1 Understanding the molecular mechanism of umami recognition by

2	T1R1-T1R3 using molecular dynamics simulations
3	Hai Liu ^{1, ¤} , Lin-Tai Da ^{2, ¤*} , Yuan Liu ^{3*}
4	1 College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China, 2 Key
5	Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems
6	Biomedicine, Shanghai Jiao Tong University, Shanghai, China, 3 Department of Food Science
7	& Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai,
8	China
9	× These authors contributed equally to this work.
10	* Corresponding author
11	E-mail: <u>darlt@sjtu.edu.cn; y_liu@sjtu.edu.cn</u>
12	
13	Funding: This work was funded by the National Natural Science Foundation of China (Grant
14	No. 31622042, 31371790, 31271900).
15	

16 Abstract

Taste receptor T1R1-T1R3 can be activated by binding to several natural ligands, e.g., Lglutamate and 5'-ribonucleotides etc., thereby stimulating the umami taste. The molecular mechanism of umami recognition at an atomic level, however, remains elusive. Here, using homology modeling, molecular docking and molecular dynamics (MD) simulations, we investigate the effects of five natural umami ligands on the structural dynamics of T1R1-T1R3. Our work identifies the key residues that are directly involved in recognizing the binding ligands. In addition, two adjacent binding sites in T1R1 are determined for substrate binding, and depending on the molecular size and chemical properties of the incoming ligand, one or both these binding sites can be occupied. More interestingly, the binding of varied ligands can lead to either closing or opening of T1R1, based on which, we further classify the five ligands into two groups. This different binding effects are likely associated with the distinct umami signals stimulated by various ligands. This work warrants new experimental assays to further validate the theoretical model and provides guidance to design more effective umami ligands.

31 Author summary

32 Umami, as the fifth basic taste, is induced by umami substances from the natural food, such 33 as L-glutamate, 5'-ribonucleotides, and peptides etc. These umami substances are widely 34 added to foods as flavor enhancers to promote food quality. However, although extensive 35 experimental and theoretical studies have been devoted to revealing the recognition 36 mechanisms of the taste receptor T1R1-T1R3 to the umami ligands, the detailed molecular mechanism is still unknown, largely due to the lack of the receptor structure. Here, using a 37 38 new template structure different from the former theoretical studies, we constructed a more 39 accurate homology model of T1R1-T1R3. Based on this receptor model, combined with molecular docking and MD simulations, we investigate how different ligands with varied 40 41 molecular size and chemical groups might affect the dynamics of T1R1. Our work provides the 42 structural basis for relating the dynamics of umami receptor induced by varied ligands to the 43 resulting umami signal.

44

45 Introduction

The umami, induced by binding of L-glutamic acid salt (MSG) to its taste receptor type 1 (T1R), was discovered as one of the five basic tastes by Ikeda in 1908 [1-3]. T1R is comprised of three members, including T1R1, T1R2, and T1R3, which can further dimerize to form either sweet taste receptor (T1R2-T1R3) or umami taste receptor (T1R1-T1R3) [2, 4]. T1R belongs to the Gprotein-coupled receptors (GPCRs) family and is assigned to the same class as the metabotropic glutamate receptor (mGluR) by previous phylogenetic tree analysis [5].

52 Human T1R1-T1R3 (hT1R1-T1R3) consists of a large extracellular N-Venus Flytrap domain 53 (VFD), and a seven-transmembrane domain (TMD), connected by a small cysteine-rich domain (CRD) (Fig 1) [5]. VFD has been determined to be the ligand binding domain by former 54 55 site-directed mutagenesis studies using chimeric T1R constructs based on human sweet and 56 umami T1R VFD domains [3, 6], or human and rat T1R VFD domains [7-9]. Notably, apart from VFD, the hT1R1 TMD is also considered as a potential substrate binding site for some umami 57 58 substances, such as methional [10], and S807 [6]. As a result, the T1R TMD couples with a G 59 protein inside the cell to stimulate the umami signal [11]. More interestingly, the umami can 60 be further enhanced by binding to additional 5'-ribonucleotides, such as disodium 5'-61 guanylate (GMP) and disodium 5'-inosinate (IMP) [2, 4, 12]. This synergistic enhancement is 62 considered to be the most unique sensory feature of umami compared to other four basic 63 tastes. Notably, in addition to L-Glu, Nelson et al. and Toda et al. found that the hT1R1-T1R3 64 can also be activated by other standard L-amino acids, whereas hT1R1 are more sensitive to 65 L-Glu compared to other amino acids [2, 8]. Moreover, small peptides, especially those with a molecular weight lower than 3000 Daltons, can also stimulate umami [13-15]. 66

3

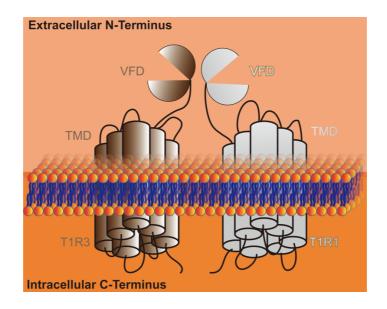


Fig 1. Schematic illustration of T1R1-T1R3 structure, which is a heterodimer with each subunit composedof one TMD and one VFD connected by CRD.

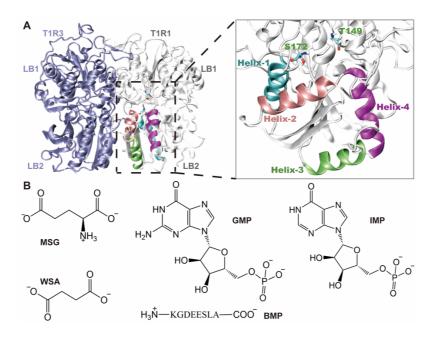
67

70 To date, the crystal structure of hT1R1-T1R3 VFD has not been resolved. Computational 71 modeling has been used to construct a homology model of hT1R1-T1R3 and to understand 72 the molecular mechanism of umami recognition. For example, Cascales et al. [16] constructed 73 an hT1R1-T1R3 VFD model using the mGluR1 structure (PDB id: 1EWK) as a template. Their 74 MD simulations reveal that the L-Glu tends to induce the closing of T1R1 but not for T1R3. 75 Likewise, Dang et al. [17] also found that the T1R1 can undergo closing/opening motions in 76 the presence of umami peptides. In addition, Yu et al. [15] constructed a three-dimensional quantitative structure-activity relationship model for five peptides and their umami 77 78 intensities. Moreover, Dang et al. [18] studied the molecular mechanism of the synergistic 79 effect between L-Glu and umami peptide using molecular docking. They revealed that after 80 T1R1 binds to MSG, T1R3 can adopt an open state that can recruit the peptides, therefore, 81 leading to the synergistic effect on promoting the umami intensity. In sharp contrast, Zhang et al. [7] found that IMP and L-Glu can bind to hT1R1-VFD simultaneously, which provides 82 another explanation for the synergy. In addition, they further identified eight residues that 83 84 are critical for ligand binding using site-directed mutagenesis. Taken together, the previous theoretical studies have provided some structural basis for the ligand-bound hT1R1-T1R3 complexes. However, the effects of ligand binding on the dynamics of hT1R1-T1R3 are largely unknow, and how structurally varied ligands might affect the dynamics of hT1R1-T1R3 in different manners are also unclear. Moreover, the homology template used in former work is mGluR, which has lower sequence identity (< 30 %) with hT1R1 or hT1R3 compared to the recently obtained crystal structure of fish T1R2a-T1R3 [19].

91 Here, by employing homology modeling, molecular docking, and MD simulations, we 92 constructed five ligand-bound hT1R1-T1R3 VFD complexes based on the fish T1R2a-T1R3 93 structure (PDB id: 5X2M), including MSG, WSA (sodium succinate), GMP, IMP, and BMP (beefy 94 meaty peptide). We find all the ligands can reach into a cleft region of hT1R1-VFD, and more 95 interestingly, two binding sites in hT1R1-VFD are identified. Depending on the molecular size 96 and carried charges of the incoming ligands, one or both of the above two sites can be 97 occupied. Moreover, based on the effects of ligand binding on the closing and opening 98 motions of hT1R1-VFD, we further classify the ligands into two groups, which may relate to 99 their different bioactivities as umami substances. Our findings provide an atomistic-level 100 understanding of the structure-function relationship for different substrates, which further 101 guides to design more structurally diversified umami ligands.

102

103 **Results**


104 Structural features of hT1R1-T1R3 VFD in complex with different umami ligands.

105 A homology model of hT1R1-T1R3 VFD was constructed based on the counterpart domain

106 from fish sweet receptor T1R2a-T1R3 (PDB id: 5X2M) complexed with one L-glutamine (L-Gln)

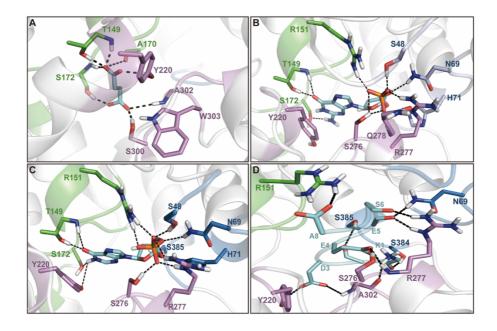
ligand. The hT1R1-VFD and hT1R3-VFD subunits share sequence identity of 33.03 % and 33.87

108 % with the corresponding subunit of fish sweet receptor, respectively, which is higher than 109 mGluR that was used in former studies [3, 8, 17]. Moreover, we constructed the phylogenetic 110 tree for T1R and mGluR based on their VFD, sourced from human, fish, mouse, and rat (S2 Fig). The results show that the hT1R1-T1R3 VFD has higher homology with fish T1R2a-T1R3 111 112 compared to mGluR1, indicating that fish T1R2a-T1R3 is a better homology template to 113 construct the hT1R1-T1R3 VFD structure. As shown in Fig 2A, hT1R1-T1R3 VFD is a 114 heterodimer, consisting of two ligand binding (LB) domains that form pseudo-symmetrical 115 lobes, and each LB domain is comprised of two parts, LB1 and LB2, resembling to the 116 structural characteristics of mGluR1 and human GABA(B) receptor [19-21].

