. The results are visualized in 
Figure 5. This analysis yielded a significant overall identity-specific pattern similarity effect (F1,64=7.9; 
p(F)=.006; ɳp

2 = .11) which was significantly stronger for VLPFC than DLPFC (F1,64=13.1; p(F)<.001; ɳp
2 

= .17).  

There were no significant effects involving learning stage but a trend towards a smaller effect for late 
vs. early in the VLPFC compared to the DLPFC (F1,64=3.6; p(F)=.064; ɳp

2=.053). In order to test whether 
this trend might point towards a ‘true’ but small effect that was missed due to insufficient statistical 
power, we conducted an additional more powerful analysis by collapsing data across experiments 1 
and 2.  However, this analysis again did not produce reliable evidence for a significant influence of 
learning stage (for details see further below).  Also, there were no significant effects involving 
difficulty. If anything, contrary to the prediction of weakened rule representations, there was a trend 
towards a stronger identity-specific pattern similarity effect in the difficult condition compared to the 
easy condition (F1,64=3.3; p(F)=.074; ɳp

2=.049).  

The ROI-based findings were confirmed by searchlight-based MVPAs within each ROI, revealing a 
significant overall identity-specific pattern similarity effect specifically within the left VLPFC (MNI: -48 
5 23; t=5.09; pFWE<.001 and MNI: -45 32 11; t=4.66; pFWE<.001) and a trend in the same direction 
within the right VLPFC (MNI: 48 8 11; t=3.16; pFWE<.074). Again, there were no significant effects 
involving learning stage or difficulty.  

On the whole brain level, the searchlight MVPA confirmed for the left VLPFC that the overall identity-
specific pattern similarity effect was significant even after correction for the whole-brain volume 
(MNI: -48 5 23; t=5.09; pFWE=.005 and MNI: -45 32 11; t=4.66; pFWE=.028).  Additionally, this analysis 
revealed significant whole-brain-corrected effects in the left sensorimotor cortex (MNI: -39 -25 53; 
t=9.28; pFWE<.001) and in the left visual cortex (MNI: -15 -91 -7; t=6.52; pFWE<.001). There were no 
significant effects involving learning stage or difficulty. These findings are as expected and consistent 
with the coding of stimulus identity in the visual cortex and response identity in the left sensorimotor 
cortex, respectively (see Figure 6). 
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Figure 5. Summary of the ROI-based MVPA results for experiments 1 and 2. Error bars represent 90% 
confidence intervals. Significant differences are indicated by asterisks. (A) Identity-specific pattern 
similarities in experiment 1 collapsed across learning stages. (B) Identity-specific pattern similarities in 
experiment 2 collapsed across learning stages. (C) Identity-specific pattern similarities collapsed 
across experiments 1 and 2 broken by learning stages. Early learning stage pattern similarities are 
based on stimulus repetitions 1 and 2 whereas late learning stage pattern similarities are based on 
stimulus repetitions 3 and 4. (D) Identity-specific pattern similarities for experiment 2 broken by 
learning stages. Early learning stage pattern similarities are based on aggregated values for stimulus 
repetitions 1 and 2 and stimulus repetitions 3 and 4. Late learning stage pattern similarities are based 
on aggregated values for stimulus repetitions 3 and 4 and stimulus repetitions 7 and 8.  
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MVPA (experiment 2)  
Instead of reflecting S-R rule-specific representations, the findings of experiment 1 could in principle 
reflect representations of stimulus identity or response identity alone. In fact, this was very likely the 
case for the left sensorimotor cortex (response identity) and for the visual cortex (stimulus identity).  
Moreover, it remains unclear whether MVPA effects observed in higher-order brain regions like the 
VLPFC really indicated intentionally encoded S-R rules according to the explicit instruction or rather 
incidentally encoded S-R rules. To clarify this, experiment 2 included a control condition which was 
identical in terms of information content regarding stimuli, responses, and S-R contingencies. The 
only difference was that novel S-R rules were not required to be actively retrieved and hence 
intentional encoding was discouraged (while incidental encoding was still possible during the 
implementation phase).   

As in experiment 1, ROI-based estimates of identity-specific activation patterns were submitted to a 
4-factorial repeated-measures ANOVA including the independent variables learning stage (early vs. 
late), instruction type (instructed vs. control), and additionally region (VLPFC vs. DLPFC) and 
hemisphere (left vs. right) in order to adequately account for potential regional differences 39. The 
results are visualized in Figure 5. Note that different from experiment 1, this time the early learning 
stage comprised the mean across identity-specific pattern similarities computed for stimulus 
repetitions 1 and 2 and stimulus repetitions 3 and 4, respectively. The late learning stage comprised 
the mean across identity-specific pattern similarities computed for stimulus repetitions 5 and 6 and 
stimulus repetitions 7 and 8, respectively. The ANOVA yielded a significant main effect of instruction 
type (F1,69=4.49; p(F)=.038; ɳp

2 = .061) which was significantly stronger for VLPFC than DLPFC 
(F1,69=6.91; p(F)<.011; ɳp

2 = .091). There was no significant effect involving learning stage.  Unlike 
experiment 1, there was not even a trend towards an influence of learning stage when testing the 
relevant interaction involving stage, region, and instruction type (F1,69=.22; p(F)=.641; ɳp

2 = .003). 
Note that similar results were obtained when learning stage comprised all four non-aggregated levels 
(i.e. based on stimulus repetitions 1/2, 3/4, 5/6, and 7/8) instead of the two aggregated levels used in 
the primary analysis.  

