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Abstract 

Mapping the origin of human cognitive traits typically relies on comparing behavioral or 

neuroanatomical features in human phylogeny. However, such studies rely on inferences from 

comparative relationships and do not incorporate neurogenetic information, as these approaches 

are restricted to experimentally accessible species. Here, we fused evolutionary genomics with 

human functional neuroanatomy to reconstruct the neurogenetic evolution of human brain 

functions more directly and comprehensively. Projecting genome-wide selection pressure (dN/dS 

ratios) in sets of chronologically ordered mammalian species onto the human brain reference space 

unmasked spatial patterns of cumulative neurogenetic selection and co-evolving brain networks 

from task-evoked functional MRI and functional neuroanatomy. Importantly, this evolutionary 

atlas allowed imputing functional features to archaic brains from extinct hominin genomes. These 

data suggest accelerated neurogenetic selection for language and verbal communication across all 

hominin lineages. In addition, the predictions identified strategic thought and decision making as 

the dominant traits that may have separated anatomically modern humans (AMH) from archaic 

hominins. 
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Introduction 

Exploring the origins of the human mind holds the anthropocentric promise of uncovering the traits 

that may set us apart from our closest relatives, alive or extinct. Various initiatives have provided 

valuable insight into the evolution of the extraordinary size, shape (1–5) and function (6, 7) of the 

AMH brain. Comparative neuroanatomy traced cognitive evolution from incremental 

neuroanatomical changes along the mammalian lineage (8–13). Typically, descriptive quantitative 

measures, such as increases in regional volumes, gene expression boundaries or cell numbers, 

serve as proxies for evolutionary selection (Methods Table 1). However, these changes primarily 

reflect structural organization of a single parameter at gross resolution and omit a functional 

network context. Therefore, these approaches rather indirectly trace the functional evolution of the 

brain, which occurs often with similarly sized brains or brain areas that show different functional 

organization and/or have undergone different evolutionary pressures. Moreover, comparative 

neuroanatomy does not trace the underlying neurogenetic evolution per se and is limited to 

experimentally accessible species, mapped at deep anatomical resolution. The latter is a problem 

for archaic hominins as only endocasts of skulls remain, which restricts insights to inferences from 

the brain surface. Another line of research in evolutionary genetics, which can analyze archaic 

material, infers differences in cognitive traits from genetic mutations (14, 15) in human phylogeny. 

While extremely informative, these studies typically interpret these mutations in isolation, omitting 

the compound effect of multi-genic co-evolution of functional brain networks.  

Here, we propose that the selection pressure on the mammalian brain over evolutionary 

history left genomic signatures that can be mined for direct and deeper insight into the neurogenetic 

functional evolution across the human lineage. Genetic information has the key advantage that it 

not only contains genome-wide signatures of evolutionary events but also correlates with the 

mesoscale functional organization of brain networks (16, 17). Newly developed, highly parallel 

sequencing techniques have generated whole genomes of both extant (18) and extinct species (19–

21) along the mouse-AMH evolutionary tree. Using genetic (22), connectomic (23) and behavioral 

or psychiatric (24) brain-data initiatives, we can now relate genetic features directly to functional 

brain networks and behavioral traits (16, 17, 25, 26). Importantly, these approaches can trace 

genetic and functional co-evolution directly within the AMH brain framework and do not rely on 

interpolating associations between analogous structures as in classical comparative strategies.  
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Results 

Here, we adapted such computational workflows (17) to systematically integrate genome-wide 

phylogenetic selection pressure into a brain-wide evolutionary atlas of the AMH brain. These 

resources allow reconstruction of the neurogenetic and functional evolution from the common 

ancestor with rodents, along the primate lineage, to bipedal hominins and humans.  

Initially, this strategy required tracking genome-wide patterns of selection pressure on the 

mammalian phylogeny linking the mouse with AMH (Fig. 1A). This evolutionary framework 

covered eight major diversification episodes along the primate lineage leading to AMH - from 

common ancestry with rodents (mouse) through prosimians (bush baby), New World monkeys 

(marmoset), Old World monkeys (macaque), lesser apes (gibbon), great apes (chimpanzee) and 

finally the known extinct hominins Denisovan and Neanderthal. We inferred gene-wise selection 

pressure between successive pairwise species comparisons (PSCs, Fig. 1A bottom) by calculating 

the ratio of nonsynonymous to synonymous nucleotide substitutions (dN/dS) from pairwise 

alignments of protein-coding gene orthologs (data retrieved from Ensembl (18) and JBrowse (27), 

see Methods). The dN/dS ratio is a robust, gene-wise measure of selection pressure that is sensitive 

to evolutionary adaptation (28, 29) and does not rely on population data, which are mostly 

unavailable. dN/dS values are also a suitable proxy for overall functional selection and should also 

reflect the overall phenotypic contributions from co-evolving non-coding regulatory sequences, 

indels, and species-specific genes/duplications. Using brain-expressed gene sets built on PSCs 

homologs provides sufficient details to model multi-genic neurocognitive traits of AMH (16). 

Thus, in our PSC approach, dN/dS values should reliably indicate the most dominant genetic 

evolution that occurred after the split from each Last Common Ancestor (LCA). Therefore, the 

combination of phylogenetically ordered, pair-wise comparisons is a straightforward means of 

tracing selection pressure along evolutionary lines, in this case, along the human lineage.  

We then focused our analysis on neurocognitive functions by constraining the homolog 

pool to brain-expressed genes of the Allen Brain Atlas (ABA), a high resolution database of brain 

gene expression (Methods)(22). We thus obtained the continuous neuro-genetic evolution along 

the mammalian evolutionary sequence leading to AMHs using multiple species as reference. As 

expected, we observed diverse trends in selection pressure, as represented by several clusters of 

co-evolving genes (Fig. 1B). To trace selective forces, our further analyses utilized the rank-
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ordered dN/dS genes found in the ABA within each PSC to capture synergistic, multi-genic effects 

of coevolving genes in brain networks.  

