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Abstract 
Computational methods to predict protein structure from nuclear magnetic resonance (NMR) restraints 
that only require assignment of backbone signals hold great potential to study larger proteins and 
complexes. Additionally, computational methods designed to work with sparse data add atomic detail 
that is missing in the experimental restraints, allowing application to systems that are difficult to 
investigate. While specific frameworks in the Rosetta macromolecular modeling suite support the use of 
certain NMR restraint types, use of all commonly measured restraint types together is precluded. Here, 
we introduce a comprehensive framework into Rosetta that reconciles CS-Rosetta, PCS-Rosetta and 
RosettaNMR into a single framework, that, in addition to backbone chemical shifts and nuclear 
Overhauser effect distance restraints, leverages NMR restraints derived from paramagnetic labeling. 
Specifically, RosettaNMR incorporates pseudocontact shifts, residual dipolar couplings, and 
paramagnetic relaxation enhancements, measured at multiple tagging sites. We further showcase the 
generality of RosettaNMR for various modeling challenges and benchmark it on 28 structure prediction 
cases, eight symmetric assemblies, two protein-protein and three protein-ligand docking examples. 
Paramagnetic restraints generated more accurate models for 85% of the benchmark proteins and, 
when combined with chemical shifts, sampled high-accuracy models (≤ 2Å) in 50% of the cases. 

 

Significance Statement 
Computational methods such as Rosetta can assist NMR structure determination by employing efficient 
conformational search algorithms alongside physically realistic energy functions to model protein 
structure from sparse experimental data. We have developed a framework in Rosetta that leverages 
paramagnetic NMR data in addition to chemical shift and nuclear Overhauser effect restraints and 
extends RosettaNMR calculations to the prediction of symmetric assemblies, protein-protein and 
protein-ligand complexes. RosettaNMR generated high-accuracy models (≤ 2Å) in 50% of cases for a 
benchmark set of 28 monomeric and eight symmetric proteins and predicted protein-protein and 
protein-ligand interfaces with up to 1Å accuracy. The method expands Rosetta’s rich toolbox for 
integrative data-driven modeling and promises to be broadly useful in structural biology. 
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Introduction 

Structural biology increasingly focuses on large and complex protein systems, such as membrane 
proteins, multi-subunit assemblies or cellular machineries, seeking insights into their role in health and 
disease. For such challenging targets for protein structure determination, the major technologies X-ray 
crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-
EM) struggle to obtain experimental data that unambiguously defines atomic detail. Limitations in 
resolution, accuracy and coverage of individual experimental methods can be bridged by data-driven, 
integrative modeling that considers multiple types of information simultaneously. Programs like Rosetta 
(1), HADDOCK (2), the Integrative Modeling Platform (IMP) (3), or BCL::Fold (4) are pioneering 
applications that integrate information from multiple biophysical and biochemical sources and have led 
to structures of complex protein systems (5, 6). 

NMR data are one of the most useful sources of structural information for integrative modeling. 
Advances in solution-state NMR such as protein deuteration (7), relaxation-optimized spectroscopy 
(TROSY (8)), methyl labeling (9), 13C direct detection (10), and non-uniform sampling (11) have 
improved sensitivity and spectral resolution and pushed the limit of protein NMR to molecular weights of 
50-100 kDa. Nonetheless, NMR datasets from large proteins remain sparse and of low resolution, 
making 3D structure determination challenging. To facilitate structure determination, computational 
modeling tools are required that can leverage limited NMR data and translate them into accurate 
structural models. 

A powerful strategy to supplement chemical shifts (CSs) and sparse nuclear Overhauser effect 
(NOE) data is the use of long-range (up to 40 Å) paramagnetic NMR restraints, arising from interactions 
of protein nuclear spins with paramagnetic metal ions or nitroxide spin-labels. Metal ions can be 
introduced via metal binding sites or attached to the protein using coordinating tags. Advances in 
chemical synthesis of metal ion-binding tags (12) and strategies for their covalent attachment (13) have 
broadened the applicability of paramagnetic NMR to many biomolecular systems (14, 15). 

Three types of paramagnetic NMR data are commonly used for protein structure determination: 
paramagnetic relaxation enhancements (PRE), residual dipolar couplings (RDC), and pseudocontact 
shifts (PCS). PREs can be detected in any paramagnetic system and provide long-range distance 
restraints. PCSs and RDCs require anisotropic magnetic susceptibility of the paramagnetic ion (e.g. 
lanthanides), giving rise to a non-vanishing Δχ-tensor and leading to partial alignment of the protein in 
the external magnetic field. The Δχ-tensor defines a coordinate system in the protein that is centered 
on the metal ion and relates the observed PCS and RDC to the polar coordinates of a nuclear spin or 
spin pair. The PCS is a particularly rich structural restraint because it combines both distance and 
angular information (16). 

The Rosetta suite can use different types of NMR data, mainly for protein structure prediction. The 
original RosettaNMR method used backbone CSs to find structurally similar peptide fragments in the 
Protein Databank (PDB), which are assembled de novo guided by limited NOE restraints (17). This was 
later expanded to RDCs from conventional (non-paramagnetic) alignment media (18). In 2003, Meiler et 
al. showed that RosettaNMR can be used for structure determination of small proteins to atomic detail 
from unassigned NMR spectra predicting CSs, NOEs, and RDCs on the fly (19). Critical for this 
approach was the iterative filtering of models through comparison of predicted with experimental CSs 
(20). This concept has been extended with CS-Rosetta for structure determination of larger proteins 
from backbone-only CS and RDC data (21) up to 25 kDa molecular weight (22). Incorporating sparse 
side-chain NOEs from deuterated protein samples and improving conformational sampling algorithms 
increased the application limit of CS-Rosetta to proteins up to 40 kDa (23) and enabled prediction of 
helical membrane protein structures (24). Further advances to CS-Rosetta came from the inclusion of 
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structural templates from homologous proteins (25). Rosetta was also combined with PCS data (PCS-
Rosetta), achieving model qualities comparable to CS-Rosetta (26). This approach was extended to 
PCS data from multiple tagging sites and applied to the solution structure of ERp29, which uncovered 
flaws in a previous NOE-derived NMR structure (27). 

These prior results were obtained with customized frameworks in Rosetta that do not interface with 
each other and are difficult to integrate into various protocols. For example, previous implementations 
of PCSs in Rosetta were tailored to protein structure prediction but cannot be used for protein-protein or 
protein-ligand docking. Moreover, while specific combinations of restraints can be used in Rosetta, it is 
currently impossible to generally exploit the complementary nature of long-range and local restraints by 
combining PCSs, RDCs and PREs with CSs and NOEs. However, combining these restraints will 
presumably improve the accuracy, precision and completeness of a model, especially where individual 
restraint types are too sparse or erroneous. Further, other integrative methods are either tailored to a 
specific application (e.g. HADDOCK for protein-protein docking) or cannot handle the wide array of 
NMR data (e.g. the IMP does not support paramagnetic NMR data). Therefore, generalizing the 
frameworks in Rosetta for integrated use of various types of experimental data is highly beneficial for 
modeling larger and more sophisticated biomolecular systems.  

Here we reconcile RosettaNMR with CS-Rosetta and PCS-Rosetta to create a unified framework 
that combines long-range paramagnetic data with CSs and NOEs and integrates them into a variety of 
Rosetta applications. This required substantial refactoring and generalization of pre-existing NMR 
scoring methods. A new PRE energy method was added to account for conformational flexibility of the 
spin-label via an ensemble rotamer approach. We show that this framework can be easily combined 
with popular modeling protocols such as RosettaAbinitio (28), RosettaDock (29), RosettaLigand (30) 
and RosettaSymmetry (31) for a variety of structure determination tasks. Extensive documentation 
(https://www.rosettacommons.org/docs/latest/application_documentation/RosettaNMR-with-
Paramagnetic-Restraints) and protocol captures in the supplementary material allow ease-of-use and 
facilitate reproducibility for non-expert Rosetta modelers. Our framework vastly improves the 
extensibility and accuracy when modeling from sparse NMR restraints, therefore expanding Rosetta’s 
rich toolbox for incorporating experimental data into an integrative modeling pipeline. RosettaNMR is 
available as part of Rosetta which is free of charge for academic, government, and non-profit users 
(https://www.rosettacommons.org/software). 
 