117

Fig 2. The constructed model of hT1R1-T1R3 VFD and chemical formulas of five umami ligands. (A)
Homology model of hT1R1-T1R3 VFD, in which hT1R1 and hT1R3 are shown in gray and blue cartoons,
respectively. The ligand binding site and key structural motifs of hT1R1 are highlighted in the zoom-in image,
in which two active site residues S172 and T149 are shown in cyan sticks, and four LB2 helices, including
the residues 192-205 (helix-1), 219-232 (helix-2), 256-266 (helix-3), and 277-290 (helix-4), are highlighted
in cyan, pink, lime, and magenta, respectively. (B) Chemical structures of five umami ligands studied here,
including MSG, WSA, GMP, IMP, and BMP.

Based on the modeled structure of hT1R1-T1R3 VFD, we further constructed ligand-bound 125 126 hT1R1-T1R3 VFD complexes for five natural umami ligands using molecular docking strategies, 127 including MSG, WSA, GMP, IMP, and BMP (Fig 2B). Only hT1R1 was used as the docking 128 receptor since hT1R3 was found to play an auxiliary role for ligand binding [8, 22]. For each 129 ligand, the structure with the highest binding affinity was used as the final docking complex 130 for the following analysis. In the MSG-bound complex, the ligand can sit in a cleft region 131 formed by LB1 and LB2, and forms direct contacts with the residues S172, T149, A170, D147, 132 A302, R277, and Y200 (Fig 3A). In specific, MSG is sandwiched between the side-chains of 133 D147 and Y220, and forms hydrogen bonds (HBs) with S172 and T149 through its C_{α} -COO⁻ group (Figs 2A and 3A). In addition, the C_{α} -NH₃⁺ terminus of MSG can form HBs with the main 134 135 chain of A170, D147, and A302. The side-chain carboxylate group of MSG can establish one 136 HB with the R277 amide.



137

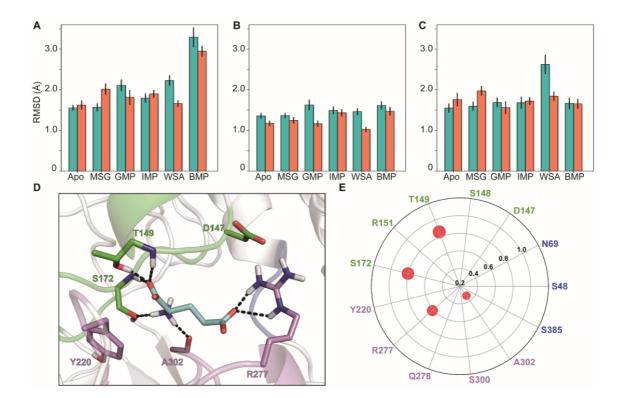
Fig 3. (A) Docking complex of MSG-bound hT1R1-VFD. The detailed interactions between MSG and nearby residues are highlighted in the zoom-in image, MSG is shown in cyan sticks and the hT1R1-VFD residues are shown in green/blue/violet sticks. Several key HBs are highlighted with black dashed lines. (B) Structural overlay of the MSG-bound hT1R1-VFD to fish T1R2a-T1R3 (PDB id: 5X2M, ligand: L-Gln), and the ligand L-Gln, S150, and T173 in T1R2a-T1R3 are shown in orange sticks. (C) Structural overlay of the MSG-bound

hT1R1-VFD complex to fish T1R2a-T1R3 (PDB id: 5X2P, ligand: L-Glu) and mGluR1 (PDB id: 1EWK, ligand: L-Glu). L-Glu, S150, and T173 in T1R2a-T1R3 are shown in hot-pink sticks; L-Glu, S165, and T188 in mGluR1
are shown in pale-yellow sticks.

To evaluate the docking result, we compared the MSG-bound hT1R1-T1R3 VFD complex 146 147 with the crystal structure of fish T1R2a-T1R3 (PDB id: 5X2M, 5X2P) and mGluR1 (PDB id: 1EWK) where the binding ligand is either L-Gln (from 5X2M) or L-Glu (from 5X2P, 1EWK) [19, 20], so 148 that we can compare the ligand binding modes for different complexes. We firstly 149 150 superimposed our modeled hT1R1-T1R3 VFD to each of the above three crystal structures by 151 their C_{α} atoms. Notably, the C_{α} -COO⁻ group of ligands from the four complexes all reside in a 152 same pocket and lie in a similar orientation (Fig 3B and 3C). However, it is worth to note that since the active site residues for different systems are not fully conserved among different 153 154 systems, the detailed interaction networks between the ligand and nearby residues are also 155 different (S1 Fig). For example, the residue Y220 is completely conserved in the four 156 complexes, while S172 and T149 in hT1R1-T1R3 are replaced by threonine and serine in both 157 T1R2a-T1R3 and mGluR, respectively (Fig 3B and 3C). Moreover, the residue D147 in hT1R1-158 T1R3 is replaced by glutamine and glycine in fish T1R2a-T1R3 and mGluR, respectively (S1 Fig) 159 [23], which may lead to the fact that the taste stimuli are different for varied species. Taken 160 together, our MSG-bound hT1R1-T1R3 VFD complex provides a fairy good starting structure 161 for the following MD simulations.

162

163 Fig 4. Interaction networks between umami ligands with hT1R1-VFD in each docking complex, including 164 WSA (A), GMP (B), IMP (C), and BMP (D). In each complex, the ligand is shown in cyan sticks, and the key 165 residues that form direct contacts with the ligand are shown in green/blue/violet sticks. Several key HBs 166 are highlighted with black dashed lines.


We then docked the other four ligands (WSA, GMP, IMP, and BMP) into the same binding 167 168 pocket as that for MSG. In the WSA binding complex, one of its COO⁻ group sits in the same 169 site as the C_{α} -COO⁻ group of MSG, while the other COO⁻ group can form HBs with the residues A302 and S300 (Fig 4A). In addition, WSA can form hydrophobic contacts with Y220 (Fig 4A). 170 For the GMP and IMP binding complexes, the two ligands bind to hT1R1-T1R3 VFD in a very 171 172 similar mode (Fig 4B and 4C). The nucleobase of these ligands can form hydrophobic contacts 173 with Y220 and several HBs with S172 and T149, while the phosphate group can reach into another pocket and form HBs with S276, S48, N69, and R277. Finally, in the BMP-bound 174 175 complex, the peptide BMP binds in the same pocket as that for the phosphate group of GMP 176 and IMP (Fig 4B, 4C, and 4D). In specific, the BMP can form HBs with the side-chain of R151 177 through its C-terminal A8. Moreover, the negatively charged residues D3, E4, E5 of BMP can 178 also form HBs with the residues A302, Y220, S276, R277, S385, and N69 (Fig 4D).

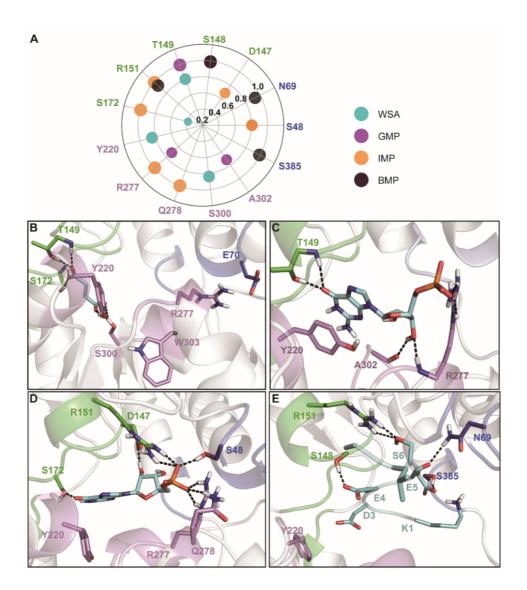
Taken the above results together, two major binding sites exist in the ligand-binding pocket
of hT1R1-VFD, one is surrounded by the LB1 residues D147, T149, R151, A170, and S172 (Figs
3A and 4, shown in green sticks), termed as site A; another consists of the LB1 residues S48,
N69, H71, S384, and S385 (Fig 4, shown in blue sticks), termed as site B. In particular, the LB2
residues Y220, S276, R277, Q278, S300, A302, and W303 (Figs 3A and 4, shown in violet sticks)
are shared by these two binding sites.