Fusing these genetic data with the AMH brain gene expression atlas approximates 

synergies in molecular evolution directly onto AMH neuroanatomy. So, we first generated 

cumulative neuroanatomical dN/dS weighted maps for every PSC (Fig. 2) in the AMH reference 

brain at subregional mesoscale resolution (23) using the ABA gene expression database (22). Then, 

we combined these data (Methods, Computational neuroanatomy, Generating evolutionary maps) 

into a temporo-spatial map of hot spots of high selection pressure (Fig. 2). Consequently, the 

resulting evolutionary landscape traced the phylogenetic history of the AMH brain through 

successive LCAs. We note this map is purely genetically driven and largely independent of 

establishing phylogenetic homology among brain areas. We found that the load of the most highly 

selected genes accumulated in different neuroanatomical areas for different PSCs (see the Methods 

Table 2 for anatomical-neurocognitive annotation). There was a gradual shift in selection pressure, 

acting more on subcortical regions in PSCs 1-5, then increasing over cortical regions (PSCs 6-8). 

Basal forebrain, basal ganglia, brain stem and cerebellum were under selection pressure in all 

comparisons. Different thalamic nuclei, hippocampal, amygdalar and cortical parts selection 

varied between PSCs (Fig. 2). 

To highlight such changes lineage-wide, we computed a combined dN/dS atlas, weighted 

by the temporal profile of selection pressure amongst the PSCs. In general, subcortical regions 

(e.g. the striatum, basal forebrain and brain stem) showed signatures of selection from rodent to 

primates (e.g. Fig. 3, PSC1-5, dark blue-yellow). Notably, one structure evolving at the highest 

genetic rate early in the evolutionary transition to primates was the claustrum (Fig. 3, PSC1,  dark 

blue), which is a central element in a framework for consciousness (30).  

In addition, our approach can track neuroanatomical selection across evolutionary 

transitions from genomes where brain-wide (non-surface) neuroanatomical data is out of reach. In 

contrast to early PSCs, traces of late selection pressure in hominid evolution (great apes and 

hominins) predominantly accumulated in the cortex (Fig. 3, PSC6-8, orange-dark red). Accelerated 

selections within archaic hominins (Fig. 3, PSC7, light red) and AMHs (Fig. 3, PSC8, dark red) 

localized mainly within sub-regions of prefrontal, temporal or somatosensory associative cortex, 

but also in the thalamus and amygdala. It is striking that all these structures subserve higher 

cognitive functions, spiritual beliefs (31), language (speech comprehension (Wernicke’s area) and 
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production (Broca’s area), reading (angular gyrus (32)) or facial recognition (33). Brain structures 

with the highest selection pressure marking divergence of Neanderthal and AMH involved cortical 

(auditory, parietal – especially precuneus, occipito-temporal), subiculum, thalamic and amygdalar 

areas (Fig.  3, PSC8, dark red). Collectively, these evolutionary maps are in line with comparative 

data from primate cognitive evolution and provide a neuroanatomical framework for many 

previous inferences about cognitive evolution in hominins (Methods Table 1). 

Since these evolutionary brain maps suggested that neurogenetic selection follows specific 

functional needs, we utilized data from functional brain networks initiatives, in conjunction with 

evolutionary neuroanatomy data, to directly trace this functional evolution. To link temporal 

evolutionary patterns with spatially registered brain function, we performed a temporo-spatial 

analysis by GABi biclustering (34). Specifically, we clustered genes based on their ranked dN/dS 

values with their spatial expression correlated to multiple AMH functional brain networks. These 

functional networks consisted of task-evoked functional MRI (TNs) (Fig. S1, Methods Table 3, 

note TNs in left and associated traits in right columns) from the Human Connectome Project (HCP) 

(24) and networks for specific brain functions from literature (FNs) (Fig. S1, Methods Table 4, 

note FNs in left and associated traits in right columns). We tuned GABi biclustering with custom 

criteria to identify the largest diverse biclusters of co-evolving genes (i.e. genes that have >=0.90 

ranked dN/dS over multiple PSCs) with high specificity for functional networks (i.e. genes with 

high network correlation for the same networks) from Methods Table 3 & 4 (Fig. 4A). This strategy 

yielded statistically stable biclusters (Methods), which could be further organized into modules 

(M1-7). Importantly, each module containing the same PSCs could then be chronologically 

ordered (Fig. 4A). To visualize these neurogenetic co-evolution networks in the brain, we 

generated a 3D representation of the most prominent networks within each bicluster module (Fig. 

4B). These data illustrate the evolutionary selection of networks for attention, consciousness and 

emotion during early primate evolution and for language, working memory, strategic thought, and 

motor control in hominin and AMH lineages. In clusters representing the earliest LCAs in the 

mammalian lineage, most selection pressure accumulated in networks for attention (visuospatial 

and fronto-parietal FNs) (Fig. 4B, Module 1). In addition to attention (salience FN), selection 

pressure then extended to networks for consciousness (default mode FN (DMN)) and emotion 

(EM-FACES TN) (Fig. 4B, Module 2). Subsequent evolution selected for motor control 

(sensorimotor FN), higher cognition (central executive (CEN) and RE-AVG networks) and 
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attention (ventral attention FN) (Fig. 4B, Module 3, 4 and 5). In contrast, great ape-hominin 

diversification selected for theory of mind (SO-TOM TN), cognitive emotional control (prefrontal-

amygdala FN), motivation (prefrontal-accumbens FN) and awareness (dorsal attention FN) (Fig. 

4B, Module 6). Most strikingly, in hominins language (LA-AVG TN), working memory (WM-

FACE, WM-REST TNs), strategic thought (GA-REWARD, GA-AVG TNs) and motor control 

(MO-RH-LH, MO-RF-LF TNs) emerged as the traits under highest evolutionary pressure (Fig. 

4B, Module 7).  