Results 
RosettaNMR offers a versatile platform for integrative modeling with paramagnetic NMR 
restraints 
The success of protein structure modeling from limited NMR data can be markedly improved if different 
types of NMR data are combined in one calculation. To realize such an integrative modeling approach, 
we extend the suite of NMR tools in Rosetta, which we collectively term RosettaNMR, by paramagnetic 
NMR data in combination with CS and NOE data in one single framework (Fig 1). 

We focused our implementation on PCS, RDC and PRE data which are most informative in terms 
of the protein structure. The PCS and RDC are manifested as change in the chemical shift or spin 
coupling constant originating from molecular alignment induced by the metal’s Δχ-tensor. Whereas the 
PCS depends both on the distance and orientation to the metal ion, the RDC provides an angular 
restraint for inter-atomic vectors (Fig 1A). The PRE is the contribution to the spin relaxation rate and 
can be converted into a long-range distance restraint (Fig 1A). 

Each data type was implemented as a restraint energy penalty. During model scoring, the PCS 
score is calculated by computing the Δχ-tensor by singular value decomposition coupled with a grid 
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search over the metal ion coordinates to find the best possible fit. The RDC score is computed 
analogously by determining the molecular alignment tensor, which is related to the Δχ-tensor by a 
constant pre-factor if alignment originates solely from the paramagnetic metal ion but is different for an 
external anisotropic medium (e.g. bicelles). To generalize score calculation for any para- or 
diamagnetic data, we decided to fit PCSs and RDCs separately. In addition, Δχ-tensor values obtained 
by fitting RDCs tend to be smaller than those calculated from PCSs, because RDCs are more sensitive 
to local protein motions. Considering structural flexibility becomes even more important when 
interpreting PREs due to the many degrees of freedom (DOFs) of the spin-label; we have adapted the 
ensemble averaging approach from Iwahara and Clore for computation of the PRE score (32). The 
spin-label is modeled as an ensemble of side-chain conformations which are approximated from a 
rotamer library stored in the Rosetta database. An effective distance <r-6> is calculated between the 
protein nuclear spin and all spin-label conformations, whose structural variability is further represented 
by an order parameter S2. 

Rosetta allows manipulating the protein through modeling objects accessible from high-level 
scripting languages such as PyRosetta (33) and Rosetta Scripts (34). This allows the user to develop 
new customized protocols by mixing and matching different strategies (Fig 1B). The main modeling 
tools fall into two categories: Movers and Filters. Movers change the conformation of a biomolecule and 
Filters decide whether the given conformation should go into the next stage. One can easily devise new 
strategies of how paramagnetic restraints can be used to guide conformational sampling or model 
filtering. We exemplify this by applying PCSs to ligand docking for which we have designed a new PCS 
ligand scoring grid method and a rigid-body sampling Mover. Furthermore, RosettaNMR allows new 
spin-labels to be added to the chemical database in a straightforward manner to accommodate new 
spin-label designs. 
 
Paramagnetic NMR data enhance sampling of native-like models in de novo structure 
prediction 
We tested RosettaAbinitio (28) on 28 monomeric proteins in our benchmark set (Tab S1) using different 
types and combinations of NMR data: CSs, RDCs, PCSs and PREs. For three proteins, both PCSs and 
RDCs were available and could be tested. Table 1 summarizes the RMSD100 of the best 1% of models 
ranked by either RMSD or score. Score-vs-RMSD plots of selected targets are displayed in Fig 2, and 
for all targets in Fig S1 and S2. Noticeably, paramagnetic NMR data greatly improve sampling of near-
native models, i.e. they bias the fragment assembly toward the native structure. In 29 out of 34 test 
cases, the best 1% of models ranked by RMSD had a lower RMSD100 to the native structure when 
paramagnetic NMR data were included (Fig 3A+F), and the average RMSD100 improved from 4.5 Å to 
3.5 Å (Tab 1; see Fig S3A for statistical analysis of RMSD improvement). 

Comparing models generated with either paramagnetic NMR restraints or CSs (Fig S4), we find 
that the former had a slightly better performance on model sampling: for 72% of the proteins 
paramagnetic NMR data led to a lower RMSD100. However, both restraint types improved model quality 
compared to unrestrained de novo prediction: With CSs the average RMSD100 for the best 1% models 
over all proteins dropped from 4.5 Å to 3.6 Å, improving the RMSD100 for 24 out of 34 cases (Tab 1, Fig 
S3A and S4). With paramagnetic NMR restraints the average RMSD100 dropped to 3.5 Å, improving for 
29 of 34 cases. 

Model sampling was even more enhanced when CSs were combined with RDCs, PCSs and PREs 
(Fig 3B), showing that these data have an orthogonal beneficial effect on the conformational search. In 
29 of 34 cases, the best 1% of models ranked by RMSD had a lower RMSD100 to the native structure 
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when paramagnetic NMR and CS data were used (Fig 3F), and the average RMSD100 decreased from 
4.5 Å to 3.1 Å (Tab 1; see also Fig S3A for statistical analysis of RMSD change). 

The gradual improvement in model sampling by including CSs, paramagnetic restraints or a 
combination of both can be seen in the score-vs-RMSD and density plots in Fig 2, S1 and S2. The 
fraction of proteins for which a high-accuracy model (RMSD100 ≤ 2 Å) could be generated, increased 
from 9% (no NMR data) to 35% (CSs), 35% (paramagnetic restraints) and 50% (CSs and paramagnetic 
restraints). Medium-accuracy models (RMSD100 ≤ 3 Å) could be sampled in 62% (no NMR data), 68% 
(CSs), 76% (paramagnetic restraints) and 76% (CSs and paramagnetic restraints) of the cases. 
 
Paramagnetic NMR data enrich for native-like models in scoring 
A similar improvement in model quality was observed when they were ranked by score (Tab 1, Fig 
3D+E). This is more realistic since in a blind structure prediction models must be identified 
predominantly by score. Here, we calculated the score as combination of the Rosetta all-atom energy 
and the RDC, PCS or PRE score with a weighting factor that was optimized for each NMR dataset and 
protein as described under Methods. For those cases where PCSs and RDCs were used, both the PCS 
and RDC score was added to the Rosetta energy with weights proportional to the logarithm of the 
number of PCSs and RDCs. 

For 28 of 34 and 30 of 34 targets the ten best-scoring models had a lower average RMSD100 when 
paramagnetic restraints were used individually or combined with CSs (Fig 3D+E). The average 
RMSD100 of the ten lowest-scoring models over all benchmark proteins improved from 7.6 Å (no NMR 
data) to 5.0 Å (paramagnetic restraints) and 4.2 Å (CSs and paramagnetic restraints) (Tab 1, Fig S3B). 
The number of proteins for which the RMSD100 of the top ten models was ≤ 3 Å increased from two (no 
NMR data) to 14 (paramagnetic restraints) and 18 (CSs and paramagnetic restraints). Moreover, 22 
(paramagnetic restraints) and 24 (CSs and paramagnetic restraints) proteins fell within a 5 Å cutoff. 