185

186 Effects of ligand binding on structural dynamics of hT1R1-T1R3 VFD

187 To study the effects of the ligand binding on the structural dynamics of hT1R1-T1R3 VFD, we performed MD simulations starting from the above five ligand-bound hT1R1-T1R3 VFD 188 189 complexes. For each system, we performed two parallel 100-ns MD simulations initiated from 190 different velocities. As a control, we performed additional 100-ns MD simulations for the apo 191 hT1R1-T1R3 VFD (without ligand). To examine whether the system reaches equilibration within 100-ns MD simulation, we firstly calculated the root-mean-square deviations (RMSD) 192 193 along the simulation time for each system using the minimized apo hT1R1-T1R3 VFD structure 194 as the reference structure. The results show that the RMSD curves tend to level off after ~80-195 ns for each system (S3 Fig). We thus only kept the last 20-ns simulation data of each system 196 for further analysis.

197


198 Fig 5. Effects of the ligand bindings on the receptor dynamics and HB network analysis for the MSG-bound 199 hT1R1-VFD complex. RMSD of LB1+LB2 (A), LB1 (B), and LB2 (C) regions calculated based on two-parallel 200 100-ns MD simulations (shown in cyan and coral, respectively). For each system, the mean RMSD and the 201 corresponding standard error were calculated for the last 20-ns simulation conformations. (D) The binding 202 mode of MSG (shown in cyan sticks) with hT1R1-VFD, the structure is derived from the last snapshot of the 203 100-ns MD simulation. The key residues that form direct contacts with MSG are shown in green/blue/violet 204 sticks. Several key HBs are highlighted with black dashed lines. (E) The HB network map for the MSG-bound 205 hT1R1-VFD complex. The residues that can form HB with MSG are highlighted with red dot, with the dot 206 size corresponding to the HB occupancy.

For each system, we further calculated the RMSD values for the C_{α} atoms of three different parts of hT1R1-VFD, namely LB1+LB2, LB1, and LB2, by firstly fitting to the corresponding regions to the apo hT1R1-VFD structure. The results show that comparing to LB1, the LB2 and LB1+LB2 domains demonstrates relatively higher structural fluctuations, reflected from their larger RMSD values, which suggests that LB1 keeps relatively rigid compared to LB2 during the simulations (Fig 5A, 5B, and 5C). Therefore, to better characterize the recognition

1

mechanism of these ligands, the LB1 domain of the apo hT1R1-VFD is used as a reference for 213 214 the further analysis. Moreover, the RMSD calculations indicate that the apo system 215 demonstrates relatively small structural fluctuations compared to the ligand-bound 216 complexes (Fig 5A, 5B, and 5C), suggesting the ligand binding can impose some structural 217 change of hT1R1-VFD. On the other hand, among the ligand-bound systems, the BMP-bound 218 complex exhibits the largest RMSD values for the LB1+LB2 regions, likely due to the relatively 219 bigger molecular size of BMP (Fig 5A). The other ligand-bound systems, however, have similar 220 structural fluctuations for the LB1+LB2 regions (Fig 5A). Notably, the paralleled MD 221 simulations for each system can reproduce the structural features of hT1R1-VFD structure 222 fairly well (Fig 5A, 5B, and 5C), we thus only used one of the two MD simulations for the 223 further analysis.

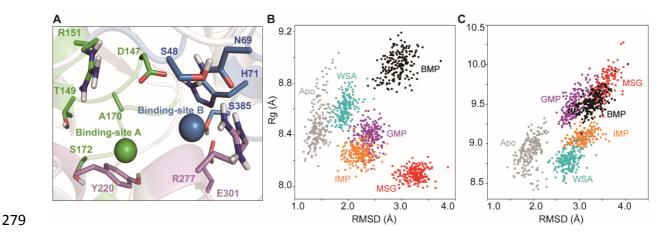
224 We next analyzed the interacting networks between each ligand and hT1R1-VFD by 225 calculating the hydrogen bond occupation (OC_{HB}). We only consider the HB that sustains 226 longer than 30 % of the simulation time for further structural analysis. In the MSG system, 227 four residues, namely T149, S172, R277, and A302, can form stable HBs with MSG, among 228 which T149 exhibits the highest OC_{HB} (85.8 %) and A302 exhibits the lowest OC_{HB} (32.9 %) (Fig 229 5E). In specific, T149 and S172 forms HBs with the C_{α} -COO⁻ group of MSG in the binding site 230 A, as observed in the initial docking complex (Fig 3A). Moreover, R277 can form HB with the 231 side-chain COO⁻ group of MSG, and notably, it can also form a salt bridge with D147, which 232 may strengthen the MSG binding (Fig 5D).

233

Fig 6. (A) The HB network map for four ligand-bound hT1R1-VFD complexes, including WSA, GMP, IMP, and BMP. (B-E) The binding mode of each ligand (shown in cyan sticks) with hT1R1-VFD, namely WSA (B), GMP (C), IMP (D), and BMP (E). The structures are derived from the last snapshot of the 100-ns MD simulation for each system. The ligand is shown in cyan sticks, and the residues that form direct contacts with the ligand are shown in green/blue/violet sticks. Several key HBs are highlighted with black dashed lines.

```
Similar HB analyses were performed for other ligand-bound systems. In the WSA-bound
complex, four residues, Y220, S300, T149, and S172, can form stable HBs with the COO<sup>-</sup> groups
of WSA, among which Y220 exhibits the highest OC_{HB} (84.5 %) and S172 exhibits the lowest
OC_{HB} (38.8 %) (Fig 6A and 6B). In specific, T149 and S172 in the binding site A can form HBs
```

244 with one of the COO⁻ groups, and the other COO⁻ group can form stable HBs with Y220 and 245 S300 (Fig 6B). It is noteworthy that WSA is unable to bind to the binding site B. In the GMP-246 bound complex, the ligand can form HBs with T149, A302, and R277, among which T149 247 exhibits the highest OC_{HB} (99.6 %) and R277 exhibits the lowest OC_{HB} (71.2 %) (Fig 6A and 6C). 248 In the IMP-bound complex, however, six residues, Q278, R151, R277, S172, S48, and D147, 249 form stable HBs with the substrate, and D147 exhibits relatively low OC_{HB} (68.3 %) compared 250 to other five residues (all > 80 %) (Fig 6A and 6D). Notably, GMP and IMP both sit in the same 251 pocket, with their phosphate group forming HB with R277 in the binding site B. Whereas 252 several HBs can be formed between IMP and R151, which is absent in GMP complex (Fig 6C 253 and 6D). Finally, in the BMP-bound complex, BMP largely sits in the binding site B, and forms 254 HBs with S148, S385, R151, and N69, with the OC_{HB} value all higher than 80 % (Fig 6E). The 255 above HBs are formed through the BMP residues E4, E5, and S6. In specific, the side-chain 256 COO⁻ of E4 forms HB with the side-chain of S148, and BMP E5 forms HBs with N69 and S385 (Fig 6E). In addition, BMP S6 can form HB with the side-chain of R151, and an intermolecular 257 258 HB can also be formed in BMP between K1 and E5.


259 Our HB analysis is consistent with our previous conclusion that, in general, the ligands 260 largely interact with two binding sites in hT1R1-VFD, and in each site, several polar residues 261 within the binding pocket that can potentially form HBs with the incoming ligand, as shown 262 in Figs 5E and 6A. Based on varied molecular size and chemical groups of the incoming ligand, 263 one or both of the above two sites can be occupied, i.e., MSG and WSA largely sit in the site 264 A, while BMP binds to the site B; GMP and IMP, on the other hand, can occupy both binding 265 sites. Therefore, we can expect that varied ligands may impose structural changes of hT1R1-266 VFD in different manners, which in turn can induce distinct umami intensities.

267

1

268 Effects of ligand bindings on the opening/closing motions of hT1R1-VFD

269 Previous studies have suggested that the opening/closing motions of VFD are critical for 270 ligand binding [20]. To measure the effects of the ligands on the opening/closing motions of 271 hT1R1-VFD, we calculated the radius of gyration (Rg) values for the two identified ligand 272 binding sites (A and B) in hT1R1-VFD, which can roughly measure the extents of the hT1R1-273 VFD opening/closing. Both sites contain the LB2 residues 219-221, 276-278, 300-303, and in 274 site A, we also include the LB1 residues 146-151, 170-173 (shown in green and violet in Fig 275 7A), and in binding site B, the LB1 residues 47-49, 68-71, 384-386 are included (shown in blue 276 and violet in Fig 7A). For each binding site, we then projected the MD conformations onto two reaction coordinates: Rg and RMSD, calculated for the binding site residues (Fig 7B and 277 278 7C).

280 Fig 7. The opening/closing motions of hT1R1-VFD induced by ligand binding. (A) To investigate the closing 281 and opening motions of hT1R1-VFD, two binding sites (A and B) are defined and represented with green 282 and blue sphere, respectively. Each sphere represents the centroid of C_{α} atoms of residues within each 283 binding site. In specific, both binding sites include the LB2 residues 219-221, 276-278, 300-303 (shown in 284 violet). In addition, the site A also contains the LB1 residues 146-151, 170-173 (shown in green), and the 285 site B contains the LB1 residues 47-49, 68-71, 384-386 (shown in blue). For the binding site A (B) and B (C), 286 we mapped the MD conformations onto two reaction coordinates: one is the Rg of the residues belonging 287 to each site, another one is the corresponding RMSD.