The biclustering approach directly related neurocognitive evolution to functional co-

evolution at the genetic level, identifying gene sets potentially driving the observed functional 

evolution within a given brain network. Among the genes correlating with language task, we 

identified a key gene FOXP1, which has been linked to speech impairment and intellectual 

disability (35, 36), and is the closest homolog of FOXP2, which shows similar expression patterns 

in the brain. While FOXP2 itself differs between chimpanzees and hominins (14), it is too similar 

among hominins for detection here. Several other genes from this cluster are associated with 

cognitive disabilities and neuroanatomical abnormalities like macrocephaly (DVL1(37)), 

microcephaly (MCPH1 (38)), autism (SHANK2 (39)), bipolar disorder- and circadian rhythm- 

linked gene CLOCK (40), which was also identified as a hub and enriched gene in AMH-specific 

transcriptional networks of the frontal pole (41). In addition, we performed Ingenuity Pathway 

Analysis (IPA) (42) on all clusters to gain a deeper insight into the genetic composition of the 

clustered networks. We focused our IPA analysis on Diseases & Functions in Nervous System, to 

find the functional associations within molecular-to-system-level neurobiology. IPA results show 

multiple behavioral, psychiatric, neurophysiological, structural and molecular functions which 

coincide with the diversification periods analyzed here. Many associations point to memory, 

cognition, brain size, and organization of synapses. The highlights of this study are shown in Table 

1. Interestingly, genes in modules M1-4 are linked to neurodegenerative diseases. Module 6 

covering chimp-Denisovan selection pressure shows associations with increasing brain size. The 

genetic component of Module 7 (PSCs 7&8), which correlates with language, working memory 

and strategic thought (Fig. 4B, Module 7), was associated with memory and learning. Complete 

analysis results can be found in Supplementary Tables 1-7. 
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Table 1. Summary of mammalian lineage Ingenuity Pathway Analysis (IPA). 

  
IPA performed on each cluster shows examples of the functional annotations per cluster in Diseases & Functions 

class. Analysis was filtered for Nervous System, associated genes are in brackets, ‘/’ separates clusters within a 

module. Full dataset is available in Supplementary Tables 1-7. 
 

To explore archaic-to-AMH brain evolution more deeply, we next ran the biclustering 

solely on the hominid data, which includes PSCs 6-8 (Fig. 5). With this, we achieved a better 

segregation of functional features under selection pressure among the closest relatives of AMH. 

The method delineated clusters of functional networks selected between great apes and hominins 

or among anatomically modern and archaic humans, which pointed to the similar findings as in 

the mammalian lineage approach (e.g. language, working memory and motor functions in 

hominins). Importantly, we obtained a PSC8 specific cluster highly correlating with the GA-

REWARD TN, indicating strategic thought as the fastest evolving trait between Neanderthals and 

AMHs. Paralleling these patterns of functional neuroanatomical evolution, Ingenuity analysis 

(Table 2) functionally associated the genetic clusters with cognitive traits (working memory, 

learning, cognition) and psychiatric disorders (schizophrenia, impulsivity), among others 

(Supplementary Tables 8-10).  

Together, these findings provide a critical neurogenetic framework explaining evolutionary 

ethology, archeological records and genetic data (Methods Table 1). Importantly, they identify 
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neurocognitive traits critical in recent hominin evolution and the underlying gene sets driving their 

evolution.  

Table 2. Summary of hominid Ingenuity Pathway Analysis (IPA). 

 

Diseases & Functions analysis was filtered for Nervous System, associated genes are in brackets, ‘/’ separates clusters 

within a module. Full dataset is available in Supplementary Tables 8-10. 
 

Discussion 

This study integrates rates of genetic evolution along the mammalian/primate lineage into an 

evolutionary atlas of the AMH brain. We exploited recent big data initiatives from genomics and 

brain functions to explore evolutionary events that ultimately shaped the mind and behavior of 

AMHs. Our findings utilize an innovative in silico approach, fusing genomic information with 

brain data to associate multi-genic behavioral traits with brain functional networks (43). We could 

map the cumulative load of evolutionary-weighted genes into AMH functional brain networks, 

genome- and brain-wide, which reconstructed relative selection pressures on brain functions at 

each evolutionary ‘transition’ from mouse to AMH.  

This computational strategy uses and explores compound neurogenetic effects on brain 

networks, which are untraceable when studied in isolation. From the genetic perspective, the 

evolution of functional traits is inherently multi-genic. Therefore, single gene studies in mouse or 

organoid models, while mechanistically insightful (44), cannot easily assess such genetic synergies 

on cognitive traits emerging from brain-wide functional networks. This makes it difficult to 

unmask the evolution of complex cognitive traits and to identify potential candidate gene sets 

driving evolution in this way. Our study will therefore complement such functional evolutionary 
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genetic models with an atlas of coevolving genes and functional neuroanatomical networks. Future 

functional exploration of these gene sets and networks in suitable experimental systems should 

reveal potential mechanisms driving the neurocognitive divergence between the respective species.  

We showcase an approach for reconstructing the evolutionary history of functional selection using 

the genetic remains of species long extinct by projecting compound phylogenetic evolutionary 

weights onto a functional reference framework. This strategy may be useful to functionally explore 

biological systems not available for traditional experimental studies. Of note, the straightforward 

evolutionary genetic analysis could be refined by including an extended phylogeny into the 

computation of dN/dS values and/or other evolutionary measures, possibly leading to even deeper 

understanding of neurogenetic evolution. This notwithstanding, our workflow unraveled 

neurogenetic selection for complex neurocognitive traits in archaic hominin brains, like social 

interaction and communication, hand motor control, working memory for faces along with 

symbolic thought and abstract thinking (33). These findings delineate a critical neurogenetic 

framework for archaic cognitive abilities inferred from ancient art (45, 46). Strikingly, our 

computational neuro-archaeological data provide initial neurogenetic evidence that all ancient 

hominin and AMH lineages evolved networks for language. The active selection for language 

networks strongly suggests that all these archaic hominins could speak. Furthermore, this indicates 

that verbal communication evolved in the LCA to all three hominin species (i.e. Homo erectus) 

several hundred thousand years ago, adding critical insights to a longstanding debate about the 

timing and origin of human language (47). Surprisingly, the transition to AMHs further accelerated 

evolution of reward-related decision making and strategic thought as those features most 

prominently separating us from archaic hominins. It is tempting to speculate that these abilities 

may have contributed to the selective advantage for evolutionary success of anatomically modern 

humans. 
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Fig. 1. Reconstructing genomic selection 

pressure in the human lineage. (A) 

Phylogeny of mammalian species in the 

human branch, including extinct hominins 

(Denisovan and Neanderthal). Species were 

ordered by molecular distance based on 

mitochondrial genome sequences in millions 

of years ago (Mya). Tree nodes represent 

Last Common Ancestors (LCAs) of the 

consecutive species pairs. LCAs were first 

ordered based on chronological appearance 

in evolutionary history (LCA1-8), then by 

molecular distance to AMHs (LCA7, 8). 