To investigate the ability of the RDC, PCS and PRE score to recognize near-native models we 
calculated model enrichment (maximum value is 10, see Method S4) displayed in Fig 3C. To this end, 
models built without paramagnetic NMR data were rescored with RDCs, PCSs or PREs and the all-
atom energy function. The average enrichment over the benchmark set increased from 2.5 to 3.7 
(RDCs: 2.5 → 3.8; PCSs: 2.2 → 4.1; RDCs + PCSs: 1.9 → 4.2). No significant increase in enrichment 
was seen for the PRE score (2.5 → 2.6), showing that it failed to further improve model selection with 
Rosetta’s all-atom energy function. Although we only have experimental PRE datasets from three 
proteins, the observations match those made with simulated PRE data for symmetric proteins (see 
below). We speculate that the lower discriminative power of the PRE score is due to the fact that PREs 
are purely distance-dependent and have a narrow dynamic range as they decrease with r-6 to the spin-
label. This is in contrast to PCSs which are sensitive to orientation and distances and cover a larger 
range due to their r-3 dependence. Consequently, the PCS score drastically improves model 
discrimination when included in Rosetta’s all-atom energy function. 
 
Paramagnetic NMR data facilitate protein model selection 
Experimental data can be compared to back-calculated data from predicted structural models for model 
selection and validation. The top RosettaNMR models satisfy their experimental data remarkably well 
(Fig 4A-C for proteins 2K61, 5T1N and 1CDL, Fig 4D and Tab S2). A direct measure of the agreement 
provides the NMR Q factor (see Method S4), which we calculated for the ten best-scoring models of 
each target in the benchmark set. We saw a steady improvement of the Q-factor with the inclusion of 
more NMR data, and combining CSs and paramagnetic data yielded Q-factors comparable to native 
structures (Fig 4D). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2019. ; https://doi.org/10.1101/597872doi: bioRxiv preprint 

https://doi.org/10.1101/597872
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

We used two measures to assess the quality and estimate success of structure prediction: a) low 
Q-factors confirm good agreement with the experimental data and b) model convergence indicates that 
a topology is repeatedly sampled and satisfies the combined Rosetta and NMR score. We defined 
convergence as the average RMSD between the best-scoring model and the next nine low-scoring 
models. We found that paramagnetic restraints and CSs were highly beneficial for model convergence 
and a steady improvement in the RMSD was observed when including more NMR data (Fig S5A). In 
28 of 34 test cases (82%), the model created with CSs and paramagnetic restraints had a convergence 
≤ 4 Å (Tab S2 and Fig S5A). This RMSD cutoff is employed in the calculation of other protein structure 
similarity metrics (e.g. GDT-TS and MaxSub) and models below this cutoff usually share the same 
global topology. The other six proteins (2KYW, 2KYY, 2KD7, 1RW5, 1CDL, 1J54) had limited 
convergence, identifying their model as unreliable and allowing for their rejection (see Fig S6 for more 
discussion). 
 
Iterative resampling with paramagnetic NMR data further improves model quality 
Inspection of the six prediction failures according to our convergence criterion (2KYW, 2KYY, 2KD7, 
1RW5, 1CDL, 1J54) revealed no high-accuracy model (≤ 2 Å) and only a small number of intermediate-
accuracy models (≤ 3 Å) after de novo prediction, even when combining CSs with paramagnetic 
restraints. Insufficient sampling was also noticed for another three proteins in the benchmark set 
(1CMZ, 1RJV, 2K5U) with consequently high RMSD100 for their top-scoring models. To test if enhanced 
sampling could further improve model accuracy, we applied the Rosetta Iterative Hybridize refinement 
protocol, incorporating paramagnetic restraints. As previously described (35), Iterative Hybridize 
generates new hybrid conformations by recombining templates obtained from low-energy structures 
together with de novo fragment insertion. A pool of low-energy conformations is maintained, and the 
worst scoring models are periodically replaced with new models. 

We ran 30 rounds of Iterative Hybridize and selected the offspring generation of models at each 
step by their combined Rosetta and NMR score. The RMSD100 steadily improved for eight of nine 
proteins; the RMSD100 of the ten lowest-scoring models decreased by 3.2 Å on average, improving the 
number of proteins with RMSD100 ≤ 5 Å for the ten lowest-scoring models from one of nine to six of nine 
(Tab S3 and Fig S7). For two of nine proteins at least one high-accuracy model was present in the pool 
after the final refinement step and for four of nine proteins more than 1% of models had an RMSD100 
better 3 Å. 
 
RosettaNMR with paramagnetic NMR data improves structure prediction of symmetric 
proteins 
We further applied RosettaNMR to symmetric proteins, focusing on systems with cyclical (Cn) and 
dihedral (Dn) symmetry as they are most abundant in nature. We hypothesized that RDCs, PCSs and 
PREs provide sufficient information to fold the asymmetric monomer and sample symmetric rigid body 
DOFs toward low-energy and experimentally relevant conformations. We incorporated point symmetry 
into the RDC, PCS and PRE scoring methods, allowing the use of experimental data collected on the 
whole protein assembly through symmetric tagging. Hence, time-consuming asymmetric tagging of 
single subunits to break the symmetry for the ease of assignment is not required. 

We combined RosettaNMR and the Fold-and-Dock protocol (36), which simultaneously models the 
asymmetric monomer and symmetric complex, applicable to interleaved and non-interleaved 
topologies. The protocol was tested with published RDCs and simulated PCSs and PREs (Tab 2 and 
Tab S1), and the type of symmetry was assumed to be known. We created 5,000 models for each 
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protein and restraint set. In addition, we employed a two-step protocol for proteins 1RJJ and 2M89 for 
which Fold-and-Dock failed to build models < 10 Å to the native structure (see Methods). 

Table 2 summarizes the average RMSD100 values of the best 1% of models by RMSD and of the 
ten best-scoring models. Score-vs-RMSD plots of selected proteins are displayed in Fig 5 and for all 
targets in Fig S8. We find a clear improvement in model sampling and scoring with paramagnetic NMR 
data. The number of cases with a lower RMSD100 among the best 1% of models was seven (RDCs), six 
(PCSs) and seven (PREs) out of eight (considering the symmetric docking results for 1RJJ and 2M89 in 
which the correct topology could be sampled), and the average RMSD100 value over the best 1% of 
models for all proteins decreased from 5.2 Å without NMR data to 3.6 Å (RDCs), 3.8 Å (PCSs) and 
4.2 Å (PREs). The sampling density of low-RMSD models improved considerably for many targets; the 
number of cases with at least one high-accuracy model (≤ 2 Å) improved from one without NMR data to 
five, six and two with RDC, PCS and PRE data, respectively. As in our analysis for monomeric proteins, 
paramagnetic NMR data had a beneficial effect on scoring and convergence. The average enrichment 
increased from 2.3 to 2.7 (RDCs), 3.1 (PCSs) and 2.4 (PREs) (Fig 5E), and the mean convergence 
over all targets improved from 5.4 Å to 4.2 Å (RDCs), 2.9 Å (PCSs) and 5.1 Å (PREs) (Fig S5B). Using 
a combination of convergence and NMR Q-factor as criterion to assess prediction reliability, five 
(RDCs), six (PCSs) and three (PREs) out of eight modeling cases could be classified as successful 
(Fig S6B). 
 
Pseudocontact shifts are highly beneficial to identify native interfaces in protein-protein 
docking 
PCSs are particularly attractive for protein-protein docking because they combine distance and angular 
information and are easy to interpret in terms of the coordinates of a nuclear spin within the Δχ-tensor 
frame. PCSs from multiple tagging sites can remove the ambiguity related to the symmetry of the Δχ-
tensor, allowing prediction of the binding interface. The validity of this approach was first corroborated 
by PCS-based rigid-body docking (37, 38). Later, Schmitz et al. implemented a PCS energy term into 
the docking program HADDOCK (39). Here, we combined PCSs in RosettaNMR with RosettaDock (29) 
and show that protein-protein interfaces can be accurately identified using PCS data as the only source 
of experimental information. 