288 For binding site A, by treating the apo system as a ground state, we can group the five 289 ligands into two classes (Fig 7B). One group includes WSA and BMP that prefer to increase 290 the Rg value of the binding site A, suggesting that they can potentially promote the opening 291 of hT1R1-VFD. In contrast, the other group, consisting of MSG, GMP, and IMP, can tighten the 292 site A, reflected from the reduced Rg values comparing to the apo system. However, it is 293 worth to note that within each group, the ligands also act differently on the protein dynamics, 294 reflected from both the Rg and RMSD calculations. In specific, BMP exerts much higher 295 structural disturbances on hT1R1-VFD than WSA, with an increased Rg and RMSD values, and 296 has stronger effects on promoting the opening of the binding site A compared to WSA. For 297 the second group, MSG tightens the binding site A the most compared to GMP and IMP, reflected from its lowest Rg values (Fig 7B). GMP and IMP, on the other hand, can affect the 298 299 protein structure in a similar manner.

300 On the other hand, for binding site B, only WSA can slightly tighten the binding site B, 301 reflected from the reduced Rg value comparing to the apo system (Fig 7C), which is likely due 302 to the fact that WSA is unable to reach the binding site B. The other ligands, however, can all 303 promote the opening of binding site B, reflected from the increased Rg values comparing to 304 the apo system (Fig 7C). In specific, MSG, BMP, and GMP exert relatively larger effects on 305 promoting the hT1R1-VFD opening compared to IMP. It is noteworthy that although MSG 306 largely binds to site A, it tightens binding site A, whereas opens up binding site B (Fig 7B and 307 7C), we speculate that this is because MSG attracts more interactions from the LB2 residues, 308 e.g., Y220, R277, and A302, which induces the movements of LB2 towards site A.

309 In conclusion, depending on the various incoming ligands, the hT1R1-VFD can undergo 310 either opening or closing motions. In particular, MSG, GMP, and IMP tend to promote the 311 closing of binding site A, while opening of binding site B. BMP, however, can promote the

- opening of both two binding sites. Notably, WSA can also promote the opening of binding site
- 313 A, whereas slightly induce the closing of site B.
- 314

315 Effects of ligand bindings on hT1R1 LB2 dynamics

316 The hT1R1-VFD opening/closing induced by ligand binding may result in a structural 317 rearrangement of either LB1 or LB2 domain. Our previous analyses indicate that LB1 keeps 318 relatively rigid compared to LB2, therefore, we further examine the effects of ligand binding 319 on the dynamics of LB2. We thus pinpointed two helices (termed as 1 and 2) near to the 320 binding site A, and two other helices (termed as 3 and 4) near to the binding site B for the 321 following dynamic cross-correlation map (DCCM) analysis (Fig 2A). DCCM describes the 322 correlated motion for a residue pair, with a positive value representing positive correlation 323 (moving towards the same direction), while a negative value indicating the residue pair 324 moving towards the opposite direction (Fig 8).

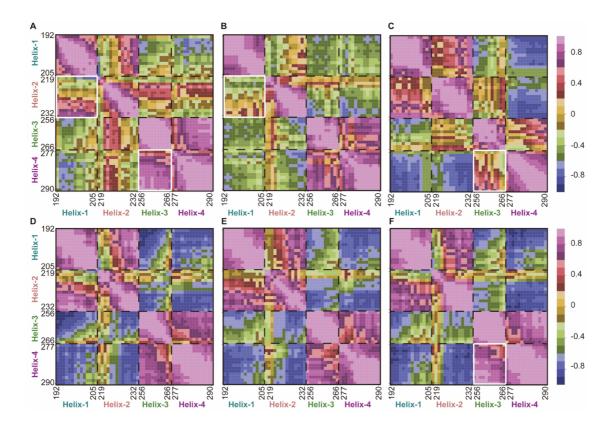


Fig 8. Effects of ligand bindings on hT1R1-VFD dynamics. Cross-correlation matrices of four LB2 helixes for apo hT1R1 (A), and five ligand-bound hT1R1-VFD complexes, namely MSG (B), WSA (C), GMP (D), IMP (E), and BMP (F). The correlation values were calculation based on the last 20-ns MD simulation dataset for each system, with the value equal to 1 representing a positive correlation between two motions, and the value equal to -1 representing a negative correlation between two motions.

331 The DCCM shows that the five ligands indeed exert different effects on the dynamics of the 332 LB2 domain. For the apo system, helix-1 and 2 have a weak correlation, and helix-3 and 4 have 333 a strong positive correlation (Fig 8A). In comparison, the MSG binding can further weaken the 334 correlation between helix-1 and 2, while has no obvious effect on the helix 3 and 4 (Fig 8B), 335 suggesting that MSG can interfere the interacting networks between helix 1 and 2. In addition, 336 GMP and IMP demonstrate very similar correlation values, suggesting that these two ligands 337 impose similar stresses on the binding sites in hT1R1-VFD, which is consistent with previous 338 results (Fig 8D and 8E). For WSA and BMP, their bindings give rise to a stronger positive 339 correlation between helix 1 and 2 compared to the apo system (Fig 8C and 8F), consistent with the above analysis that they can both open up binding site A (Fig 7B). Moreover, WSA 340 341 tents to decorrelate helix 3 and 4 compared to all other systems, suggesting its potential role 342 in interrupting the interaction network between helix 3 and 4.

Taken the above results together, the ligand binding within the interface between LB1 and LB2 can indeed affect the structure dynamics of LB2, likely through either tightening or opening up the binding sites. In particular, the closing of binding site tends to weaken the couplings between the adjacent helices, such as the effects of MSG on helix 1 & 2 and WSA on helix 3 & 4.

348 Discussion

349 One of our major findings is to identify the key residues that directly recognize the five umami ligands, which warrants further experimental studies to validate our theoretical models. 350 351 Former modeling and mutagenesis work has already identified several critical hT1R1-VFD 352 residues for MSG, such as S172, D192, Y220, E301, A170, and A302; moreover, H71, R277, 353 S306, and H308 were identified to be critical for GMP and IMP binding [3, 8]. This result is 354 well consistent with our theoretical models in which S172, A302 can form direct contacts with 355 MSG, and R277 is essential roles in recognizing GMP and IMP. In addition, Y220 can form 356 hydrophobic contacts with all the above three ligands (Figs 5D, 6C, and 6D). Therefore, the 357 constructed model of hT1R1-T1R3 VFD using the fish T1R2a-T1R3 as a template is reliable to 358 derive the binding complexes for umami ligands. Moreover, we can predict more mutational 359 effects on the substrate binding, such as WSA can form important contacts with S172, T149, Y220, and S300 (Fig 6B); the residues T149 and A302 are found to be critical for GMP binding 360 361 (Fig 6C); five residues R151, S148, N69, Y220, and S385 can directly interact with BMP (Fig 6E). 362 Notably, we can see that the afore-mentioned residues are not highly conserved among 363 different species, such as, S48, N69, D147, R151, A170, Q278, and S385 in hT1R1-VFD are 364 completely non-conservative in fish, rat, and mouse (S1 Fig). Interestingly, former luminescence intensities assay have shown that L-Glu can induce higher umami intensities to 365 366 hT1R1-T1R3 than mT1R1-T1R3, indicating the sequence differences in the two receptors 367 indeed influences the umami responses [8]. Therefore, our model suggests that these non-368 conservative residues may contribute to the distinct umami intensities for different species. 369 More importantly, we find that hT1R1-VFD contains two major binding sites for the umami

ligands, and the molecular size and carried charges of the incoming ligand determine its
favored binding sites. In specific, MSG and WSA can largely sit in the binding site A, BMP binds

1

372 to the binding site B, while GMP and IMP can occupy both sites (Figs 5 and 6). From a 373 structural perspective, the site B has a larger binding pocket than site A, which allows the 374 binding of relatively bigger chemical groups (Figs 3A and 7A). On the other hand, to further 375 understand the charge preference for different binding sites, we calculated the electrostatics 376 potentials for hT1R1-VFD using Adaptive Poisson-Boltzmann Solver (APBS). The results 377 indicate that the binding site B is more positively charged compared to binding site A (S4 Fig). 378 In summary, we thus speculate that ligand with large molecular size and negatively charges 379 tends to bind to binding site B, for example, E4 and E5 in BMP, and the phosphate group of 380 GMP and IMP (Fig 6C, 6D, and 6E).

381 Former experimental studies have shown that the umami threshold value of BMP (1.41 mM) is lower than MSG (1.56 mM), indicating that the taste receptor is more sensitive to BMP 382 383 than MSG [24]. Moreover, Zhang et al., using the fluorescence imaging plate reader (FLIPR), 384 studied the molecular mechanism of umami synergism for GMP and IMP [3]. They found that 385 both ligands can enhance the umami stimuli of L-Glu. These studies indicate that different 386 umami substances might impose different effects on the protein dynamics. As shown above, 387 different umami ligands can occupy one or both of the two binding sites, leading to distinct 388 closing/opening motions of hT1R1-VFD. For example, BMP promotes the binding site A 389 opening, while MSG tends to close the binding site A. Considering these two ligands have 390 different umami threshold values, we thus speculate the umami properties of the two ligands 391 may relate to their different effects exerted on the protein dynamics. On the other hand, GMP 392 and IMP can impose similar structural influences on the receptor, i.e., they can both induce the closing of binding site A, which lead to a similar dynamic properties of the hT1R1 LB2 393 394 region (Fig 8D and 8E). This finding may explain the experimental observation that GMP and 395 IMP have similar umami intensities. Taken together, our work provides a structural basis for396 relating the effects of ligand binding to the resulting umami signals.