Pairwise species comparisons (PSCs) 

continuously bridged mouse-to-AMH 

evolutionary history. (B) Hierarchical 

clustering of dN/dS values assigned to the 

respective LCA of a pairwise species 

comparison. dN/dS values were column-

wise rank normalized for each PSC to 

eliminate bias due to different evolutionary 

times after the split from LCAs. Color code 

indicates normalized rank. Note that the 

binary like appearance of dN/dS spread for 

PSC7-PSC8 results from the evolutionary 

proximity of these species.  
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Fig. 2. Individual genetic maps for PSC1-8 projected onto the AMH reference brain. Each map 

represents cumulative load of ranked dN/dS genes. Regions show the most significant p-value of their 

individual biopsy-sites. Significant regions are indicated with color scale, non-significant with grey scale. 

Amy – amygdala, Ang – angular gyrus, Aud – auditory cortex, BMA – basomedial amygdala, CA1 – cornus 

ammoni 1, Cg – cingulate cortex, Cd – caudate, Cun – cuneus, DG – dentate gyrus, FuG – fusiform gyrus, 

GP – globus pallidus, GRe – gyrus rectus, Hy – hypothalamus, IFG – inferior frontal gyrus, Ins – insula, 

IOG – inferior occipital gyrus, HPF – hippocampal formation, ITG – inferior temporal gyrus, LiG – lingual 

gyrus, MB – midbrain, Md – medulla, MFG – medial frontal gyrus, MOrG – medial orbital gyrus, MTG – 

middle temporal gyrus, OP – occipital pole, OTG – occipito-temporal gyrus, P – pons, PCLa – paracentral 

lobule anterior part, PLP – planum polare, PLT – planum temporale, PCu – precuneus, PoG – postcentral 

gyrus, S – subiculum, SFG – superior frontal gyrus, SMG – supramarginal gyrus, SOG – superior occipital 

gyrus, Sp5 – spinal trigeminal nucleus, SPL – superior parietal lobule, STR - striatum, TH – thalamus, TP 

– temporal pole. 
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Fig. 3. The compound evolutionary landscape of selection pressure in the AMH brain. Color indicates 

the PSC with the significant absolute peak in cumulative gene expression in a given brain region. Amy – 

amygdala, Aud – auditory cortex, BF – basal forebrain, CA1 – cornus ammoni 1, CB – cerebellum, Cg – 

cingulate cortex, CnF – cuneiform nucleus, FuG – fusiform gyrus, HPF – hippocampal formation, Hy – 

hypothalamus, Ins – insula, MB – midbrain, Mo – motor cortex, MTG – middle temporal gyrus, OFC – 

orbitofrontal cortex, OTG – occipito-temporal gyrus, P – pons, dlPFC/vmPFC – dorsolateral/ventromedial 

prefrontal cortex, SS(Assoc.) – somatosensory (associative) cortex, STR – striatum, Sub – subiculum, TH 

– thalamus, TP – temporal pole, Vis – visual cortex. 
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Fig. 4. Evolution of neurocognitive tasks in AMH brain networks. (A) Biclustering of functional 

networks (Methods Table 3 & 4) and highest dN/dS values (at 0.90 rank cut-off) across time (PSC1-8). 

Biclusters embedded in a 2D space using t-SNE with bicluster overlap as distance measure to trace 

coevolving functional brain networks modules in the brain over time. Individual clusters (1-15) highlight 

gene sets and associated networks with similar evolutionary history. Circle size corresponds to the cluster 

size. Closely related clusters are assigned to common modules (M1-M7). (B) 3D visualization of top ranked 

functional brain networks from A, highlighting the highest differences between PSCs corresponding to the 

associated functional networks. The nodes represent anatomical regions, the edges gene-expression 

correlations of the respective networks. Note that for visibility, not all networks components are shown in 

each case. Acb – nucleus accumbens, Amy – amygdala, Ang – angular gyrus, AorG – anterior orbital gyrus, 

BF – basal forebrain, Cg – cingulate cortex, Cun – cuneus, FuG – fusiform gyrus, GRe – gyrus rectus, Hy 

– hypothalamus, IFG – inferior frontal gyrus, Ins – insula, IOG – inferior occipital gyrus, ITG – inferior 

temporal gyrus, MB – midbrain, MFG – medial frontal gyrus, MOrG – medial orbital gyrus, MTG – middle 

temporal gyrus, OP – occipital pole, PCLa/p – paracentral lobule anterior/posterior part, PCu – precuneus, 

PrG – precentral gyrus, PoG – postcentral gyrus, SFG – superior frontal gyrus, SMG – supramarginal gyrus, 

SOG – superior occipital gyrus, SPL – superior parietal lobule, SRoG – superior rostral gyrus, STR - 

striatum, TH – thalamus.  
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Fig. 5 Hominin-specific distribution of selection pressure in AMH brain networks. (A) Biclustering of 

functional networks as in Fig. 4 performed solely on the hominid branch (PSCs 6-8). Similarly, closely 

related clusters are assigned to common modules (M8-M10). (B) 3D visualization of top ranked functional 

brain networks from A, highlighting the highest differences between PSCs corresponding to the associated 

functional networks. The nodes represent anatomical regions, the edges gene-expression correlations of the 

respective networks. Note that for visibility, not all networks components are shown in each case. Acb – 

nucleus accumbens, Ang – angular gyrus, AorG – anterior orbital gyrus, BF – basal forebrain, Cd – caudate, 

Cg – cingulate cortex, Cun – cuneus, FuG – fusiform gyrus, GP – globus pallidus, GRe – gyrus rectus, HPF 

– hippocampal formation, Hy – hypothalamus, IFG – inferior frontal gyrus, Ins – insula, IOG – inferior 
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occipital gyrus, ITG – inferior temporal gyrus, MB – midbrain, MFG – medial frontal gyrus, MOrG – 

medial orbital gyrus, MTG – middle temporal gyrus, OP – occipital pole, PCLa/p – paracentral lobule 

anterior/posterior part, PCu – precuneus, PrG – precentral gyrus, PoG – postcentral gyrus, SFG – superior 

frontal gyrus, SMG – supramarginal gyrus, SOG – superior occipital gyrus, SPL – superior parietal lobule, 

SRoG – superior rostral gyrus, STR - striatum, TH – thalamus.  