The method performance was assessed on two systems with experimental PCSs (Tab 3): (a) a 
ternary complex of FKBP12 (FK506-binding protein), rapamycin and the FKBP12-rapamycin-binding 
(FRB) domain of FRAP (PDB 1FAP) (Fig 6A+B) and (b) a homodimer of the PB1 domain of p62 (PDB 
2KTR) (Fig S9). For FKBP12-rapamycin-FRB (40), we obtained a best-scoring model with an interface 
RMSD of 0.5 Å to the X-ray structure (Fig 6A). The final ensemble of ten models was highly converged 
with an average interface RMSD of 0.6 ± 0.2 Å to the native structure and was in excellent agreement 
with the PCS data (Q = 0.07). In contrast, docking without PCS data failed to converge; the final 
ensemble had an average RMSD of 13.2 ± 6.6 Å (Fig 6B). 

For the p62 PB1 homodimer (41), docking started from the unbound conformation of the p62 PB1 
because no high-resolution structure of the dimer was available and the experimental structure (PDB 
2KKC) was reported as rigid-body docking structure. Although docking of unbound structures is 
notoriously difficult, our calculations converged to a best-scoring model with an interface RMSD of 
1.3 Å (Fig S9) compared to the published model by Saio et al. that is very similar to the X-ray structure 
of a related p62-PKCζ heterodimer (PDB 4MJS). The final ensemble of ten lowest-scoring models had 
an average RMSD of 1.7 ± 0.3 Å and was in very good agreement with the experimental PCSs with a 
Q-factor of 0.17. In contrast, docking without PCSs failed to converge and the interface RMSD of the 
best ten models was 14.1 ± 2.4 Å (Fig 6B) (Q = 0.21). 
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Pseudocontact shifts efficiently guide protein-ligand docking to native-like complexes 
Paramagnetic NMR has been successful in compound screening for drug design (42) and in modeling 
of protein-ligand interactions (43). PCS restraints play a special role because they can be measured for 
ligands with a broad range of affinities and provide atomic detail information about the binding mode. 
Here, we have tested the performance of RosettaNMR with RosettaLigand (30) to leverage PCSs for 
modeling protein-ligand interactions. Using PCSs as the only source of experimental information for 
three protein-ligand systems with different affinities and no prior knowledge about where the ligand 
binds, our method was able to recover the native binding mode with an accuracy of up to 1.1 Å ligand 
RMSD. 

We employed a two-step protocol for global protein-ligand docking. A search of the ligand’s six 
rigid body DOFs in a grid around the protein identifies positions with low PCS score, which are then 
used as input into RosettaLigand. For our three test cases, we found that after the initial grid search the 
ligand clustered in a space corresponding to an RMSD of around 6 to 8 Å relative to the native ligand 
binding mode. Simultaneous ligand translation, rotation and conformer replacement further explores the 
space around the starting position, and subsequent high-resolution docking refines the structure to 
atomic detail. Furthermore, we implemented a PCS scoring grid (44) into RosettaLigand, which 
evaluates the ligand position given the experimental PCS data and a Δχ-tensor as input. The 
components of the Δχ-tensor(s) can be calculated from the proteins’ PCS values prior to docking. 

We tested this method on three protein-ligand complexes (Tab 3): the SH2 domain of Grb2 bound 
to a low-affinity phosphorylated pYTN tripeptide ligand as well as a high-affinity macrocyclic inhibitor 
(45), and a complex of dengue virus NS2B-NS3 protease (DENpro) with a high-affinity ligand (46). 
PCS-assisted docking of the two SH2 ligands was converged (see score-vs-RMSD plots in Fig 6C and 
Fig S9). The models of the pYTN ligand (Fig 6C) and the macrocyclic inhibitor (Fig S9) with the lowest 
Rosetta interface and PCS score had a ligand RMSD of 1.1 Å in both cases, and were in very good 
agreement with the NMR data (Q = 0.14, Q = 0.23). The average RMSD of the ten best models was 1.1 
± 0.1 Å and 1.4 ± 0.6 Å, respectively (Fig 6D). In contrast, ligand docking without PCSs failed to identify 
the binding pocket (ligand RMSDs were 14.7 ± 6.9 Å and 9.8 ± 4.5 Å). Similar improvements were 
found for the third system, DENpro with a high-affinity ligand. Our lowest scoring model had a PCS Q-
factor of 0.11 and a RMSD of 2.1 Å to the model by Chen et al. (Fig S9) which bears high similarity to 
the X-ray structure of a related peptide-DENpro complex (PDB 3U1I) (47). Due to the presence of a 
second low-scoring binding mode (Fig S9), the average RMSD of the ten best models (6.7 ± 2.3 Å) was 
larger and less converged than for the other two test cases, but still considerably lower than for docking 
without PCSs (24.0 ± 8.1 Å) (Fig 6D). 
 

Discussion 
The utility of paramagnetic NMR restraints has long been recognized (16) but they are often too sparse 
to allow structure determination from these data exclusively. Moreover, interpretation of PCS and RDC 
data usually requires that the alignment tensor or metal Δχ-tensor is calculated from an existing 
structural model and simultaneous computations of the tensor and structure (48) have remained difficult 
or are practical only for small proteins. Consequently, PCSs, RDCs and PREs have mainly been used 
in addition to NOEs in structure calculations or refinement (49, 50). However, computational methods 
can leverage limited experimental data, and integrative modeling approaches have proven successful 
in assisting structure determination of larger proteins from limited NMR data (51, 52). 

We present a strategy for protein structure modeling from paramagnetic restraints as part of the 
Rosetta biomolecular modeling suite. Our approach revives and extends the RosettaNMR framework 
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and allows modeling from long-range PCS, RDC and PRE restraints, in combination with CSs and 
NOEs. RosettaNMR was designed to be integrable with other modeling protocols such as 
RosettaAbinitio, RosettaDock, RosettaLigand and RosettaSymmetry in order to tackle various modeling 
challenges for proteins and protein interactions. 

Structures predicted by our method yield comparable accuracy as previous CS- (21), PCS- (26) 
and CS-RDC-Rosetta (22) protocols and improved accuracy compared to BCL::Fold (4) (Tab S5). Our 
analysis shows that paramagnetic restraints greatly enrich for near-native models by improving both 
model sampling and scoring. When evaluated on the monomeric protein test set, paramagnetic 
restraints allowed building more accurate models for 85% of the proteins. Compared to CS-Rosetta 
calculations on the same protein set, paramagnetic restraints yielded lower RMSD100 in 72% of the 
cases. Combining CSs with paramagnetic restraints sampled at least one high-accuracy model 
(RMSD100 ≤ 2 Å) in 50% of the cases, and a medium-accuracy model (RMSD100 ≤ 3 Å) for 75% of the 
proteins. In contrast, calculations without NMR data rarely arrived at high-accuracy models; for only 9% 
of the proteins a model ≤ 2 Å could be generated. This clearly illustrates that CSs and paramagnetic 
restraints complement each other in protein structure determination: CSs guide the fragment search 
through local conformation bias while paramagnetic restraints guide the global assembly into a 3D fold. 

Our results for de novo protein structure prediction are further confirmed by those obtained on the 
symmetric protein benchmark set and for modeling protein-protein and protein-ligand complexes. 
Paramagnetic restraints improve model quality of up to 80% of the symmetric proteins and help to 
recapitulate native protein and ligand binding poses with an RMSD as low as 1 Å. Moreover, 
paramagnetic restraints proved highly beneficial for model selection. Energy differences between 
native-like and non-native conformations can be small due to a simplified protein representation in 
Rosetta and inaccuracies in the energy function, making identification of the correct fold difficult. 
Supplementing the Rosetta energy function with a score reporting the PCS, RDC and/or PRE restraint 
violation significantly improves model enrichment by a factor of ~2. 