397

398 Conclusions

399 In this work, by employing homology modeling, molecular docking, and MD simulations, we 400 constructed the ligand-bound hT1R1-T1R3 VFD complexes for five natural umami ligands and 401 revealed how the ligand bindings affect the dynamics of hT1R1-VFD. We identified the key 402 residues that play essential roles in recognizing the ligands, some of the results are supported 403 by former site-directed mutagenesis studies [3, 8]. Further interacting network analysis 404 indicates that two major adjacent binding sites exist in the cleft region of hT1R1-VFD. More 405 interestingly, we find that depending on the molecular size and chemical properties, the 406 incoming ligand can sit in one or both of these two binding sites, which in turn can regulate 407 the closing and opening motions of hT1R1-VFD. In conclusion, our work reveal, at an 408 atomistic-level, the structural basis for the functional roles of different umami ligands in 409 regulating the dynamics of hT1R1-T1R3, and provides further guidance for designing more 410 effective umami ligands.

411

412 Methods

413 Constructing the hT1R1-T1R3 VFD structure using homology modeling

By employing the structure of fish taste receptor T1R2a-T1R3 (PDB id: 5X2M) as a homology
template, we constructed the model of hT1R1-T1R3 VFD using SWISS-MODEL software [25].
The target amino acid sequences of hT1R1-T1R3 VFD was acquired from the universal protein
resource knowledgebase (UniProKB) (HT1R1, Q7RTX1; HT1R3, Q7RTX0). The fish T1R2a-T1R3

418 was used for the homology modeling because it exhibits the highest sequence identity with 419 hT1R1-T1R3 VFD compared to other homologues (S1 Fig). Moreover, a phylogenetic tree was 420 constructed to further prove that the fish T1R2a-T1R3 is the best template so far for the 421 model construction. In specific, the T1R and mGluR were selected to construct the 422 phylogenetic tree based on their VFD, sourced from human T1R1 (h-T1R1, UniProtKB: 423 Q7RTX1), human T1R2 (h-T1R2, UniProtKB: Q8TE23), human T1R3 (h-T1R3, UniProtKB: 424 Q7RTX0), mouse T1R1 (m-T1R1, UniProtKB: Q99PG6), mouse T1R2 (m-T1R2, UniProtKB: 425 Q925I4), mouse T1R3 (m-T1R3, UniProtKB: Q925D8), rat T1R1 (r-T1R1, UniProtKB: Q9Z0R8), 426 rat T1R2 (r-T1R2, UniProtKB: Q9Z0R7), rat T1R3 (r-T1R3, UniProtKB: Q923K1), fish T1R2a (f-427 T1R2a, PDBID: 5X2M), fish T1R3 (f-T1R3, PDBID: 5X2M), human mGluR1 (h-mGluR1, 428 UniProtKB: Q13255), human mGluR4 (h-mGluR4, UniProtKB: Q14833), mouse mGluR1 (m-429 mGluR1, UniProtKB: P97772), mouse mGluR4 (m-GluR4, UniProtKB: Q68EF4), rat mGluR1 (r-430 mGluR1, UniProtKB: P23385), and rat mGluR4 (r-mGluR4, UniProtKB: P31423).

431

432 Obtaining initial ligand-bound hT1R1-T1R3 VFD complex using molecular docking

By using Gauss View 5 and AMBER 14 software [26, 27], the structure of five umami ligands were constructed, including MSG, WSA, GMP, IMP, and BMP. Then, we performed molecular docking for the above five ligands to hT1R1-VFD using the AutoDock vina-1.1.2 software package with the default scoring function [28]. The docking cube grid box size is set to 30 Å, and the center of grid box is set as the center of mass of L-Gln in the homology template structure. The PDBQT of receptor and ligands was calculated by AutoDock Tools-1.5.6 package [29, 30].

440

441 Setup of MD simulations

Each ligand-bound hT1R1-T1R3 VFD complex was centered in a cubic box with the size of 10 442 443 Å, and filled with TIP3P water. A appropriate number of Na⁺ and Cl⁻ were added in the water 444 box by randomly replacing the solvent waters to neutralize the system and ensure an ionic 445 concentration of 0.15 M. The cutoff distances for Van der Waals and short-range electrostatic interactions were set to 12 Å, and the long-range electrostatic interactions were treated using 446 447 the Particle-Mesh Ewald (PME) [31]. The SHAKE algorithm was used to constrain all the 448 chemical bonds [32]. The AMBER14SB fore field was employed to describe the hT1R1-T1R3 449 VFD structure, and the AMBER force fields of ligands were generated using the antechamber 450 module implemented in the Amber-Tools package, and the RESP charges were calculated 451 using the Hartree-Fork methods under the basis set 6-31+g (d) [15, 33, 34].

452 Energy minimization was firstly performed for each complex by combing the steepest 453 descent and conjugate gradient methods, consisting of the following three steps: (1) with all 454 the heavy atoms of the system constrained with a force constant of 10 kcal/mol/Å⁻²; (2) With all the C_{α} atoms of the system constrained with a force constant of 10 kcal/mol/ Å⁻²; (3) All 455 456 the atoms are fully relaxed. After minimization, the system temperature was gradually 457 increased from 0 k to 300 k within 100 ps. Then, we performed two 100-ps constrained MD simulations for each complex, with all the heavy atoms constrained with 10 kcal/mol/ Å⁻² and 458 459 5 kcal/mol/ Å⁻², respectively. Finally, two parallel non-constrained 100-ns NPT MD simulations 460 were conducted under NVT ensemble, each initiated with different velocities. The 461 temperature was kept at 300K using the Langevin Thermostat [35].

462

463 HB and DCCM analysis

464 One HB was defined as that the distance between that acceptor heavy atom A and a donor 465 heavy atom D is less than 3.5 Å, and the angle formed by atom A, donor H atom and atom D

466 is greater than 135°. The OC_{HB} were determined by the following equation:

Where n indicates a number of frames that formed HB during MD simulation, N indicates the
total number of frames. The PYMOL 2.0 (The PyMOL Molecular Graphics System, Version 2.0
Schrödinger, LLC.) and Visual Molecular Dynamics (VMD 1.9.4a12) [36] were used to analyze
and visualize the ligand-bound complex.

DCCM was performed to investigate the correlated motions between four helices from hT1R1 LB2 region. Before constructing the covariance matrix (C_{ij}), all the MD configurations were fitted to the reference structure, then C_{ii} is determined by the following equation:

475
$$C_{ij} = \frac{\langle \Delta r_i \cdot \Delta r_j \rangle}{\sqrt{\langle \Delta r_i \cdot \Delta r_i \rangle \langle \Delta r_j \cdot \Delta r_j \rangle}}$$

Where the angle bracket represents the average of coordinate over the MD simulation trajectory, and Δr_i indicates the deviation of the C_{α} atom of the ith residue from its mean position [37, 38]. The value of C_{ij} fluctuates from -1 to 1. When the value of C_{ij} is positive, it represents a positive correlated motion between the ith residue and the jth residue, otherwise, it is negatively correlated motion.

481

482 Supporting information captions

483 S1 Fig. Sequence alignment of the N-Venus Flytrap domain (VFD) in T1R and mGluR1. The
484 amino acid sequences of VFD from human T1R1 (HT1R1, UniProtKB: Q7RTX1), human T1R3
485 (HT1R3, UniProtKB: Q7RTX0), rat T1R1 (RT1R1, UniProtKB: Q9Z0R8), rat T1R3 (RT1R3,
486 UniProtKB: Q923K1), fish T1R2a-T1R3 (FT1R2a-T1R3, PDBID: 5X2M), and mGluR1 (PDBID:

1EWK) were aligned by blast module of NCBI, and adjusted by ESPript 3.0. The residues 219-221, 276-278, 300-303 are highlighted in violet border; the residues 146-151, 170-173 are highlighted in green border, and the residues 47-49, 68-71, 384-386 are highlighted in blue border. Moreover, the residues that form direct contacts with the five ligand are highlighted with red star. In addition, for FT1R3, the residues that are critical for L-glutamine's binding are highlighted with coral rectangle. In mGluR1, the residues that play essential roles in recognizing the L-glutamate are highlighted with blue ellipse.

494 S2 Fig. Phylogenetic tree for T1R and mGluR from different species. The phylogenetic tree 495 was constructed using the amino acid sequences of T1R and mGluR VFD, sourced from human 496 T1R1 (h-T1R1, UniProtKB: Q7RTX1), human T1R2 (h-T1R2, UniProtKB: Q8TE23), human T1R3 497 (h-T1R3, UniProtKB: Q7RTX0), mouse T1R1 (m-T1R1, UniProtKB: Q99PG6), mouse T1R2 (m-498 T1R2, UniProtKB: Q925I4), mouse T1R3 (m-T1R3, UniProtKB: Q925D8), rat T1R1 (r-T1R1, 499 UniProtKB: Q9Z0R8), rat T1R2 (r-T1R2, UniProtKB: Q9Z0R7), rat T1R3 (r-T1R3, UniProtKB: 500 Q923K1), fish T1R2a (f-T1R2a, PDBID: 5X2M), fish T1R3 (f-T1R3, PDBID: 5X2M), human 501 mGluR1 (h-mGluR1, UniProtKB: Q13255), human mGluR4 (h-mGluR4, UniProtKB: Q14833), 502 mouse mGluR1 (m-mGluR1, UniProtKB: P97772), mouse mGluR4 (m-GluR4, UniProtKB: 503 Q68EF4), rat mGluR1 (r-mGluR1, UniProtKB: P23385), and rat mGluR4 (r-mGluR4, UniProtKB: 504 P31423).