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/598094doi: bioRxiv preprint 

https://doi.org/10.1101/598094


Kaczanowska et al. Computational neuroarchaeology 

18 

 

Methods 

Genetic analysis 

Mammalian lineage setup 

For our evolutionary analysis of the primate lineage, we selected nine species including the mouse 

(Mus musculus), bush baby (Otolemur garnetti), marmoset (Callithrix jacchus), macaque (Macaca 

mulatta), gibbon (Nomascus leucogenys), chimpanzee (Pan troglodytes), extinct hominins 

Denisovan (Homo Denisovan) and Neanderthal (Homo neanderthalensis) and anatomically 

modern human (AMH, Homo sapiens) (Methods Table 1).  

To determine the general evolutionary relationship among the selected species, we 

reconstructed a phylogenetic tree from mitochondrial genomes using a Bayesian approach in 

BEAST 2.5 (48). First, the best nucleotide substitution model was determined using 

JMODELTEST (49). We then implemented this model in BEAST. To account for variable rates 

of evolution among different primate lineages, we used a relaxed lognormal prior on the clock rate. 

We used three independent normally-distributed and soft-bounded calibration priors (after Perez 

et al. 2013) (50) to place a timeframe onto our phylogeny. We used a AMH-chimpanzee mean 

divergence of 7.8 Myr (SD 1.2 Myr), and Old World monkey-ape divergence of 28 Myr (SD 3 

Myr) and lastly we placed a 60 Myr mean (SD 2.8 Myr) time for the coalescence of all primate 

lineages. This fully parameterized model was run five times, each time for 200 million simulations, 

logging parameters every 20,000 steps, and discarding the first 20% as burn-in. MCMC 

convergence was assessed by viewing MCMC traces directly and by ESS values in TRACER 

1.6(51). A maximum clade credibility tree was calculated and annotated in Figtree 1.4 (52). 

The results of the mt-derived phylogeny, LCA and PSC order is given in Fig. 1A. Note 

that, formally, Denisovans and Neanderthals split after the split from the human ancestor. 

However, mtDNA derived phylogeny (Fig. 1A) places Neanderthal closer to AMH (53) and 

support a Chimp-to-Denisovan-Neanderthal-AMH species order. 
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Methods Table 1. Main evolutionary characteristics of analyzed taxa.  

Brain size given in cubic cm (cc), Encephalization quotient (EQ) defined as the ratio between actual brain mass (Ea) 

and brain mass predicted for an animal of given size (Ee), * mean value from published samples. Descriptive species 

data based on https://animaldiversity.org. Blue indicates neurocognitive features inferred from endocasts, gross 

neuroanatomy or archeological remains.  
 

Data collection  

Pre-calculated non-synonymous (dN) and synonymous (dS) nucleotide substitutions for all 

homologous genes for the selected species were downloaded from Ensembl (version=78) (89) 

using the Bioconductor BiomaRt package (version 2.18.0) (90) except for Neanderthal and 

Denisovan genes. The pairwise values, based on the assembled lineage, were also obtained from 

Ensembl. For instance, bush baby vs. marmoset and marmoset vs. macaque. Other available entries 

like Ensembl gene IDs, Entrez IDs and HGNC symbols were downloaded for all genes for all 

species. 

To obtain the dN/dS values for ancient hominins vs. chimpanzee and AMH, all protein 

coding genes for these species were downloaded from Ensembl (18). High coverage Denisovan 

genome alignment against the AMH (hg19/GRCh37) reference genome was downloaded from the 

 Mus musculus 
Otolemur 

garnettii 
Callithrix jacchus Macaca mulatta 

Nomascus 

leucogenys 
Pan troglodytes 

Homo 

denisovan 

Homo 

neanderthalen-sis 
Homo sapiens 

Brain size 

(cc) 
0.5 10.87 (54) 7.77 (54) 86.55 (55)* 82.30 (56) 400.90 (54) 1200 (57) 1473.46 (57) 1473.84 (57) 

Encepha-

lization 

quotient 

(EQ=Ea/Ee) 

0.5 (58) 
 

1.25 (54)* 

 

1.70 (54)* 

 

 

2.10 (58) 
2.30 (58)* 

 

2.91 (54)* 

 

no data 

available 
no data available 7.59 (58)* 

Lifestyle 
nocturnal 

territorial 

nocturnal 

territorial 

sedentary 

diurnal 

motile 

 

diurnal 

motile/ 

sedentary 

diurnal territorial 

diurnal 

motile and 

sedentary 

no data 

available 

forager/hunter-

gatherers (59) 

art and culture 

(45, 46) 

territorial 

colonial 

nomadic/sedentary 

forager/hunter-

gatherers 

urban 

agricultural 

art and culture 

Diet omnivorous omnivorous herbivorous omnivorous herbivorous omnivorous 
no data 

available 
Omnivorous (59) omnivorous 

Social 

behavior 

polygamous 

hierarchical 

dominance 

vocal 

communication 

vocal 

communication 

scent markings 

groups may include 

mated polyandrous 

groups nonmaternal 

infant care 

tactile, chemical 

communication 

polygynadrous 

hierarchical 

dominance 

visual, tactile, 

acoustic and 

chemical 

communication 

hierarchical 

dominance 

female 

dominance 

vocal 

communication 

hierarchical 

dominance 

polygynandrous 

cooperative 

breeder 

visual, vocal, 

tactile, chemical 

communication 

no data 

available 
no data available 

monogamous 

cooperative 

breeder 

hierarchical 

dominance 

language, visual, 

tactile 

communication 

 

Group 

size/type 
small solitary 2-13 individuals 80-100 members small families 

fusion-fission 

society 

no data 

available 

small, isolated 

groups(60) 
complex societies 

Neuro-

cognitive 

features 

 Advanced vocal communication (61–63) 

no data 

available 

Language (64–66)  

 
Social behavior (67) 

Cooperation (68, 69) 

Social cognition 

(70) 

Social learning 

and culture (71, 

72) 

 

Higher cognitive functions (73, 74) 

Perceptual decision making (75) 

Social decision making (76) 

Sequential learning (77) 

Higher 

intelligence 

(working memory,  

abstract thinking 

(78)) 

Higher 

intelligence (tool 

use and 

production, 

abstract thinking, 

metacognition, 

theory of mind, 

social learning 

(58) 

Visual processing and visual attention (79–82)  

Visuo-spatial 

integration (83, 

84) 

 

Spatio-temporal 

visual integration 

(85, 86) 

Sensorimotor system (87)  Olfaction (88)  
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http://cdna.eva.mpg.de/denisova/alignments/ repository. The data necessary for Neanderthal-

AMH dN/dS calculation was gathered form the high coverage variant list from the Vindija 

Neanderthal genome (91). 