Thus, the ROI-based MVPA confirmed the findings from experiment 1 and importantly showed that 
identity-specific MPVA effects are indeed specific of instructed S-R rules as compared to the control 
condition involving the same stimuli and responses under incidental S-R learning conditions. Notably, 
again consistent with experiment 1, the MVPA effects for instructed S-R learning relative to control 
were significantly stronger in the VLPFC compared to the DLPFC where an effect was virtually absent.  

These ROI-based findings were confirmed by searchlight-based MVPAs within each ROI revealing 
stronger identity-specific pattern similarity effects in the instructed condition than in the control 
condition specifically within the left VLPFC ROI (MNI: -36 17 26; t=3.51; pFWE=.025) and a trend in the 
same direction also within the right VLPFC (MNI: 60 14 14; t=2.90; pFWE=.134). On the whole brain 
level, the searchlight MVPA did not reveal additional regions exhibiting a main effect of instruction 
type.  Neither learning stage nor instruction-type had a significant influence on the searchlight 
results. Notably, testing for identity-specific activation patterns collapsed across instructed blocks 
and control blocks revealed the expected effects for both conditions alike in the sensorimotor cortex 
(MNI: -39 -25 50; t=10.48; pFWE<.0001) and the visual cortex (MNI: -15 -91 -4; t=5.1; pFWE=.003 and 
MNI: 21 -88 -4; t=4.67; pFWE=.02). These results are depicted in Figure 6 and confirm the findings from 
experiment 1. Importantly, different from the VLPFC findings which were highly specific for the 
instructed learning condition, visual cortex and sensorimotor cortex exhibited – as expected – 
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comparable effects both in the instructed learning condition as well as in the control condition. This 
is consistent with representations of stimulus identity and response identity, respectively. 

  

Figure 6. Results of the whole-brain searchlight MVPA testing for overall identity-specific pattern 
similarity effects. (A) Horizontal brain slices depicting the findings for the left sensorimotor cortex, the 
ventro-lateral PFC, and the visual cortex. For display purposes the map shows voxels with p<.001 
uncorrected. (B) Pattern-similarity effects broken by instruction difficulty (exp. 1) or instruction type 
(exp. 2). In addition to sensorimotor cortices and visual cortices, the white-matter volume is included 
as a control region to highlight the absence of analysis bias. For a comprehensive summary of ventro-
lateral PFC results see Fig. 5. Error bars represent 90% confidence intervals. 

 

MVPA (collapsed across experiments 1 and 2)  
Experiment 1 exhibited a non-significant trend towards weaker identity-specific pattern similarity for 
the late learning stage relative to the early learning stage. In order to test whether this trend might 
point towards a ‘true’ but small effect that was missed due to insufficient statistical power, we 
conducted an additional more powerful analysis based on data from both experiments. Data from 
experiments 1 and 2 were jointly analyzed including all the instructed conditions (i.e., omitting the 
control condition from experiment 2) for the early stage spanning stimulus repetitions 1 and 2 and 
the late stage spanning stimulus repetitions 3 and 4 (i.e., omitting stimulus repetitions 5/6 and 7/8 
from experiment 2). The results are visualized in Figure 5C. 
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ROI-based estimates of identity-specific pattern similarity were submitted to a 3-factorial repeated-
measures ANOVA including the independent variables learning stage (early vs. late), region (VLPFC 
vs. DLPFC), and hemisphere (left vs. right). Not surprisingly, this ANOVA again yielded a significant 
overall identity-specific pattern similarity effect (F1,134=9.37; p(F)=.003; ɳp

2 = .065) which was 
significantly stronger for the VLPFC than the DLPFC (F1,134=14.04; p(F)<.001; ɳp

2 = .095). Most 
importantly, refuting the preliminary trend observed in experiment 1, this latter effect was not 
significantly affected by learning stage (F1,134=.47; p(F)=.49; ɳp

2 = .004). All other ANOVA effects 
involving learning stage were also non-significant (all p>.40). Hence, overall, it seems relatively safe 
to conclude that identity-specific pattern similarity effects in the VLPFC are stable across learning 
stages. 