505 **S3 Fig. Effects of the ligand bindings on the receptor dynamics.** Root mean square deviations 506 (RMSD) of LB1+LB2, LB1, and LB2 regions calculated based on two-parallel 100-ns MD 507 simulations (named run-1 and run-2, respectively). For each system, the RMSD along the 508 simulation time was calculated for the 100-ns simulation dataset.

509 S4 Fig. The electrostatics potential of hT1R1-VFD. Positive and negative potential is shown in
510 blue and red, respectively.

2

511

512 Author Contributions

- 513 **Conceptualization:** Hai Liu, Lin-Tai Da, Yuan Liu.
- 514 **Data curation:** Hai Liu.
- 515 Formal analysis: Hai Liu, Lin-Tai Da.
- 516 **Funding acquisition:** Yuan Liu.
- 517 Methodology: Hai Liu, Lin-Tai Da, Yuan Liu.
- 518 **Project administration:** Yuan Liu.
- 519 Supervision: Yuan Liu, Lin-Tai Da.
- 520 Writing original draft: Hai Liu.
- 521 Writing review & editing: Hai Liu, Lin-Tai Da, Yuan Liu.
- 522

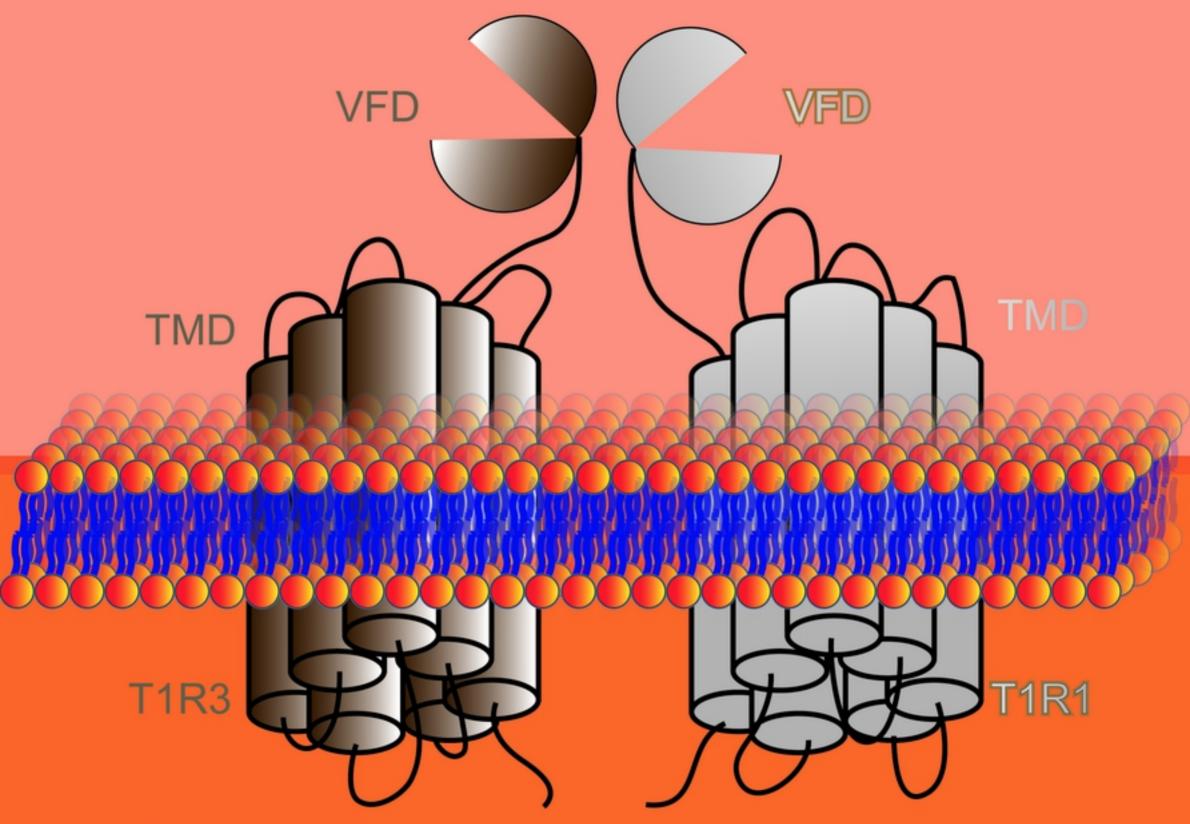
523 References

- 524 1. Ikeda K. New seasonings. Chem Senses. 2002; 27(9):847-849.
- 525 <u>https://doi.org/10.1093/chemse/27.9.847</u> PMID: <u>12438213</u>
- 526 2. Nelson G, Chandrashekar J, Hoon MA, Feng LX, Zhao G, Ryba NJP, et al. An amino-acid
- 527 taste receptor. Nature. 2002; 416(6877):199-202. <u>https://doi.org/10.1038/nature726</u>
- 528 PMID: <u>11894099</u>
- 529 3. Zhang F, Klebansky B, Fine RM, Xu H, Pronin A, Liu HT, et al. Molecular mechanism for
- 530 the umami taste synergism. P Natl Acad Sci USA. 2008; 105(52):20930-20934.
- 531 <u>https://doi.org/10.1073/pnas.0810174106</u> PMID: <u>19104071</u>

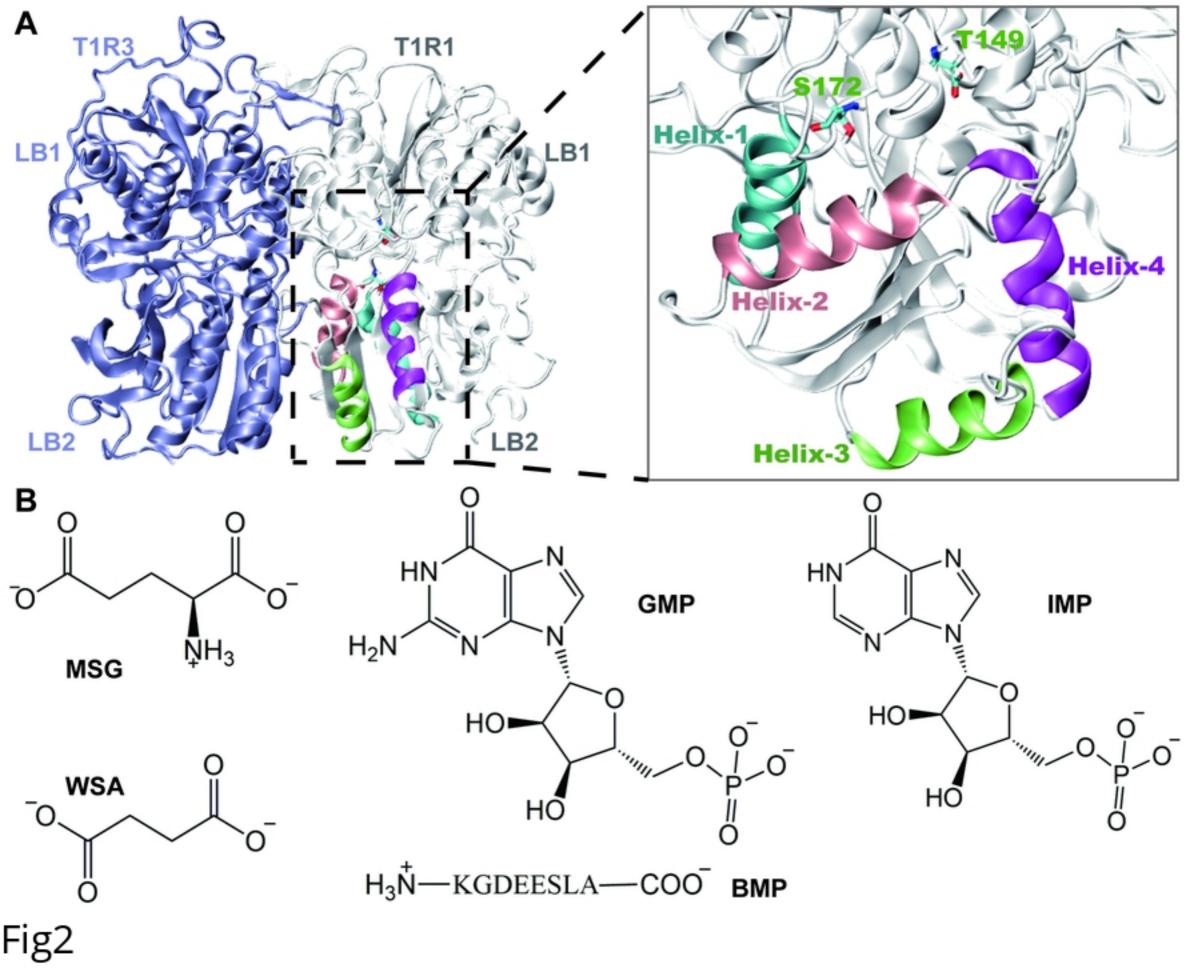
- 532 4. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. Human receptors for sweet and
- 533 umami taste. Proc Natl Acad Sci U S A. 2002; 99(7):4692-4696.
- 534 <u>https://doi.org/10.1073/pnas.072090199</u> PMID: <u>11917125</u>
- 535 5. Pin JP, Kniazeff J, Goudet C, Bessis AS, Liu J, Galvez T, et al. The activation mechanism of
- 536 class-C G-protein coupled receptors. Biol Cell. 2004; 96(5):335-342.
- 537 <u>https://doi.org/10.1016/j.biolcel.2004.03.005</u> PMID: <u>15207901</u>
- 538 6. Li XD. T1R receptors mediate mammalian sweet and umami taste. Am J Clin Nutr. 2009;
- 539 90(3):733s-737s. <u>https://doi.org/10.3945/ajcn.2009.27462G</u> PMID: <u>19656838</u>
- 540 7. Zhang F, Klebansky B, Fine RM, Liu HT, Xu H, Servant G, et al. Molecular mechanism of
- 541 the sweet taste enhancers. P Natl Acad Sci USA. 2010; 107(10):4752-4757.
- 542 <u>https://doi.org/10.1073/pnas.0911660107</u> PMID: <u>20173095</u>
- 543 8. Toda Y, Nakagita T, Hayakawa T, Okada S, Narukawa M, Imai H, et al. Two Distinct
- 544 Determinants of Ligand Specificity in T1R1/T1R3 (the Umami Taste Receptor). J Biol
- 545 Chem. 2013; 288(52):36863-36877. <u>https://doi.org/10.1074/jbc.M113.494443</u> PMID:
- 546 <u>24214976</u>
- 547 9. Narukawa M, Toda Y, Nakagita T, Hayashi Y, Misaka T. L-Theanine elicits umami taste
- via the T1R1+T1R3 umami taste receptor. Amino Acids. 2014; 46(6):1583-1587.
- 549 <u>https://doi.org/10.1007/s00726-014-1713-3</u> PMID: <u>24633359</u>
- 550 10. Toda Y, Nakagita T, Hirokawa T, Yamashita Y, Nakajima A, Narukawa M, et al.
- 551 Positive/Negative Allosteric Modulation Switching in an Umami Taste Receptor
- 552 (T1R1/T1R3) by a Natural Flavor Compound, Methional. Sci Rep-Uk. 2018; 8(1):11796-
- 553 11808. <u>https://doi.org/10.1038/s41598-018-30315-x</u> PMID: <u>30087430</u>
- 11. Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S. Action of
- 555 Molecular Switches in GPCRs Theoretical and Experimental Studies. Curr Med Chem.