Ancient hominin gene generation 

Two different approaches were used to generate the AMH homolog, Denisovan and Neanderthal 

genes without any missing values. 

The approach applied to the Denisovan dataset was based on mapping reads in BAM format to the 

AMH genome, and the data was segregated by chromosomes. Consensus sequences for Denisovan 

chromosomes were created using SAMtools mpileup (version 1.3.1) (92) and BCFtools (version 

1.3) (93) utilities. Genes were extracted based on the hg19/GRCh37 Ensembl annotation 

(ftp://ftp.ensembl.org/pub/, version=78) using an in-house R script. The hominin genes were 

renamed using the AMH homolog Ensembl gene IDs for easier identification during the later 

processes. 

To retrieve gene homologs from Vindija dataset, high coverage Neanderthal variants were 

downloaded in VCF format, and only SNPs predicted in protein coding genes were processed. 

Then, the Neanderthal genes were generated by exchanging AMH nucleotides to the high coverage 

SNPs in the corresponding AMH reference genes using the SNPs in the coding regions and its 

coordinates. 

dN/dS calculation 

For Ensembl downloaded dN and dS data, dN/dS values were calculated using a simple division. 

For ancient hominin vs. chimpanzee and AMH values, we downloaded and pairwise aligned 

codons from previously generated gene sequences using PRANK (v.140603) (94). Next, additional 

ratios were calculated using codeml tool from PAML package (version 4.9) (95) applying basic 

model.  
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Table organization  

The combined dN/dS table was built from all dN/dS values and the corresponding Ensembl genes 

and Entrez IDs. The results from the mouse to AMH lineage including hominins were organized 

in the before mentioned order (Fig. 1A, Methods Table 1). The first mouse vs. bush baby step was 

used as the basis of the table. The values for the second step (bush baby vs. marmoset) were 

collected based on the gene IDs from the previous step. In this case, the bush baby gene IDs were 

used to organize the following column containing the results for marmoset genes. The same 

approach was applied in the following steps until the Neanderthal vs. AMH values.  

Computational neuroanatomy 

Table preparation 

To compute the evolutionary signatures in the mammalian brain, we used the dN/dS lineage table 

from above (Methods, Genetic data, Table organization) with 37173 genes/rows along 8 

PSCs/columns (Pairwise Species Comparisons). We next sought to generate a brain gene set 

compatible across the Allen Brain Atlas platform (mouse and AMH) to be most versatile for this 

and future applications. To this end, we restricted genes to those present in both Allen Mouse Brain 

Atlas (AMBA) and Allen Human Brain Atlas (AHBA). We merged this table with spatial gene 

expression data from the AHBA via gene Entrez ID. We avoided merging duplicate entries with 

AMBA/AHBA by conflating the table rows for unique mouse and AMH Entrez ID combinations 

(=mouse/AMH homologues).  

For homologue genes dN/dS were averaged. We omitted infinite dN/dS ratios (dS=0) for 

this purpose (96). We further removed rows with all dN/dS ratios=0, since static absent selection 

pressure was not relevant for our analysis. After filtering the table for genes with spatial gene 

expression available in AMBA/AHBA, we ended up with 10445 rows.  

Wolf et al. (97) states that mean dN/dS between two species decreases with evolutionary 

distance. The 8 PSCs are not equidistant in evolutionary time, so we normalized them individually 

(=column-wise normalization). We used a rank-normalization (=rank / amount of rows), since their 

dN/dS ratios are not equally distributed. This brings the dN/dS of each column to a uniform 

distribution between 0 and 1. The rank-normalized dN/dS can then be interpreted as their percentile 

(e.g. value of 0.9 means the dN/dS represents the 90th percentile) and a rank-normalized dN/dS of 

0 is still a dN/dS of 0. The resulting table of dN/dS ranks is visualized in Fig. 1B. 

Generating evolutionary maps 
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We visualized the evolutionary landscape throughout phylogenetic history of the brain by 

creating brain-region level evolutionary maps that color-code each region by its evolutionary time 

point. Time points were encoded by associating each brain region with its most specific PSC 

(pairwise species comparison), i.e. the LCA (last common ancestor) with the strongest structural 

association of genes under high selection pressure.  

Therefore, we thought to predict the association of highly selective genes with functional 

neuroanatomical maps according to Ganglberger et al. (17) for each of the eight PSCs. To our 

better knowledge, there is no general threshold for highly selected genes based on (ranked) dN/dS 

ratio, so it is not possible to choose gene sets to predict these maps. Hence, we modeled selection 

pressure by weighting spatial gene expression from AHBA/AMBA by their dN/dS rank for each 

PSC. This creates 8 sets of 10445 genes for which genes with low selection pressure have low 

expression values, and genes with high selection pressure are similar to their original expression 

values (because dN/dS ranks are between 0 and 1). The resulting eight functional maps for mouse 

and AMH were all significantly different (FDR=0.1) from functional maps with randomly 

associated dN/dS ranks (i.e. we shuffled the dN/dS ranks before weighting). We computed the 

prediction of functional maps purely on expression site level (biopsy site), without applying higher 

order network measures. Since the 10445 genes do not represent single multigenic traits as used 

in Ganglberger et al. (17), the gene expression synergy was not region specific, which did not lead 

to region specific changes in gene expression synergy weighted networks. This indicated that the 

genes with the highest selection pressure for each PCS modulate multiple brain 

functions/networks.  