 

Univariate analysis (experiment 1) 
A complementary ROI-based univariate analysis for experiment 1 was based on condition-specific 
mean activity estimates which were submitted to a 4-factorial repeated-measures ANOVA including 
the independent variables stimulus repetition (1 to 4), difficulty (easy vs. diff), region (VLPFC vs. 
DLPFC), and hemisphere (left vs. right). The results are visualized in Figure 7. There was a significant 
main effect of stimulus repetition (F3,192=62.38; p(F)<.001; ɳp

2 = .29) reflecting a general linear 
activation decrease (linear contrast: F1,64=187.11; p(F)<.001; ɳp

2 = .39). A significant three-way 
interaction involving difficulty, region, and hemisphere (F1,64=7.20; p(F)=.009; ɳp

2 = .10) reflected 
stronger activation in the difficult condition relative to the easy condition which was especially 
pronounced in the left DLPFC.  This was further qualified by a significant four-way interaction 
additionally including stimulus repetition (F3,192=5.96; p(F)=.001; ɳp

2 = .09) reflecting a linearly 
decreasing influence of difficulty which was especially pronounced in the left VLPFC (linear contrast: 
F1,64=9.82; p(F)=.003; ɳp

2 = .13). 

 

Figure 7. Summary of the ROI-based mean activity results for experiments 1 and 2. Error bars 
represent 90% confidence intervals.  
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Univariate analysis (experiment 2) 
A complementary ROI-based univariate analysis for experiment 2 was based on condition-specific 
mean activity estimates which were submitted to a 4-factorial repeated-measures ANOVA including 
the independent variables stimulus repetition (1 to 8), instruction type (instructed vs. control), region 
(VLPFC vs. DLPFC), and hemisphere (left vs. right). The results are visualized in Figure 7. This ANOVA 
yielded significant main effects of instruction type (F1,69=5.31; p(F)=.024; ɳp

2 = .071) and stimulus 
repetition (F7,483=14.51; p(F)<.001; ɳp

2 = .174) indicating generally higher activation for the instructed 
blocks relative to the control blocks and generally decreasing activation across stimulus repetitions.  
Notably, however, a significant four-way interaction between all independent variables (F7,483=4.27; 
p(F)=.002; ɳp

2 = .058) indicated that the stronger activation for instructed blocks was linearly 
decreasing across stimulus repetitions, but to a different extent across ROIs and particularly 
pronounced for the left VLPFC (linear contrast: F1,69=10.54; p(F)=.002; ɳp

2 = .133).  

Functional connectivity analysis (experiment 2) 
Previous studies have reported increasing connectivity across stimulus repetitions between the LPFC 
and the anterior striatum under instruction-based learning conditions 20,24. The study design of the 
present experiment 2 offers the unique opportunity to explicitly test whether this effect is specific of 
instructed learning blocks compared to control blocks. Such a finding would additionally inform the 
MVPA results by suggesting that the repeated application of newly established VLPFC rule 
representations might be increasingly channelled through inter-regional cooperation between the 
VLPFC and the anterior striatum. 

Analogously to the earlier studies, we tested for a stronger functional connectivity increase from 
early learning trials (stimulus repetitions 1 and 2) to late learning trials (stimulus repetitions 7 and 8). 
The results are visualized in Figure 8. Using the left VLPFC as seed region, we specifically tested for 
significant beta-series correlation effects within an anatomically defined basal ganglia ROI comprising 
all of caudate nucleus, putamen, and pallidum.  This revealed the predicted effect in the anterior 
striatum (MNI: -6 14 -4; t=4.08; p(t)=.018 and MNI: 6 14 -7; t=4.11; p(t)=.016; FWE-corrected for the 
basal ganglia volume). There were no additional regions identified after correction for the whole 
brain volume. Note that also the striatal activation dynamics were as expected based on previous 
studies. Specifically, as visualized in Figure 8, there was a significant linear activation increase for 
instructed learning blocks relative to the control blocks for the anterior striatum cluster identified in 
the connectivity analysis (MNI: 6 14 -7; t=4.35; p(t)=.001 and MNI: -9 20 -7; t=4.53; p(t)=0.001 and 
MNI: 18 23 -7; t=4.96; p(t)<.001; all FWE-corrected for the ant. striatum volume). Together, these 
findings lend further support for an early practice-related increase in anterior striatal activity and 
connectivity specifically under instruction-based learning conditions as has been debated recently 
23,26. 
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Figure 8. Summary of the functional connectivity analysis results for the left VLPFC seed region based 
on single-trial beta-series correlations. The analysis tested for a functional connectivity increase from 
early learning trials (stimulus repetitions 1 and 2) to late learning trials (stimulus repetitions 7 and 8) 
which was stronger for instructed learning blocks than control blocks. (A)  Visualization of the 
significant effect in the anterior striatum. For display purposes the map shows voxels with p<.001 
uncorrected. (B) The detailed connectivity pattern for the anterior striatum cluster.  (C) Mean 
activations at each stimulus repetition level based on a conventional univariate analysis for the 
anterior striatum cluster. Error bars represent 90% confidence intervals.  