Predicting the likelihood of success for structure prediction and refinement remains difficult, as 
various aspects (fold complexity, secondary structure content, number and quality of restraints and 
spin-label sites) play an important, and protein-specific, role. In general, paramagnetic restraints from 
multiple tagging sites are expected to improve structure prediction by resolving the degeneracy of 
solutions that equally fulfill the experimental data. For proteins 1D3Z and 1G7D in our benchmark set 
which had PCS data from multiple tagging sites available the largest RMSD improvements were found 
after combining all datasets, and individual tagging sites were found not equally valuable in sampling 
low-RMSD models. 

Additional improvements to integrative modeling with sparse paramagnetic NMR data in Rosetta 
are expected to come from enhanced sampling algorithms such as iterative fragment assembly (53), 
iterative hybridization (35) or RASREC (54). These techniques can improve modeling for larger and 
more complex topologies and make more efficient use of NMR data. Further improvements can be 
expected from incorporation of alternative experimental data, for instance from SAXS (55) or mass-
spectroscopy (56) or from co-evolution data (57). Evolutionary coupling-NMR (58) incorporates 
evolutionary contacts during and after NMR data interpretation and NOE assignment. With the 
expansion of genomic databases and increased accuracy in protein contact prediction algorithms, 
evolutionary constraints provide increasingly viable orthogonal structural information to assist NMR-
guided protein structure prediction. 

In conclusion, we present the development and application of a structural biology framework for 
protein modeling from sparse paramagnetic NMR restraints as part of the Rosetta software suite. The 
improved RosettaNMR framework integrates the capabilities of CS-Rosetta and PCS-Rosetta and 
allows the use of all combinations of CS, NOE, PCS, RDC, and PRE restraints. We applied 
RosettaNMR to structure prediction of monomeric and symmetric proteins, protein-protein docking and 
protein-ligand docking. Our approach enables structure determination from sparse paramagnetic NMR 
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datasets where other types of data are difficult or time-consuming to acquire. Approaches like these will 
open the door for structure determination of complex biomolecular assemblies and ultimately our 
understanding of their biological function. 
 

Supplemental Information 
Supplemental information includes a detailed description of the PCS, RDC and PRE scoring methods, 
eleven supporting figures and five supporting tables (File S1), and a protocol capture on RosettaNMR 
with complete command lines (File S2) as well as input files for running the protocol capture (File S3). 
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Methods 
 
Selection of benchmark proteins 
For de novo structure prediction, 28 monomeric and eight symmetric proteins with experimental NMR 
data were selected (Tab S1). The monomeric protein benchmark set included 16 proteins with RDC 
data, six proteins with PCS data, three proteins with PRE data and three proteins for which both PCS 
and RDC data were available. Because only a small number of proteins with paramagnetically-induced 
RDC data are reported in the literature to the best of our knowledge, we included additional proteins 
with RDC data induced by conventional alignment media; their computational treatment is identical. In 
addition, CSs were available for all proteins. These included CSs of backbone atoms 1HN, 1Hα, 13Cα, 
13C’, 13Cβ, 15NH for almost all proteins. 13C’ shifts were not available for proteins 2H45, 2A7O, 1CMZ, 
5T1N, 1X0N and 1RJV, 13Cβ shifts were missing for 1G7D and 1CDL and 1Hα shifts were absent for 
2K61 and 1J54. 

To compare with previous structure prediction studies, our benchmark set included 14 targets from 
the BCL::Fold benchmark (4), seven targets from previous CS-Rosetta benchmarks (21, 22) and 4 
targets from the PCS-Rosetta benchmark (26). Furthermore, proteins were selected to have a diverse 
set of α, β and α/β topologies, and ranged from 56 to 199 residues. 

The symmetric protein benchmark set comprised six targets with C2 symmetry, one target with C3 
symmetry and one target with D2 symmetry. All targets had experimental RDC data, and PCSs and 
PREs were simulated (Method S1+S2). Three targets were taken from an earlier CS-RDC-Rosetta 
study (59). 
 
Calculation of the paramagnetic NMR score 
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PCSs, RDCs and PREs are evaluated by a Rosetta scoring method in low- and high-resolution mode 
and computed on the whole protein structure. The score represents the sum of squared errors between 
the experimental and predicted NMR values. Computation of each of the three score terms is described 
in detail in Method S3. Detailed description of the format of PCS, RDC and PRE input files, the choice 
of critical parameters and complete command lines are provided with the protocol capture in File S2. 

Analogous to previous Rosetta protocols for NMR structure determination (21, 22, 26), we decided 
to add each paramagnetic NMR score to the Rosetta energy function using a different weight (wParaNMR), 
which was adjusted such that the ranges of the NMR and Rosetta score were approximately equal. The 
weight was determined by first generating 1000 models without NMR data and then rescoring them with 
the respective paramagnetic NMR restraints. The weight wParaNMR was calculated as 
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���  are the average of highest and lowest 10% of the values of the Rosetta 

score, and ��������
���  and ��������

���  are the average of the highest and lowest 10% of the values of the 
respective paramagnetic NMR score, respectively. For de novo structure prediction, ERosetta represented 
the Rosetta low-resolution score which is obtained with the score3 weight set. For scoring all-atom 
models, ERosetta was calculated with the Rosetta ref2015 energy function (60). In case EParaNMR 
comprised more than one type of paramagnetic NMR data, wParaNMR was split between those, and we 
chose a ratio proportional to the logarithm of the number of restraints in each data set. 
 
RosettaNMR de novo structure prediction with paramagnetic and chemical shift NMR 
data 
Structure prediction was accomplished using Rosetta’s fragment assembly protocol (28) followed by all-
atom refinement via FastRelax (61). Paramagnetic NMR data were used as follows: CSs for fragment 
selection, PCS, RDC and PRE data for low-resolution fragment assembly, high-resolution refinement, 
model scoring and final model selection. 

The fragment search was carried out with the Rosetta3 fragment picker (62) and two libraries were 
generated for each protein. For the first library, only sequence-based secondary structure information 
derived from PSIPRED (63) and Jufo9D (64) was used. The second library was created using 
backbone CSs and TALOS+ (65) secondary structure assignments. In all cases, homologous proteins 
were excluded according to a sequence similarity criterion (PSI-BLAST E-value < 0.5). 

To guide fragment assembly with RDCs, PCSs or PREs, the score function was supplemented with 
the score term for the respective paramagnetic NMR restraint, using a weighting factor wParaNMR 
optimized against Rosetta’s low-resolution score as described above. Following high-resolution 
refinement, models were rescored with the Rosetta all-atom energy function (60) combined with the 
respective paramagnetic NMR score term. 

For each benchmark target, 10,000 all-atom models were generated, and computations took 0.25 
– 0.5 hrs/model for RDCs, 0.5 – 1.0 hrs/model for PREs and 0.5 – 2.0 hrs/model for PCSs. 

The performance of RosettaNMR structure prediction was evaluated by calculating model RMSD100 
to the native structure, model convergence and NMR Q-factor (see Method S4). The effect of the PCS, 
RDC and PRE score on model scoring was assessed using the enrichment metric. 
 
RosettaNMR symmetric protein modeling with paramagnetic NMR data 
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Structure prediction of symmetric proteins was accomplished using the Fold-and-Dock protocol (36) 
which carries out simultaneous folding and docking of multi-chain homo-oligomers. We adjusted the 
Fold-and-Dock protocol to include RDC, PCS and PRE data for fragment assembly, rigid body 
sampling and final model scoring and selection. 

In a symmetric complex, the PCSs and PREs are calculated as the sum over equivalent spins in 
symmetric subunits. For evaluating RDCs, we expect that one axis of the alignment tensor is collinear 
with the symmetry axis of the system. Thus, a copy of the RDC values is assigned to each subunit, and 
simultaneous search of all rigid body DOFs finds the orientation of the alignment tensor that best aligns 
with the symmetry axis. 