The AMH data, assembled from gene expression of 3702 biopsy-sites from microarray data 

of the Allen Human Brain Atlas (22), was visualized on a region level (most significant p-value of 

all biopsy sites within a brain region) in Fig. 3.  

Finally, we wanted to combine the maps for each PSC to a single evolutionary map. To 

generate these, the highest specificity for each biopsy site was represented by the PSC with the 

most significant p-value (Fig. 2). Please note that the individual PSC maps showed already 

accumulated biopsy site values at (sub)region level, thus it was not possible to derive the most 

specific PSC directly from Fig. 3. Theses maps showed the most significant p-value of the biopsy-

sites within a brain region (and therefore only the most significant biopsy-site), while the 
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evolutionary map was computed first on biopsy-level and then visualized the most frequent PSC 

of all biopsy sites.  

Methods Table 2.  Functional neuroanatomical annotation.  
Region Neurocognitive functions Category 

Amygdala Fear, reward, emotion Emotion 

Brain stem Motivation, autonomic responses Basic brain function 

Broca’s area Speech production  Language 

Cerebellum Motor coordination, motor learning Motor control 

Claustrum Multisensory integration, self-awareness, attention perception Consciousness 

Fusiform gyrus Face, word recognition Higher cognition 

Hippocampus Learning, memory Basic cognition 

Insula Self-awareness, social emotions, interoception Multimodal 

Occipito-temporal gyrus Multimodal integration and association, action planning 
Higher cognition, face 

recognition 

Parietal cortex Visuomotor transformations, spiritual beliefs Higher cognition 

Prefrontal cortex 

(dorsolateral, 

ventromedial, 

orbitofrontal, cingulate) 

Decision making, personality traits, top-down control Higher cognition 

Somatosensory 

associative cortex 
Multimodal integration, sensorimotor integration during speech Higher cognition, language 

Striatum Motor control, motivation Basic brain function 

Subiculum Working memory Higher cognition 

Thalamus Multimodal processing Basic brain function 

Wernicke’s area Speech comprehension Language  

 

Task-evoked functional brain activity 

Task-specific brain activity maps were downloaded from Human Connectome Project (HCP) 

website (www.humanconnectome.org). We used data available for seven major domains, detailed 

description can be found in Barch et al. (98). Contrasts selected for comparison with dN/dS 

functional maps were collected in Methods Table 3. The contrasts labels and behavioral signatures 

descriptions correspond to Tavor et al. (99).  

Functional network meta-comparison 

Literature-based comparison of regions involved in several functional networks extracted from 

fMRI scans was correlated to functional maps (Methods, Computational neuroanatomy, 

Generating evolutionary maps). Networks used in the study are collected in Methods Table 4. 

Subspace pattern mining for network evolution via biclustering 

To identify genes linked to specific tasks or functional networks, we mined co-evolving genes with 

high spatial correlations to those networks. Therefore, we retrieved AMH spatial gene expression 

data from the AHBA for each of the 10445 genes in the dN/dS ranked table. Spatial gene 

expression data was available for ~3700 biopsy sites in the brain. We mapped both, the task fMRI 

data of 11 networks (Methods, Computational neuroanatomy, Correlation against task-evoked 
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functional brain activity) and the literature-based data on another 11 networks (Methods, 

Computational neuroanatomy, Functional network meta-comparison) to the biopsy sites and 

computed the Spearman rank correlation coefficient between every gene and network.  

To make both types of functional data comparable, we normalized each block (104445x11 fMRI-

to-gene-expression correlations and 104445x11 literature-to-gene-expression correlations) with z-

score standardization. Functional network specificity for each gene was then computed by rank-

normalization (rank / amount of networks) for each gene over all networks, so they were mapped 

to a range between 0 and 1. As a result, 0 was assigned to the network with the lowest correlation. 

The network with the highest correlation to a gene gets the value of 1. We concatenated this data 

with the dN/dS ranked table to receive a 10445 x 30 spatio-temporal network table (8 PSCs with 

dN/dS ranks, 11 fMRI-to-gene-expression and 11 literature-to-gene-expression correlation ranks). 

From this table, we removed all genes with an overall low correlation to all networks (genes for 

which all network correlations were smaller than 0.1), which reduced the table to 6239 rows.  

We performed data mining by using GABi (34), a framework that facilitates a genetic 

algorithm for biclustering (simultaneous clustering of the rows and columns of a matrix), available 

as R package. Compared to other biclustering algorithms, the advantage of this framework allows 

the definition of a customized criteria. This enables the user to specify the properties a bicluster 

should have, such as coherence, consistency, size etc. We used these custom criteria, in terms of 

genetic algorithms also called “fitness function” to find biclusters of highly selected genes (genes 

that have high dN/dS ranks over multiple PSCs) with high specificity for similar functional 

networks (genes with high network correlation ranks for the same networks). Therefore, GABi 

creates a set of candidate solutions (a candidate solution is a set of genes) and applies the fitness 

function to see which PSCs and networks fit the custom criteria. It iteratively optimizes the 

candidate solutions to find the largest bicluster fitting these criteria by means of evolution inspired 

operators such as mutation, crossover and selection (34). 

We defined the custom criteria for fitness function to find the largest bicluster: 

- with at least one PSC and one network, since biclusters without one of them do not 

represent genes with high dN/dS ranks and high specificity for similar functional networks 

- with PSCs having a mean dN/dS rank >=0.9 for the genes in the bicluster. This selects 

only genes that have PSCs with an average dN/dS rank above equal 0.9, which puts them 
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in the top 10 percentile of dN/dS ranks. Therefore, they can be considered as the top 10 

percent genes regarding their selection pressure, therefore highly selective.  

- with networks having a mean network correlation specificity rank >=0.75 for the genes 

in the bicluster. Therefore, only genes with an average network specificity in the top 25% 

genes (the networks with the 1-8th highest correlation to each gene) were in the bicluster. 

- where the gene’s dN/dS and network correlation ranks are above 0. The genetic 

algorithm optimizes the fitness function of the candidate solutions and therefore finds the 

largest bicluster. If a bicluster has a mean network correlation rank >0.75 for a specific 

network, the algorithm will add as many genes with a network correlation rank <0.75 until 

its size is maximized. We limited this by omitting genes that have zero network correlation. 