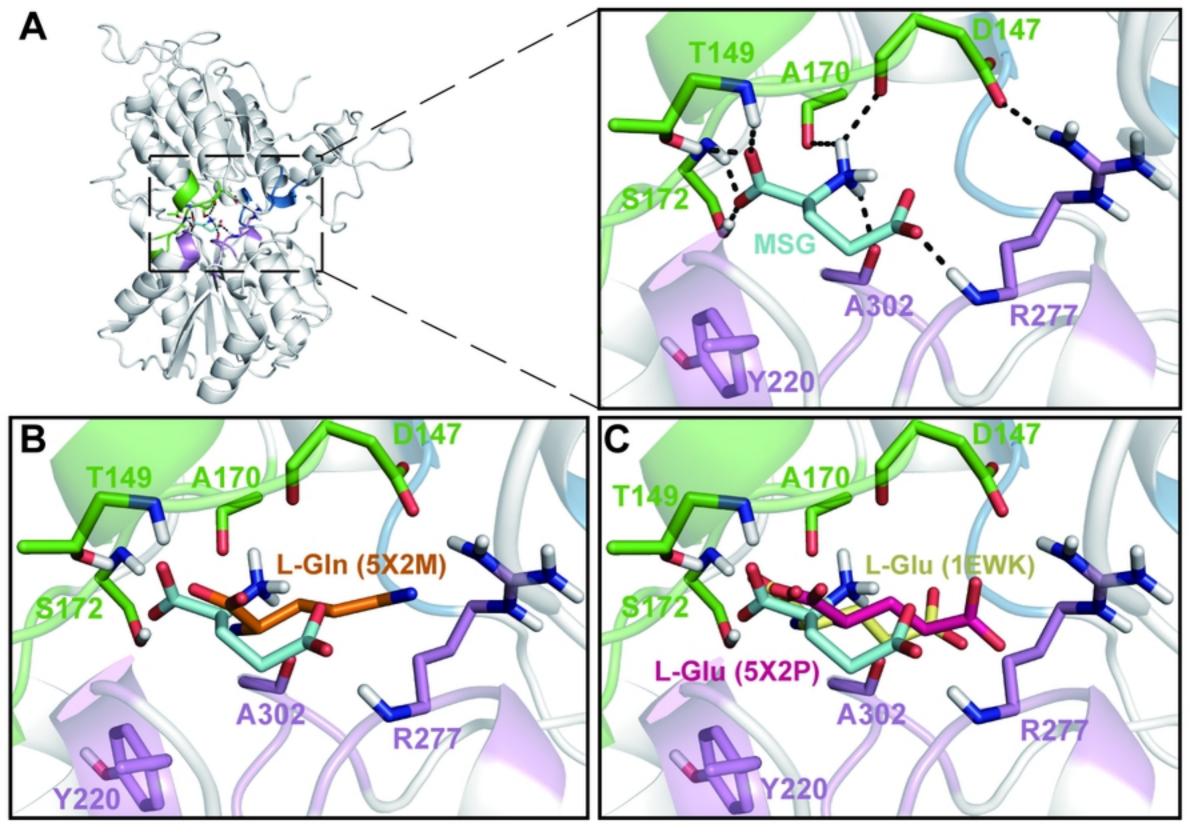
- 556 2012; 19(8):1090-1109. <u>https://doi.org/10.2174/092986712799320556</u> PMID:
- 557 <u>22300046</u>
- 12. Yamaguchi S, Ninomiya K. Umami and food palatability. J Nutr. 2000; 130(4):921s-926s.

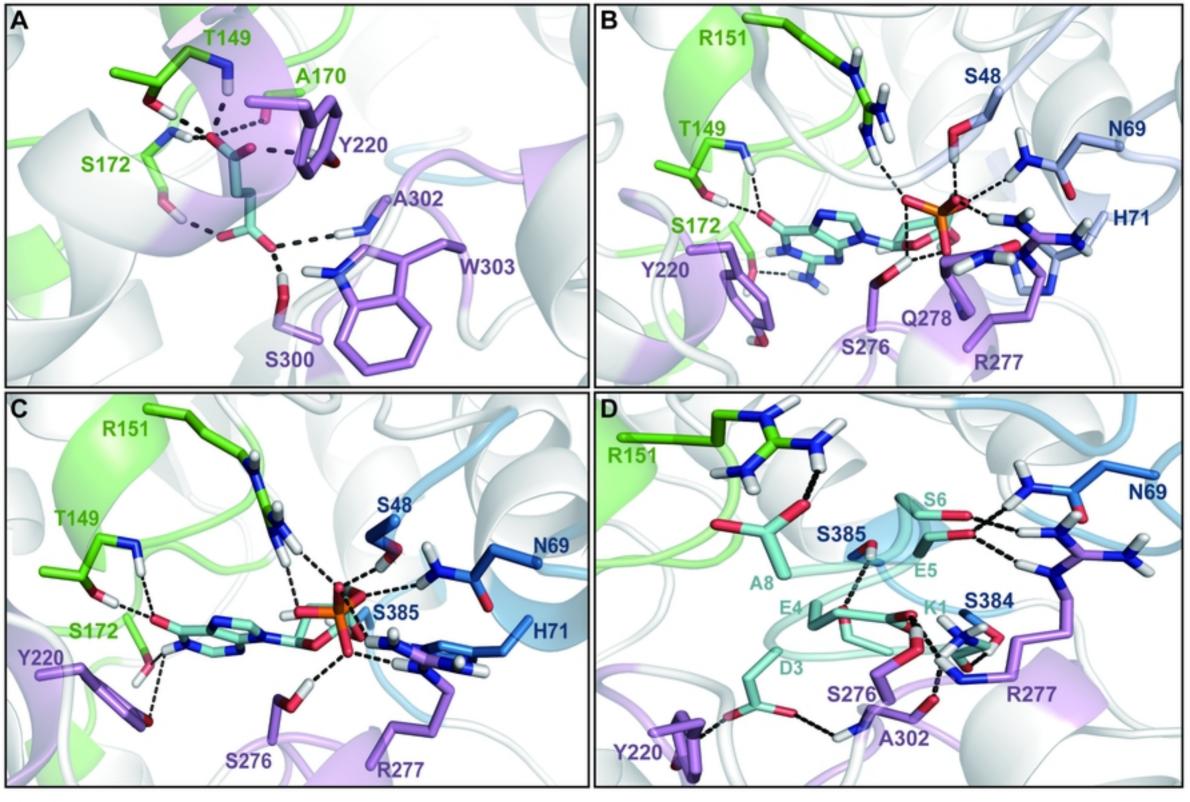
559 <u>https://doi.org/10.1007/978-1-4615-4693-1_36</u> PMID: <u>10736353</u>