We used published RDCs (Tab S1) and simulated PCSs and PREs (Method S1+S2). The type of 
symmetry was assumed to be known. For unknown symmetry groups, all eligible point groups can be 
tested under the assumption that models with correct symmetry will score better with higher 
convergence. 

A total of 5,000 models were generated for each protein, which took only slightly longer than 
structure prediction for monomeric proteins of similar sizes. The respective paramagnetic NMR score 
was computed for all models, multiplied by the weighting factor wParaNMR and added to the Rosetta all-
atom score for final model selection. 

An additional two-step protocol (59) was conducted for proteins 1RJJ and 2M89, for which Rosetta 
failed to produce models with RMSD100 < 10 Å. The structure of the monomer was first modeled without 
NMR data using de novo prediction and subsequently docked together using RDC, PCS or PRE data. 
An ensemble of the 50 lowest-scoring monomer models was used as starting conformations for 
symmetric docking (31). This step yielded a total of 50,000 models which were ranked by the Rosetta 
all-atom interface score together with their paramagnetic NMR score. 
 
RosettaNMR protein-protein docking guided by PCS data 
We adapted RosettaDock (29) to use PCS data both for rigid body sampling and high-resolution 
refinement. The PCS score for every tagging site is minimized over all intra- and intermolecular PCSs 
to yield the Δχ-tensor with the best fit to a given docking pose. Thus, incorrect binding poses with a 
large number of PCS violations are highly penalized. Moreover, rigid body DOFs and backbone torsion 
angles are optimized during high-resolution refinement under the restraint of the PCS target function. 

PCS-guided Rosetta docking was tested for two protein complexes with experimental PCS data: a 
p62 PB1 homodimer (PDB 2KTR) and a ternary complex of FKBP12 (FK506-binding protein), 
rapamycin and the FKBP12-rapamycin-binding (FRB) domain of FRAP (PDB 1FAP). RosettaDock 
calculations were performed as global docking with random initial orientations of the two binding 
partners at the beginning of each simulation. The magnitude of translational and rotational rigid body 
Monte Carlo moves was set to 0.3 Å and 5°, respectively. For the ternary FKBP12-rapamycin-FRB 
complex, the rapamycin ligand was kept fixed with respect to FKBP12 and the FRB domain was 
docked to the FKBP12-rapamycin complex. Simultaneous optimization of protein side-chain rotamers 
and rapamycin conformers during high-resolution docking allowed equal adjustment of all protein-
protein and protein-ligand interfaces. 

A total of 100,000 models were generated for each target with and without PCS data and final 
models were selected by their combined Rosetta interface and PCS score. Model accuracy was 
evaluated by the RMSD of all backbone heavy atoms in the interface after superposition. The interface 
was defined as all residues within 8 Å of any other residue on the other protein binding partner. 
 
RosettaNMR protein-ligand docking guided by PCS data 
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To explore the full potential of PCSs for ligand docking without prior knowledge of the ligand binding 
site, we made the following adaptations to the RosettaLigand protocol (30): First, to identify ligand 
positions with low PCS score, an additional pre-transform step runs a grid search of the ligand’s rigid 
body DOFs in a shell around the protein (with adjustable resolution; 5 Å and 20° in this study). These 
positions are then used as starting points for low-resolution docking to find a favorable non-clashing 
ligand position in the binding pocket. For comparison, docking without PCS data was initiated from 
positions uniformly distributed in a shell around the protein with a width corresponding to half the ligand 
neighbor radius and a spacing of 5 Å. Second, the cartesian grid-based energy function that is used for 
ligand scoring in the low-resolution stage (44) was extended by a new PCS scoring grid, which 
represents the 3D field of the expected ligand PCS given a Δχ-tensor as input. Thus, the PCS ligand 
grid score examines the agreement of the ligand position with the localization space defined by the 
PCS. The Δχ-tensor components can be determined from the protein PCS dataset. The dimensions of 
the grid were set to 30 Å x 30 Å x 30 Å with a spacing of 0.25 Å. Initially, the grid is centered at the 
position of the ligand neighbor atom but is recomputed if the ligand moves outside of the grid. 

After low-resolution docking the algorithm proceeds with its high-resolution phase using the 
Rosetta all-atom energy function including the PCS score. Six cycles of alternating protein side-chain 
and ligand conformer packing and small perturbations to the ligand are performed, followed by a final 
gradient minimization of the interface. A total of 100,000 models were generated, and final models were 
selected by their combined interface and PCS score. Model accuracy was assessed by the RMSD of all 
ligand heavy atoms without superposition. 

We applied PCS-guided RosettaLigand to three systems for which experimental PCS data had 
been published: two complexes of the Src homology 2 (SH2) domain of the growth factor receptor-
bound protein 2 (Grb2) with a low-affinity pYTN tripeptide and a high-affinity inhibitor (4-
[(10S,14S,18S)-18-(2-amino-2-oxoethyl)-14-(1-naphthylmethyl)-8,17,20-trioxo-7,16,19-
triazaspiro[5.14]icos-11-en-10-yl]benzylphosphonic acid) (45), and a complex between the dengue 
virus NS2B-NS3 protease with a high affinity ligand (46). 
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Tables 
Table 1: Structure prediction benchmark of monomeric proteins with paramagnetic NMR 
restraints and chemical shifts. 
     no Paramagnetic NMR Restraints Paramagnetic NMR Restraints 