DISCUSSION 
The key finding from the time-resolved MVPA is that rule identity-specific representations were 
established immediately after the first-time instruction of completely novel S-R rules and continued 
to be involved throughout the first few implementation trials.  This effect was highly specific for the 
VLPFC and it was clearly not detectable in the DLPFC. Importantly, we could show that identity-
specific pattern similarity effects in the VLPFC were indeed confined to the intentional learning 
condition involving instructed S-R rules as compared to a control condition involving the same stimuli 
and responses under incidental S-R learning conditions. Moreover, the stable representation of rules 
within the VLPFC was paralleled by an increasing functional coupling between the VLPFC and the 
anterior striatum. This seems to suggest that the more and more fluent application of newly 
established rule representations is increasingly channelled through inter-regional cooperation during 
an early phase of short-term task automatization 25. Interestingly, the stability of rule representations 
within the VLPFC stands in stark contrast to the rapidly decreasing mean activity revealed by the 
univariate analysis. Moreover, while the multivariate pattern similarity effect was tightly confined to 
the VLPFC, the decreasing mean activity spread across VLPFC and DLPFC. This re-emphasizes the 
insight that mean activity results are unsuited to draw meaningful conclusions regarding the 
representational content of brain regions 27 and sets into perspective somewhat over-interpreted 
univariate analysis results we have reported earlier 16. 

The stability of VLPFC rule representations in the present study is distinctly different from 
observations reported by earlier electrophysiological studies in non-human primates in the context 
of trial-and-error learning 28,29. Those studies found that successful rule acquisition occurred (often 
quite abruptly) a few trials before rule-specific neural coding could be detected in the LPFC. In other 
words, even though overt behavior clearly suggested that a novel S-R rule had been successfully 
acquired, the lateral PFC did not seem to initially represent this rule. By contrast, anterior caudate 
neurons directly reflected improvements in behavioral accuracy 28. This suggests that under trial-and-
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error learning conditions and in non-human primates the anterior caudate rather than the lateral PFC 
might be the place where novel task rules are initially represented. Further research is necessary to 
clarify whether these differences in representational dynamics are due to (i) differences between 
trial-and-error learning and instruction-based learning, (ii) general differences between species, or 
(iii) regional differences between the VLPFC region (area BA 44/45) identified in the present study 
and the DLPFC region (area BA 9/46) selectively examined in the electrophysiological studies.  

Representations of newly instructed rules and familiar rules 
Our primary aim to track the initial representational dynamics of newly instructed task rules naturally 
required an ‘aggregation-free’ MVPA approach based on single-trial estimates associated with the 
trial-by-trial coding of individual S-R rule identities. This contrasts with earlier MVPA studies which 
relied in one way or the other on aggregation schemes either across time 40-45 or across individual 
rule identities 32,34,35,46,47. Aggregation across individual rule identities improves signal-to-noise ratio 
regarding representations of task features on a more abstract level, but this generalization comes at 
the cost of losing specificity regarding individual rule identities.  Similarly, aggregation across time, 
which typically involves aggregation across a large number of trials per rule identity, improves signal-
to-noise ratio regarding each rule identity. Hence, this approach is obviously unsuited to track rapidly 
evolving representational dynamics spanning only a few trials, but is instead suited to examine 
representations involving well-familiarized task rules or to track slow learning processes evolving 
across blocks of large numbers of trials per rule identity. 

Such aggregation-based studies could demonstrate that information regarding well-familiarized rule 
identities is flexibly represented within the prefrontal cortex under conditions that often require the 
prioritized implementation of one currently relevant task over competing alternative tasks 33,35,40-

43,48,49. This is consistent with similar findings reported in electrophysiological studies in non-human 
primates 3,50-52.  Overall these studies nicely show that the prefrontal cortex flexibly codes anything of 
current task relevance, including information regarding task-relevant stimuli, responses, perceptual 
and conceptual categories, and transformation rules like those required in typical stimulus-response 
tasks (Crittenden, Mitchell, & Duncan, 2016; Duncan, 2010; Fedorenko et al., 2013; Woolgar et al., 
2016). However, unlike the present study, these earlier conclusions were restricted to already well-
familiarized task features, and could hence not tell whether prefrontal representational flexibility 
also extends to completely novel tasks.   

A number of pioneering MVPA studies specifically focusing on instruction-based learning could show 
that representations of familiar task features can be retrieved and re-cycled in the service of newly 
instructed tasks.  One such study by Muhle-Karbe et al. 34 identified LPFC activity patterns associated 
with highly familiar categorization routines regarding house pictures vs. face pictures – but, 
importantly, not regarding the concrete stimulus-response rules (e.g., the instructed responses for 
each of two different faces) underlying a multitude of individual face or house categorization tasks 
each involving a unique set of stimuli. Similar conclusions apply to a related study 53.   Another 
approach pursued by Cole et al. 32,33 provided evidence for the principle of ‘rule compositionality’ see 
also 54,55. They showed that distributed activity and connectivity patterns of familiar task elements 
(e.g. same/different judgement or semantic categorization) were re-activated when these task 
elements were later combined with each other to construct a multitude of novel tasks defined by 
their specific combination and applied to a set of novel stimuli. Importantly, MVPA was based on 
aggregation over all those novel task compositions that shared one specific rule element. Hence, 
while being highly informative regarding the question of rule compositionality, this type of study 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/598276doi: bioRxiv preprint 

https://doi.org/10.1101/598276
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

does not speak to the question of how the identities of individual novel task compositions might be 
represented in the brain. The same holds for identities of entirely novel tasks that are not composed 
of familiar task elements and this is exactly the question that was answered by the present study.  