If a bicluster has this property, then we define its fitness as  

fitness = r * (cdN/dS * wdN/dS + cnetwork * wnetwork) 

where r is the number of rows, cdN/dS the amount of dN/dS rank columns and cnetwork the amount of 

gene-to-network correlation ranks columns. wdN/dS and wnetwork are weighting factors to account 

for the different amount of dN/dS rank columns (8) and network correlation ranks columns (22). 

Otherwise it would be more likely to find biclusters with network correlation ranks columns than 

dN/dS rank columns. wdN/dS = 1.875 and wnetwork =0.6818, to sum up to 30 again (similar to not 

weighted). 

Stability tests were performed on random subsets of the data to empirically estimate 

parameters for the genetic algorithm utilized by GABi. We found that a population size of at least 

10-20 times the ‘chromosome’ length (amount of rows of the data set (34)) with ~2000 demes 

(separate subpopulations (34)) led to stable results over multiple runs and therefore reproducible 

results. This amount of demes was necessary to minimize the chances of locally-optima solutions 

for GABi(34), since it must converge to solutions that are relatively small compared to the search 

space (identified biclusters had about 1-2% of the total amount of genes). Each deme needed at 

least 32 individual solutions (34) (=chromosomes), therefore the 2000 demes constrained the 

population size to be at least ~10 times the chromosome length (2000*32/6239 = 10.26). 

We applied GABi with a population size of 124780 (20x the chromosome length of 6239) 

chromosomes divided into 2000 demes. We ran the biclustering with these parameters several 

times with similar results. The algorithm found for each bicluster up to 100 variations (i.e. 

biclusters with the same fitness/size, but differ at several genes), so we grouped biclusters with at 
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least 75% overlapping genes to form one representative. A representative bicluster did not fulfil 

the criteria of the fitness function (otherwise it would have been found by GABi directly) but 

summarized all genes of all of its variations. Statistical evaluation was performed by permutation 

tests to verify that the representative biclusters had significantly higher mean dN/dS ranks, and 

gene-to-network correlation ranks than random sets of similar size. P-values were highly 

significant (<0.0001), which was expected since the fitness function was specifically designed to 

find highly consistent biclusters.  

Biclusters, respectively bicluster modules, shown in Fig. 4, 5 and Fig. S1 were visualized 

with newly developed tool (100) (VRVis, Vienna). Nodes were selected from the bicluster's 

networks (Methods Table 3 & 4, Fig. S1), the edges represented the strongest spatial gene 

expression correlation of the bicluster's genes. The networks were created similarly to Methods, 

Computational neuroanatomy and Tracing the evolution of spatial gene expression correlation 

networks. Originally the edges showed a region-bias, i.e. regions that had higher correlation 

between them than others over all network, resulting from the amount of genes in a bicluster (the 

correlation of gene sets converges to the genome-wide spatial gene expression correlation with 

increasing size). We targeted this by generating an empirical distribution for each individual edge 

by 1000 random drawn gene sets from the genome (of same size as the bicluster). These 

distributions (i.e. their mean and standard distribution) were then used for z-score normalization 

of the bicluster edges. 

Functional genetics 

For functional profiling of genes clustered with brain networks we applied the knowledgebase 

from Ingenuity Pathway Analysis (IPA) (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis). Each cluster from 

biclustering of full lineage or hominid branch was analyzed separately. We applied Nervous 

System filter to avoid non-specific functional associations. All results can be found in the 

Supplementary Materials. 

Methodological remarks  

Taken together this workflow maps dN/dS data onto spatial brain gene expression and 

correlates it with task-evoked fMRI and known functional networks (see Main text and Methods, 

Methods Tables 3 and 4). Both, cumulative correlation and biclustering, build on dN/dS-driven 

spatial correlations of highly selected genes per PSC with fMRI networks. Cumulative correlation 
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focuses on functional correlations for each PSC top-selected genes, while biclustering relates 

ranked dN/dS of all PSCs and fMRI networks simultaneously, building clusters of highly selected 

genes (bound to any PSC) which highly correlate with fMRI networks. Jointly, these approaches 

are in support of each other and reconstruct a congruent ancestral history of the brain’s functional 

evolution.  

 Of note, overall, results obtained with PSCs along the AMH lineage, shown here, are 

similar to predictions from PSCs rooted in AMH (AMH vs all species). 

 

Methods Table 3. Functional maps from AMH task-evoked fMRI.  
Task network Contrast Neurocognitive functions Category 

Emotional faces EM-FACES Valance judgments (faces) Emotion 

Gambling 

Gambling-reward 

GA-AVG 

GA-

REWARD 

Reward, punishment, decision making Strategic thought 

Language LA-AVG Sentences, stories, mental arithmetic (auditory) Language 

Motor hand control 

Motor foot control 

Motor tongue control 

MO-RH+LH 

MO-RF+LF 

MO-T 

Hand, foot, tongue movements Motor control 

Relational processing RE-AVG Higher-order cognition (attention, working memory) Higher cognition 

Theory of mind SO-TOM Interpret social vs random interactions Social cognition 

Working memory 

Working memory-faces 

WM-REST 

WM-FACE 

N-back working memory, body parts (face), tools, 

places  
Working memory 

 

Methods Table 4. Functional maps from literature.  
Functional network  

(and source) 
Neurocognitive function Category 

Central Executive Network 

(CEN) (101, 102) 
Higher-order cognition (attention, working memory) Higher cognition 

Cortico-limbic network (103, 

104) 
Emotional processing, cognition 

Cognitive emotion 

control 

Default Mode Network (DMN) 

(105, 106) 

Future planning, remembering past, self- and others-oriented 

cognitive activity, mind-wandering 
Consciousness 

Dorsal and ventral attention 

network (107) 
Spatial attention Attention 

Fronto-parietal network (108) Attention, goal-directed action Attention 

Prefrontal-accumbens network Reward processing Motivation 

Prefrontal-amygdala Decision making, emotional processing 
Cognitive emotion 

control 

Salience network (102, 109) Stimuli filtering, goal-directed action Attention 

Sensorimotor network (110, 111) Motor tasks Motor control 

Visuospatial network (111–113) Visual attention, judgments, mental imagery Basic cognition 

 

Statistics 

Statics are described in the corresponding paragraphs of the Methods section.  
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