     no Chemical Shifts with Chemical 
Shifts 

no Chemical 
Shifts 

with Chemical 
Shifts 

PDB 
ID 

BMRB 
ID 

Topology No. 
Residues 

No. NMR 
Restraints 

Top 1% 
RMSD† 

Top 10 
Score‡ 

Top 1% 
RMSD 

Top 10 
Score 

Top 1% 
RMSD 

Top 10 
Score 

Top 1% 
RMSD 

Top 10 
Score 

RDC             

1Q2N 5656 a 58 126 2.5 5.4 2.1 3.7 1.8 2.5 1.8 2.4 

2L7K 17359 a 76 79 3.7 9.2 2.6 3.5 2.8 3.1 2.2 3.3 

5T1N 30158 a/b 85 57 2.7 3.1 2.8 3.1 2.7 2.9 2.8 3.1 

2KYW# 16988 b 87 132 7.3 9.1 7.4 8.2 6.9 9.7 6.1 9.2 

2KCT 16096 b 94 49 4.0 4.3 2.4 3.9 3.7 4.7 2.1 2.6 

2H45 7127 b 95 50 2.1 2.5 1.3 1.6 1.4 1.5 1.3 1.5 

2KLC 16390 a 101 75 3.2 3.5 2.3 2.9 1.6 1.9 1.9 2.0 

2JV3 4205 a 110 91 2.8 7.3 2.2 4.7 2.0 3.7 1.7 2.4 

1RJV 6049 a 110 46 5.6 10.9 5.6 7.8 7.6 8.9 5.7 6.2 

2A7O 6834 a 112 120 4.7 11.5 3.0 9.2 2.7 4.0 2.4 2.9 

2KCK 16083 a 112 144 2.7 4.0 2.8 3.8 2.5 2.9 2.3 2.4 

2KD1 16102 a/b 118 105 3.1 4.8 2.6 4.7 2.7 3.4 2.5 2.6 

1CMZ# 4407 a 128 291 4.9 6.7 4.1 6.6 5.3 7.3 4.5 6.2 

2L3W 17207 a 143 176 5.5 9.9 4.1 8.4 3.6 5.6 2.7 3.2 

2K61 15852 a 146 328 3.5 9.7 2.8 9.2 1.9 2.2 2.2 2.4 

2KYY# 16991 a/b 152 81 7.0 14.3 5.5 10.9 7.3 13.1 4.6 9.6 

2KD7# 16107 b 159 137 7.4 10.5 8.0 12.2 7.1 9.1 7.8 9.6 

2K5U# 15809 a/b 181 322 6.2 8.1 5.0 6.8 3.7 3.5 3.3 3.5 

1RW5# 6643 a 199 81 8.0 12.4 5.6 13.3 5.8 12.3 4.4 11.5 

Mean     4.6 7.7 3.8 ** 6.6 ** 3.8 ** 5.4 ** 3.2 *** 4.6 *** 

≤ 3 Å§     5 1 11 2 10 6 12 9 

≤ 5 Å§     12 6 14 9 13 12 16 13 

PCS             

2AE9 6571 a 76 86 4.3 14.4 1.8 2.1 1.7 2.2 1.6 2.1 

1D3Z 6457 a/b 76 331 3.2 3.8 2.7 3.6 1.6 2.5 1.5 2.7 

5T1N 30158 a/b 85 102 2.7 3.1 2.8 3.1 2.7 3.0 2.7 3.0 

1X0N 11055 a/b 104 227 3.9 6.9 2.7 5.9 3.3 5.5 2.2 2.8 

1G7D¶ 4920 a 106 276 1.8 3.1 2.3 4.0 1.6 4.1 2.2 3.6 

1RJV# 6049 a 110 104 5.5 10.9 5.6 7.8 3.9 8.0 4.6 6.0 

2K61 15852 a 146 403 3.5 9.7 2.8 9.2 2.1 2.7 2.3 2.6 

1IJA 4879 b 148 41 3.2 4.0 2.7 3.5 2.7 3.0 2.5 3.0 

1J54# 6184 a/b 186 480 7.3 12.2 5.7 10.1 6.6 6.2 6.6 7.7 

Mean     3.9 7.6 3.2 * 5.5 * 2.9 * 4.1 * 2.9 * 3.7 * 

≤ 3 Å§     2 0 7 1 6 5 7 6 

≤ 5 Å§     7 4 7 5 8 6 8 7 

PCS+RDC            

5T1N 30158 a/b 85 102+57 2.7 3.1 2.8 3.1 2.7 3.0 2.7 3.0 

1RJV 6049 a 110 104+46 5.5 10.9 5.6 7.8 4.0 4.5 4.6 5.8 

2K61 15852 a 146 403+328 3.5 9.7 2.8 9.2 1.6 2.1 1.6 1.9 

Mean     3.9 7.9 3.7 6.7 2.7 3.2 2.9 3.6 

≤ 3 Å§     1 0 2 0 2 2 2 2 

≤ 5 Å§     2 1 2 1 3 3 3 2 

PRE             

3GB1 7280 a/b 56 91 1.0 1.4 0.9 1.4 1.0 1.4 0.9 1.4 

1CDL# 1634 a 142+19 120 6.3 10.0 5.3 9.4 4.0 9.4 4.1 7.7 
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1SOS 4202 a/b 153 179 7.7 8.4 4.4 3.5 7.4 8.6 4.4 4.2 

Mean     4.0 6.6 2.9 4.8 3.3 6.5 2.6 4.4 

≤ 3 Å§     1 1 1 1 1 1 1 1 

≤ 5 Å§     1 1 2 2 2 1 3 2 

All             

Mean     4.5 7.6 3.6 *** 6.1 *** 3.5 *** 5.0 *** 3.1 *** 4.2 *** 

≤ 3 Å§     9 2 21 4 19 14 22 18 

≤ 5 Å§     22 12 25 17 26 22 30 24 
† Top 1% RMSD: average RMSD100 of best 1% of models ranked by RMSD. The RMSD100 was calculated relative to the experimental structure 
excluding residues in flexible termini as defined in Tab S1. 
‡ Top 10 Score: average RMSD100 of best 10 models ranked by Rosetta score. For models generated without paramagnetic NMR restraints, 
the Rosetta all-atom score was used for model ranking, whereas for calculations with paramagnetic NMR restraints the combined NMR score 
and Rosetta all-atom energy was employed. 
§ The average RMSD100 per restraint set (‘Mean’) and the number of cases with RMSD100 ≤ 3 Å and ≤ 5 Å is listed. The RMSD100 change 
relative to the case with no NMR data was evaluated by a Wilcoxon signed-rank test (nRDC = 19, nPCS = 9, nAll = 34, * p < 0.05, ** p < 0.01, *** p 
< 0.001) for benchmark sets with sufficiently large sample size. Comparison of the RMSD100 between calculations with different combinations 
of restraints is shown in Fig S3. 
¶ The model for protein 1GD7 was compared to the X-ray structure of the human protein (PDB 2QC7) because previous studies (27) 
uncovered flaws in the structure determined by NMR. 
# Proteins used for iterative refinement (Tab S3). 

 

Table 2: Structure prediction benchmark of symmetric proteins with paramagnetic restraints. 

     no NMR 
Restraints RDC PCS PRE 

PDB 
ID 

BMRB 
ID 

Symmetry No. 
Residues 

No. NMR 
Restraints* 

Top 1% 
RMSD† 

Top 10 
Score† 

Top 1% 
RMSD 

Top 10 
Score 

Top 1% 
RMSD 

Top 10 
Score 

Top 1% 
RMSD 

Top 10 
Score 

2KBY 25958 D2 4x50 154,115,69 5.6 9.2 1.6 2.1 3.1 3.1 4.0 6.6 

2KO8 16492 C3 3x53 43,131,125 7.7 12.0 5.3 4.6 3.9 2.4 6.2 10.1 

2JWK 15459 C2 2x74 263,233,168 5.9 10.0 2.3 3.6 2.3 2.2 5.4 7.6 

2L01 - C2 2x77 97,223,174 5.5 9.3 3.1 2.7 1.6 1.6 5.4 8.8 

2LTD 18469 C2 2x80 102,224,188 3.3 7.0 4.7 9.6 7.0 2.6 2.6 2.6 

2KOD 16555 C2 2x88 134,232,173 3.2 8.8 1.9 2.2 4.4 9.3 1.9 2.9 

1RJJ 6011 C2 2x111 105,536,359 6.6 11.6 6.1 6.0 4.3 2.7 4.7 8.3 

2M89 19235 C2 2x134 92,657,437 3.5 17.3 3.4 15.5 3.3 10.9 3.6 9.6 

* Number of restraints in the following order: RDCs, PCSs, PREs. RDCs were experimental data (Tab S1). PCSs and PREs were simulated as 
described in Method S1 and S2. 
† The definition of the Top 1% RMSD and Top 10 Score metric is the same as in Tab 1. For models generated without paramagnetic NMR 
restraints, the Rosetta all-atom score was used for ranking, whereas the best-scoring models generated with paramagnetic NMR restraints 
were identified using the combined NMR score and Rosetta all-atom energy. 