Rule representations and the complexity of S-R instructions 
An additional goal of experiment 1 was to explore the relationship between the strength or integrity 
of prefrontal rule representations and the extent of performance errors as a function of the 
complexity of S-R instructions. One of our original hypotheses was inspired by previous study results 
35,36 and presumed that most errors would be committed due to damaged representations of the 
originally instructed S-R rules. Hence, a higher proportion of errors in the more difficult condition 
should be associated with a weaker identity-specific pattern similarity effect. However, if anything 
there was a non-significant trend towards a stronger identity-specific pattern similarity effect in the 
more difficult condition. A possible explanation of this null finding is based on a radically different 
account related to the notion of goal-neglect 37,56 and could explain why the strength or integrity of 
prefrontal cortex representations remained unaffected by differences in instructed rule complexity.  
Alluding to the difference between ‘knowing’ and ‘doing’ 37,57, more complex instructions might 
induce more errors despite largely intact VLPFC representations. Instead, error rate might increase 
due to failures to correctly implement (‘doing’) correctly retrieved rules (‘knowing’). This is consistent 
with VLPFC housing ‘declarative’ rather than ‘procedural’ rule representations 58 possibly related to 
the concept of an ‘episodic buffer’ within working memory 37,59.  Implementation errors despite 
‘knowing better’ might occur when more complex instructions absorb additional control resources 
that are then lacking in order to prevent competing (e.g., perseverative) response tendencies from 
overriding the instructed correct response. Such a resource ‘depletion’ account would predict 
generally increased control effort following more complex instructions – including correctly 
performed trials. This prediction is indeed supported by the univariate analysis which revealed 
stronger mean activity in prefrontal cortex for more complex instruction blocks (paralleled by 
significantly increased response times). Additional support comes from the finding that response 
accuracies were positively associated with Raven’s progressive matrices intelligence scores but not 
with simple working memory span.  This seems to suggest that response errors were not so much 
related to the inability to memorize the instructions but rather to a more general cognitive control 
deficit reflected by the intelligence score. This is consistent with the observation that general 
intelligence is associated with goal neglect 37.    

General conclusions  
Our findings are suited to inform representational theories on how the prefrontal cortex supports 
behavioural flexibility. Specifically, we demonstrated that the VLPFC achieves flexibility not only by 
recycling established sub-routines in the service of novel task requirements but also by enabling the 
ad-hoc coding of novel task rules instantaneously after their first-time instruction and without 
recourse to established sub-routines. This refutes alternative accounts that would have predicted an 
incremental process of rule formation in the prefrontal cortex possibly driven by leading signals 
generated by striatal areas.  On the contrary, our findings suggest the reverse relationship between 
VLPFC and anterior striatum where the application of instantaneously established prefrontal rule 
representations is increasingly channelled through inter-regional cooperation with the anterior 
striatum. Future research is however needed to further clarify the relationship between striatal areas 
and prefrontal areas with respect to novel task learning under a greater variety of circumstances. In 
particular, this might include systematic explorations regarding (i) different types of intentional 
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learning such as trial-and-error learning vs. instruction-based learning, (ii) different age groups or 
different species, and (iii) different time scales.  
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Methods 

Participants 
The sample for experiment 1 consisted of 65 human participants (32 female, 33 male; mean age: 
24.2 years, range 19-33 years). Three additional subjects could not be used due to incomplete data 
collection. Part of the present dataset was used in a previous methods-oriented paper 15. The sample 
for experiment 2 consisted of 70 human participants (39 female, 31 male; mean age: 23.9 years, 
range 19-33 years). Two additional subjects could not be used due to incomplete data collection. All 
participants were right-handed, neurologically healthy and had normal or corrected vision.  The 
experimental protocol was approved by the Ethics Committee of the Technische Universität Dresden 
and conformed to the World Medical Association’s Declaration of Helsinki. All participants gave 
written informed consent before taking part in the experiment and were paid 10 Euros per hour for 
their participation or received course credit. 

Tasks 
Both experiments were based on modified versions of an established instruction-based learning 
paradigm 16. Generally, the participants worked through a series of different novel tasks blocks. In 
each task block they were required to memorize novel task instructions during an initial instruction 
phase during which response execution was not yet required. The instruction phase was followed by 
a manual implementation phase requiring task execution on a trial-by-trial basis by retrieving the 
previously encoded task rules from memory. In both experiments a task instruction comprised a set 
of novel stimulus-response (S-R) rule identities. The term ‘rule identity’ refers to a specific link 
between one unique stimulus and the response assigned to that stimulus. Each set of stimuli 
comprised either 4 or 10 written disyllabic German nouns which were mapped onto either 2 or 3 
different manual button press responses (index, middle, or ring finger of the right hand). The number 
of responses was varied in order to encourage the memorization of all S-R rules and to avoid 
excessive use of short-cuts like ‘these two stimuli require response A, hence all other stimuli require 
the other response’ 60. The number of task blocks requiring either 2 or 3 different responses was 
equally distributed across the different instruction conditions (easy/difficult in experiment 1 and 
instructed/control in experiment 2). 