 

Table 3: Structure prediction of protein-protein and protein-ligand complexes with PCS data. 
     no PCS PCS 

PDB 
ID 

BMRB ID Stoichiometry No. Residues No. PCS Restraints Top 1% 
RMSD† 

Top 10 
Score‡ 

Top 1% 
RMSD 

Top 10 
Score 

Protein Docking 

2KTR 16361 1:1 100+100 1042 5.3 14.1 2.0 1.7 

1FAP 11471 1:1 107+95 404 6.6 13.2 3.2 0.6 

Ligand Docking 

1JYR 11055 1:1 100+1 227+15* 8.9 14.7 1.6 1.1 

1X0N 11055 1:1 100+1 227+55 9.4 9.8 3.3 1.4 

3U1I - 1:1 247+1 223+18 12.2 24.0 2.6 6.7 

* Number of PCSs for protein and ligand. 
† Average RMSD of best 1% models ranked by RMSD. 
‡ Average RMSD of ten best-scoring models. The interface and ligand RMSD as defined in Methods was used as similarity measure for 
protein and ligand docking, respectively. Models were ranked by their combined Rosetta energy and PCS restraint score. 
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Figures Legends 
Figure 1: Macromolecular modeling with RosettaNMR using different types of restraints. (A) 
NMR data types accessible through RosettaNMR: CSs aid in the selection of short peptide fragments 
with known backbone conformations to assemble protein structures de novo. NOE-derived distances 
restrain the protein’s tertiary structure and interface with binding partners. Long-range paramagnetic 
NMR effects provide an orthogonal set of restraints on the position and orientation of internuclear 
vectors within the macromolecular system. (B) Overview of the experimental workflow of integrative 
NMR-guided protein structure modeling with Rosetta. NMR data can be incorporated at different stages 
in the Rosetta protocol to guide conformational sampling or modify the energy landscape. 
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Figure 2: De novo structure prediction of monomeric proteins with paramagnetic and CS N
data. Four selected benchmark proteins for which prediction utilized either (A) RDCs (phycobiliso
rod linker protein from S. elongatus, PDB 2L3W), (B) PCSs (Grb2 SH2 domain, PDB 1X0N), (C) PR
(B1 domain of streptococcal protein G, PDB 3GB1) or (D) RDCs and PCSs (calmodulin, PDB 2K6
respectively. A complete list of the results of all prediction targets is given in Fig S1 and S2. For e
protein, the combined Rosetta and paramagnetic NMR score and the cumulative fraction of mod
versus the models’ RMSD100 relative to the experimental structure is shown. The paramagnetic N
score was the (A) RDC, (B) PCS, (C) PRE or (D) combined PCS+RDC restraint score. The larg
increase in the density of models with low RMSD100 is observed when CSs and paramagnetic N
restraints are applied together. The lowest-scoring model from this experiment is depicted as rib
diagram (colored in rainbow) and compared to the experimentally determined structure shown in g
The superposition was optimized for residues in ordered regions as defined in the footnote to Tab
and flexible termini are not shown for clarity. 
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Figure 3: Effect of paramagnetic and CS data on sampling and scoring of de novo predic
models. Comparison of the average RMSD100 (± S.D.) of the top 1% of models ranked by RM
between Rosetta models predicted without NMR data (x-axis) and (A) with only paramagnetic N
restraints (y-axis) or (B) when all CS and paramagnetic NMR data were used. Gray areas indicate
RMSD100 improvement. (C) Model enrichment calculated when models were scored with the stand
Rosetta all-atom energy function (-) or an energy function which included an additional RDC, PCS
PRE score term (+), respectively. Box-and-Whisker plot with whiskers drawn from the lowest 
highest enrichment value still within 1.5 IQR of the lower and upper quartile. Comparison was made
two-tailed Wilcoxon signed-rank test (nRDC = 38, nPCS = 18, nAll = 56, * p < 0.05, ** p < 0.01, *** 
0.001). (D) and (E) Comparison of average the RMSD100 among the top ten scoring models fr
structure predictions with paramagnetic NMR data only or in combination with CSs. Gray areas indic
improved model accuracy. (F) Summary of the fraction of cases in which NMR-restrained struct
prediction yielded more accurate models, which were identified either after ranking by RMSD or scor
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Figure 4: Agreement of experimental with model-predicted paramagnetic restraints. Correla
between experimental PCSs and RDCs for (A) calmodulin (PDB 2K61) and (B) NPr (PDB 5T1N) w
PCS and RDC values back-calculated from their respective lowest-scoring model. (C) Correlation
experimental and calculated PREs for the lowest-scoring model of MLCK-peptide-bound calmod
(PDB 1CDL). In each case, the lowest scoring model obtained with CSs and paramagnetic NMR d
was used for the analysis. (D) Average NMR Q-factor (± S.D.) of the ten lowest-scoring models
each de novo structure prediction target versus the amount and type of NMR data: no NMR – with
NMR data, CS – with CSs, ParaNMR – with RDC, PCS or PRE data, CS+ParaNMR – with CSs 
RDC, PCS or PRE data, native – experimental structure after constrained minimization in Rosetta. T
individual proteins modeled with either RDC, PCS or PRE restraints are represented by using differ
shades of blue, green or yellow, respectively, and lines between data points are used for ea
visualization. The average Q-factor across all proteins is given on the top of each column. A comp
list of Q-factor values is given in Tab S2 and S4. 
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Figure 5: De novo structure prediction of symmetric proteins with paramagnetic NMR da
Three selected test cases for symmetric protein structure prediction with experimental RDC 
simulated PCS and PRE data: (A) tetramerization domain of human p73 (PDB 2KBY), (B) periplas
domain of TolR from H. influenzae, and (C) C-terminal domain of HIV-1 capsid protein (PDB 2KO
Complete results of all symmetric protein targets are given in Fig S8. For each protein, the combi
Rosetta and paramagnetic NMR score and the cumulative fraction of models versus the mod
RMSD100, is shown. The NMR score was either the RDC (blue), PCS (green) or PRE (yellow) sco
We compare structure prediction without NMR data (black curve) and using RDCs (blue), PCSs (gre
or PREs (yellow), respectively. The lowest-scoring model of 2KBY with RDCs (A), of 2JWK with PC
(B) and of 2KOD with PREs (C) is displayed as ribbon diagram for residues in ordered regions (defi
in Tab S1) and superimposed onto the experimental structure in gray. (D) Average RMSD100 of the 
best-scoring models for structure prediction with and without paramagnetic NMR data. In the first ca
the combined Rosetta and NMR score was used to identify the lowest-scoring models, whereas in 
latter case models were ranked by only the Rosetta score. The gray area indicates improvemen
RosettaNMR over the unrestrained calculation. The sampling of two proteins for which paramagn
NMR restraints led to a higher RMSD100 value, 2M89 and 1RJJ, can be significantly improved
dividing the modeling protocol into two steps: (i) folding of the monomer and (ii) docking of 
symmetric dimer. The improvement in the RMSD100 is illustrated by gray arrows. (E) Improvemen
model enrichment by scoring models with an energy function including the respective NMR restr
score compared to the standard Rosetta energy function. Box-and-Whisker plot; comparison was m
by two-tailed Wilcoxon signed-rank test (nAll = 30, * p < 0.05, ** p < 0.01, *** p < 0.001). 
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Figure 6: Protein-protein and protein-ligand docking with PCS data. (A) Results of docking 
FRB domain of FRAP to the FKBP12-rapamycin complex. The combined Rosetta interface and P
score and the cumulative fraction of models are plotted versus the models’ interface RMSD (P
1FAP). The lowest-scoring model obtained with PCS-restrained docking is represented as rib
diagram with FKBP12 in green, FRB in cyan and rapamycin depicted as magenta sticks, 
superimposed onto the X-ray structure colored in gray. (B) Average interface RMSD among the 
lowest scoring models obtained for the two docking test cases with or without PCS restraints. The in
compares the average interface RMSD (± S.D.) among the top 1% of models ranked by RMSD. Lo
gray triangles indicate RMSD improvement with PCSs. (C) Results of docking a pYTN tripeptide lig
to the SH2 domain of Grb2. The combined Rosetta interface and PCS score and the cumula
fraction of models are plotted versus the ligand RMSD. As comparison served the X-ray structure 
phosphorylated peptide with the same three-residue motif bound to Grb2 SH2 (PDB 1JYR). The low
scoring solution of the ligand obtained with PCS-restrained docking is represented as sticks with ato
colored by chemical identity (C: green, O: red, N: blue, P: orange), and compared with the ligand in 
X-ray structure colored gray. (D) Average ligand RMSD among the ten lowest-scoring models obtai
for the three ligand docking cases without and with PCSs. The inset compares the average interf
RMSD (± S.D.) of the best 1% of models ranked by RMSD. Complete results for protein-protein 
protein-ligand docking are given in Fig S9. 
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