The start of an impending instruction phase was announced by the German word for ‘memorize’ 
(‘Einprägen’) displayed in red for 2 s, followed by the presentation of the first instructed noun.  The 
start of the instruction phase announcement was delayed by a variable delay of 2 or 4 s relative to 
the start of a new measurement run or relative to the end of the preceding implementation phase. 
During instruction, the novel nouns were presented in rapid succession framed by two vertical bars 
to the left and to the right of the noun (see Figure 1). If a noun was closer to the left vertical bar, this 
indicated an index finger response. If a noun was closer to the right vertical bar, this indicated a ring 
finger response. If a noun was equally close to both vertical bars, this indicated a middle finger 
response. We only recruited right-handed subjects who were asked to use the right hand fingers for 
responding.  

During the manual implementation phase which directly followed the instruction phase, the stimuli 
were presented in pseudo-random order such that each stimulus was presented 4 times (experiment 
1) or 8 times (experiment 2).  Each implementation phase was announced by the German word for 
‘implement’ (‘Ausführen’) displayed in green for 2 s. There was no performance feedback after 
individual trials to avoid interference with reinforcement learning. The SOA varied randomly between 
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2 and 4 s in 0.5 s steps. The SOA interval was inserted before the start of a new trial to ensure that 
there was also random jitter between the end of the instruction phase and the beginning of the first 
implementation trial.  After a variable delay of 2 or 4 s relative to the end of the last trial, the 
implementation phase ended with a display (2 s) of the mean performance accuracy computed 
across the preceding trials.   

 

Experiment 1 specifics 
The aim of experiment 1 was twofold. First, we wanted to identify rule-specific neural 
representations with maximal statistical power and focused on the earliest phase of learning. We 
therefore realized a large number of 36 unique learning blocks each comprising only 4 repetitions of 
each of four stimuli. Second, we wanted to explore the relationship between the strength or integrity 
of prefrontal representations and the commission of performance errors. We therefore manipulated 
the complexity or difficulty of S-R instructions.  The two difficulty conditions only differed regarding 
the number of instructed S-R rules (4 vs. 10) but not regarding the number of actually implemented 
S-R rules (always 4).  In the difficult condition, 10 nouns were instructed and each was displayed for 1 
s. In the easy condition, 4 nouns were instructed and each was displayed for 2 s. With respect to the 
subsequent implementation phase, the two conditions were identical, i.e., in either case, 4 nouns 
were presented.  The subset of 4 out of 10 instructed nouns presented during the implementation 
phase of the difficult condition was selected such that 2 or 3 different responses were required 
equally often. Participants performed 18 blocks of each condition in pseudo-randomized order, 
which took approximately 40 minutes. Measurements were taken in three consecutive runs of ca. 13 
min duration, each comprising 6 blocks of each difficulty condition. Also, the random delay before 
the start of each novel instruction phase and the delay before performance feedback was pseudo-
randomized such that each SOA level occurred equally often for each difficulty condition. Before 
entering the scanner each participant completed a short practice session comprised of one novel task 
block for each difficulty condition with a separate stimulus set not used during the main experiment. 

After completion of the instruction-based learning experiment in the scanner, participants performed 
a computerized simple digit span task to determine individual simple working memory span scores 61. 
This score was chosen to obtain a relative pure measure of working memory storage in the absence 
of considerable executive control requirements.  Random sequences of digits were displayed on the 
screen, one digit every second and each digit displayed only once within a sequence. Following a 
sequence, as many question marks as digits were displayed on the screen and subjects were required 
to reproduce the digits either in the forward or backward order. The first sequence started with 3 
digits, followed by sequences of increasing number of digits (up to 10) if the previous answer was 
correct. If not, a new sequence with the same number of digits was displayed. If the answer was 
incorrect again, the test stopped. The final score was the maximal number of digits that was 
answered correctly.  

Finally, participants performed a computerized short version of the standard progressive matrices 
intelligence test using only the two most difficult matrix sets (D and E) out of all five sets 62. Each set 
comprised 12 matrices presented in progressively difficult order. The non-standardized intelligence 
score was the sum of correctly solved matrices. 
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Experiment 2 specifics 
Experiment 2 was designed as a follow-up to experiment 1 to specifically test the hypothesis that 
prefrontal cortex representations are confined to intentionally learned (here: instructed) S-R rules 
rather than incidentally learned S-R rules and further that these representations are not merely 
related to the identities of the involved stimuli or responses.  Therefore, experiment 2 included the 
easy condition only (i.e. 4 instructed and implemented S-R rules per task) and two types of conditions 
were realized, including an instructed learning condition (as in experiment 1) and a control condition. 
Different from the learning condition, in the control condition the instruction cues (the vertical bars) 
were omitted during the instruction phase but were instead presented together with the nouns 
during the implementation phase (see Figure 2). Hence, in the control condition no S-R rules could be 
memorized during the instruction phase and task implementation could rely entirely on the explicit 
response cues rather than memorized instructions.  Additionally, experiment 2 was designed to track 
the representational dynamics across a more extended practice period. Therefore, each noun was 
presented 8 times during the implementation phase (instead of 4 times in experiment 1). 
Measurements were taken in three consecutive runs (18 min each) comprising 4 blocks of each 
condition (instructed and control) in pseudo-randomized order, amounting to a total of 12 blocks per 
condition (total duration approximately 54 minutes). Before entering the scanner each participant 
completed a short practice session comprised of one task block for each condition with a separate 
stimulus set not used during the main experiment. Different from experiment 1, measures of working 
memory span and general intelligence were not taken. 

Behavioral data analysis 
Behavioral performance was assessed regarding mean response times for correct responses (RTs) 
and regarding response accuracies (proportion of correct responses).  Mean RTs and response 
accuracies were each analyzed with repeated measures ANOVAs. In experiment 1, response 
accuracies were especially relevant as a measure of representational integrity which was targeted by 
the manipulation of instruction difficulty.  Since there was no feedback provided after response 
execution, representational integrity might be quantified inadequately if accuracy was measured in 
‘objective’ terms with reference to the originally instructed response. The reason is that - in case the 
originally instructed response is not properly recalled – participants might generate subjectively 
defined rule representations based on the response that was actually executed for a specific stimulus 
irrespective of whether this was the originally instructed response.  To account for this, response 
accuracies were defined relative to the response that was executed upon the preceding occurrence 
of a specific stimulus.  Since there is by definition no response execution prior to stimulus repetition 
1, accuracy was in this case naturally defined relative to the instructed response, thus providing an 
‘objective’ accuracy measure. This definition of response accuracies was applied in both experiments. 

 

Imaging methods 

Data acquisition 
MRI data were acquired on a Siemens 3T whole body Trio System (Erlangen, Germany) with a 32 
channel head coil. Ear plugs dampened scanner noise. After the experimental session structural 
images were acquired using a T1-weighted sequence (TR = 1900 ms, TE = 2.26 ms, TI = 900 ms, flip = 
9°) with a resolution of 1 mm x 1 mm x1 mm. Functional images were acquired using a gradient echo 
planar sequence (TR = 2000 ms, TE = 30 ms, flip angle = 80°). Each volume contained 32 slices that 
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were measured in ascending order. The voxel size was 4 mm x 4mm x 4 mm (gap: 20%). In addition, 
field maps were acquired with the same spatial resolution as the functional images in order to 
correct for inhomogeneity in the static magnetic field (TR = 352 ms, short TE = 5.32 ms, long TE = 7.78 
ms, flip angle = 40°). The experiment was controlled by E-Prime 2.0.  

Preprocessing  
The acquired fMRI data were analyzed using SPM12 running on MATLAB R2016a. First, the functional 
images were slice-time corrected, spatially realigned and unwarped using the acquired field maps. 
Each participant’s structural image was co-registered to the mean functional image and segmented. 
Spatial normalization to MNI space was performed by applying the deformation fields generated by 
the segmentation process to the functional images (resolution:  3 mm x 3 mm x 3 mm). The images 
were not additionally smoothed prior to GLM estimation in order to suit the planned MVPA 63. 
Instead each subjects’ images were smoothed with 6 mm FWHM after the MVPA was completed. 

Voxelwise single-trial BOLD estimation 
Voxel-wise BOLD activation was estimated based on the General Linear Model (GLM) approach 
implemented within the SPM12 framework using a first-order auto-regressive model and including a 
1/128 Hz high-pass filter in experiment 1 and a 1/256 Hz high-pass filter in experiment 2 in order to 
accommodate different learning block lengths. During GLM estimation SPM’s implicit analysis 
threshold was switched off and instead all non-brain voxels were masked out using SPM’s 
intracerebral volume mask ‘mask_ICV.nii’. This procedure was chosen to enable group level statistics 
for regions affected by susceptibility-induced signal loss in a few subjects.   

BOLD activations during the implementation phase were modeled by using single-trial GLMs. We 
used the least-squares-separate (LSS) model approach 64,65 which included one regressor modeling 
one specific trial and another regressor modelling all other trials, plus a constant. To obtain estimates 
for each single trial, we estimated as many different LSS models as there were trials. While LSS 
modeling is computationally much more time consuming, it has been argued to produce more robust 
estimates than other approaches 64,65. Regressors were created by convolving stick functions 
synchronized to stimulus onset with the SPM12 default canonical HRF. In experiment 1, this implies a 
total of 192 single-trial regressors per run (16 trials per task block times 12 task blocks), which 
amounts to 576 across all three runs. In experiment 2, this implies a total of 256 single-trial 
regressors per run (32 trials per task block times 8 task blocks), which amounts to 768 across all three 
runs. 

In addition to the single trial regressors used for the implementation phase, we included regressors 
for the instruction phase and for the performance feedback at the end of each implementation 
phase.  To appropriately capture BOLD activation during the instruction phase, spanning either 12 s 
(easy condition) or 14 s (difficult condition), we used Fourier basis set regressors including 20 
different sine-wave regressors spanning 44 s which were time-locked to the onset of the start of the 
instruction phase.  Using a Fourier basis set has the advantage to flexibly model any BOLD response 
shape associated with the extended instruction phase without making prior shape assumptions. An 
advantage over FIR modeling is that a Fourier basis set easily operates at micro-time resolution (SPM 
default TR/16) whereas FIR operates at TR resolution only 66.  Performance feedback was modeled 
with a standard event-related HRF function time-locked to the onset of the feedback screen. 
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Multivariate pattern analysis  
The MVPA was based on single-trial beta estimates obtained for the implementation phase. Rule 
identity-specific activation patterns were determined by adopting a modified versions of the multi-
voxel pattern correlation approach 67,68 geared towards the unbiased computation of time-resolved 
pattern correlations within runs. Specifically, identity-specific patterns were identified by computing 
the mean difference between (i) pattern correlations for re-occurrences of same stimuli and (ii) 
pattern correlations for occurrences of different stimuli.  Such mean difference values were 
computed separately for each task block and within each task block separately for each successive 
learning stage defined by two consecutive occurrences per stimulus (Fig. 3).  

 

This procedure allowed us to analyze two learning stages in experiment 1 (stage 1: stimulus 
repetitions 1 and 2; stage 2: stimulus repetitions 3 and 4). In experiment 2, two additional learning 
stages could be analyzed involving stimulus repetitions 5 and 6 (stage 3) and stimulus repetitions 7 
and 8 (stage 4).  Finally, for each subject, the resulting mean difference values were averaged across 
task blocks separately for each learning stage before being submitted to group-level statistical 
evaluation. Based on previous work, trial sequences were constructed in a way that ensured 
unbiased multivariate results under conditions of overlapping single-trial BOLD responses within task 
blocks 15,64,69. Specifically, we conducted unbiased identity-specific MVPA separately for each 
successive learning stage within each task block.  To this end, for each task block the overall trial 
sequence was composed of 2 (experiment 1) or 4 (experiment 2) independently generated ‘atomic’ 
8-trial sequences, each comprising 2 randomly distributed occurrences of each of the 4 nouns.  On 
average across such atomic sequences, this approach guaranties unbiased MVPA due to the 
circumstance that non-zero bias regarding individual atomic sequences is distributed around zero 
mean 15. We furthermore took advantage of multiple novel task blocks per participant which allowed 
us to regress out bias-induced variance across blocks and thereby to obtain more robust results.  
Bias-induced variance regarding pattern similarity estimates was determined for subject-specific 
white-matter volumes (see below) with verified absence of significant multivariate effects on average 
across subjects (see Figure 6B).  

The primary MVPAs were computed for regions-of-interest (ROIs) considering all voxels within a ROI 
simultaneously. Additional searchlight-based MVPAs were computed for the whole-brain volume 
with a spherical searchlight radius of 3 voxels 63 as implemented in the CosmoMVPA toolbox 70.  The 
ROI-based approach was employed to be able to conveniently compare multivariate effects between 
different LPFC regions in a proper statistical way 39. The complementary searchlight approach 
allowed us to also identify additional effects outside the pre-specified ROIs. Additionally, the 
searchlight approach was used to localize MVPA effects within the anatomical ROIs with better 
spatial precision. Searchlight results were statistically evaluated at the peak-level with p<.05, FWE-
corrected for the whole-brain volume or for the ROI volume, respectively. 

Four anatomically constrained ROIs were included based on the previous literature which had most 
consistently highlighted the potential relevance of lateral PFC regions 28,29,31,34,35,43. Using the 
automatic anatomic labeling atlas 71, we included for each hemisphere the ventrolateral PFC 
(according to the combined aal regions ‘inferior frontal gyrus pars opercularis’ and ‘inferior frontal 
gyrus pars triangularis’) and the dorsolateral PFC (aal region ‘middle frontal gyrus’).  
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The MVPA was based on all trials including correct trials and error trials alike. This allowed us to test 
how differences in the overall proportion of error trials would modulate the strength of identity-
specific pattern similarity effects. This procedure was preferred over running separate MVPAs 
selectively based on either correct trials or error trials. Especially, the relatively small proportion of 
error trials in the easy instruction condition renders reliable pattern similarity estimates unfeasible. 

Univariate analysis of mean activity 
The MVPA was complemented by a conventional univariate analysis computed for the MVPA ROIs. 
Instead of single-trial beta estimates, the univariate analysis was based on beta estimates collapsed 
across all trials per condition. In experiment 1 the conditions were defined by easy blocks vs. difficult 
blocks and by stimulus repetitions (1 to 4). In experiment 2 the conditions were defined by instructed 
blocks vs. control blocks and by stimulus repetitions (1 to 8). Error trials were excluded.  

Functional connectivity analysis 
Functional connectivity changes were computed specifically for experiment 2 using the beta-series 
correlation approach based on the same single-trial estimates that were already generated for the 
MVPA 72-74. Error trials were excluded. Following-up on previous study results 20,24, we examined 
functional connectivity changes comparing late learning trials (stimulus repetitions 7 and 8) with 
early learning trials (stimulus repetitions 1 and 2) with a special focus on connectivity between the 
lateral PFC and the basal ganglia.  
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