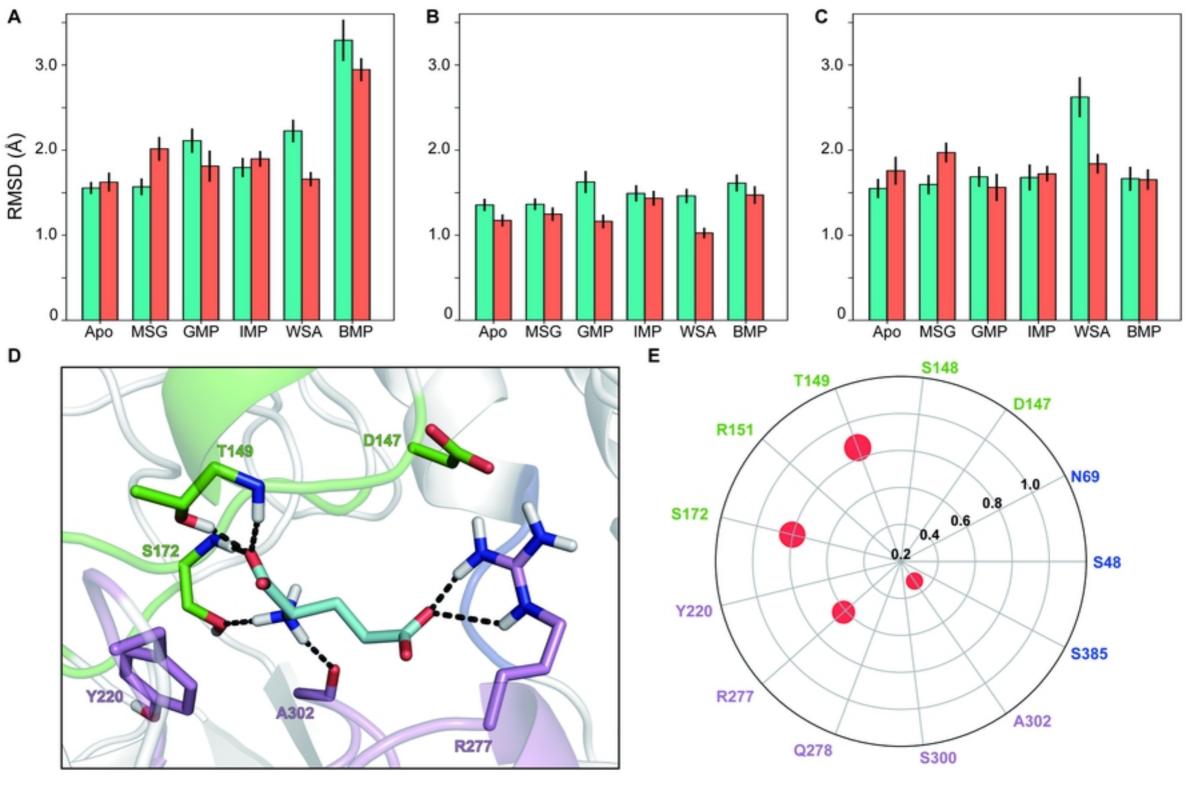

- 560 13. Su GW, Cui C, Zheng L, Yan B, Ren JY, Zhao MM. Isolation and identification of two
- 561 novel umami and umami-enhancing peptides from peanut hydrolysate by consecutive
- 562 chromatography and MALDI-TOF/TOF MS. Food Chem. 2012; 135(2):479-485.
- 563 https://doi.org/10.1016/j.foodchem.2012.04.130 PMID: 22868117
- 14. Dang YL, Gao XC, Ma FM, Wu XQ. Comparison of umami taste peptides in water-soluble
- 565 extractions of Jinhua and Parma hams. Lwt-Food Sci Technol. 2015; 60(2):1179-1186.
- 566 https://doi.org/10.1016/j.lwt.2014.09.014
- 567 15. Yu XQ, Zhang LJ, Miao XD, Li YY, Liu Y. The structure features of umami hexapeptides
- 568 for the T1R1/T1R3 receptor. Food Chem. 2017; 221:599-605.
- 569 https://doi.org/10.1016/j.foodchem.2016.11.133 PMID: 27979247
- 570 16. Cascales JJL, Costa SDO, de Groot BL, Walters DE. Binding of glutamate to the umami
- 571 receptor. Biophys Chem. 2010; 152(1-3):139-144.
- 572 <u>https://doi.org/10.1016/j.bpc.2010.09.001</u> PMID: <u>20961679</u>
- 573 17. Dang YL, Gao XC, Xie AY, Wu XQ, Ma FM. Interaction Between Umami Peptide and
- 574 Taste Receptor T1R1/T1R3. Cell Biochem Biophys. 2014; 70(3):1841-1848.
- 575 <u>https://doi.org/10.1007/s12013-014-0141-z</u> PMID: <u>25331670</u>
- 576 18. Dang YL, Hao L, Cao JX, Sun YY, Zeng XQ, Wu Z, et al. Molecular docking and simulation
- 577 of the synergistic effect between umami peptides, monosodium glutamate and taste
- 578 receptor T1R1/T1R3. Food Chem. 2019; 271:697-706.
- 579 <u>https://doi.org/10.1016/j.foodchem.2018.08.001</u> PMID: <u>30236733</u>

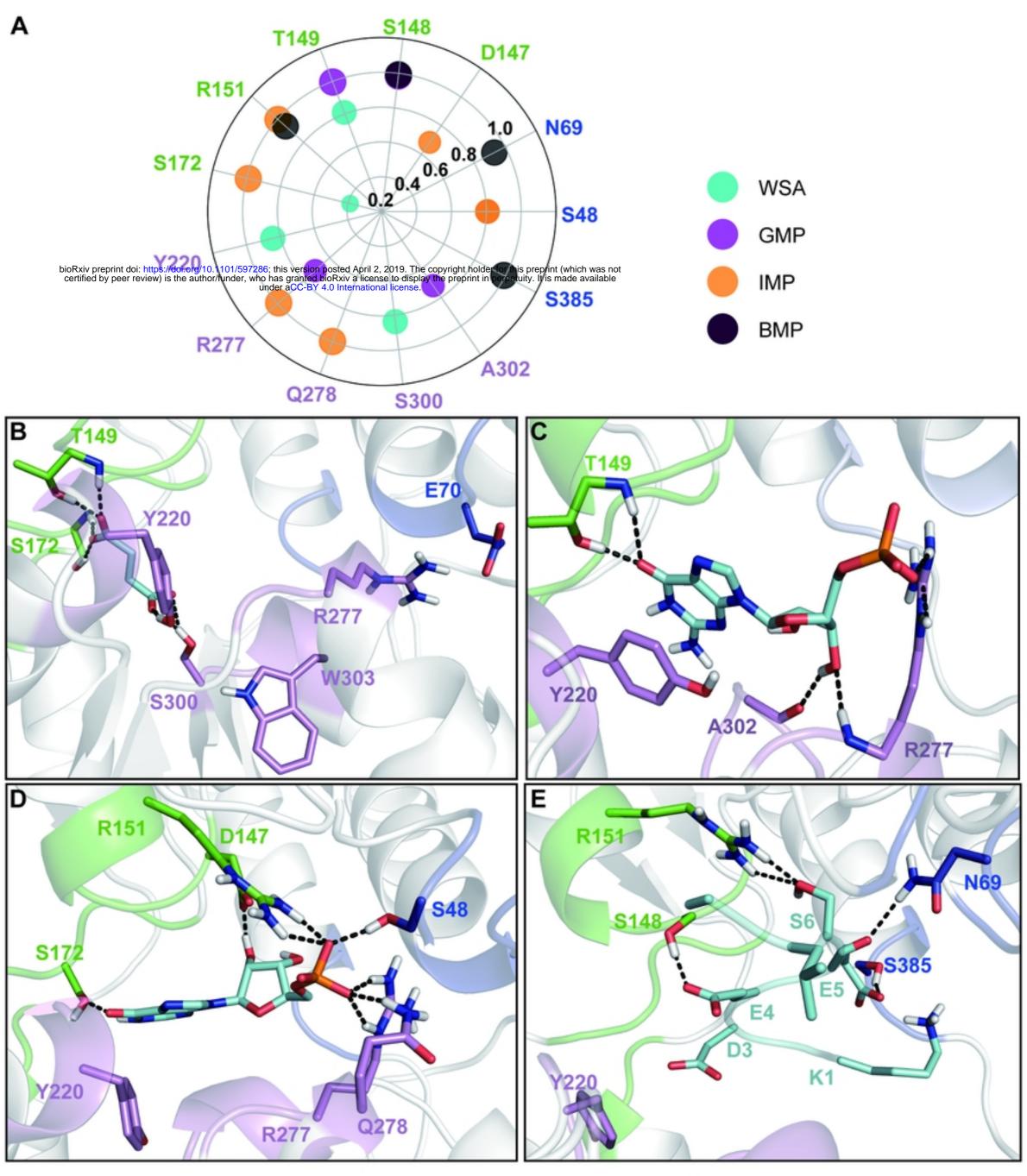
- 580 19. Nuemket N, Yasui N, Kusakabe Y, Nomura Y, Atsumi N, Akiyama S, et al. Structural basis
- 581 for perception of diverse chemical substances by T1r taste receptors. Nat Commun.
- 582 2017; 8:15530-15539. <u>https://doi.org/10.1038/ncomms15530</u> PMID: <u>28534491</u>
- 583 20. Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, et al. Structural
- 584 basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature.
- 585 2000; 407(6807):971-977. <u>https://doi.org/10.1038/35039564</u> PMID: <u>11069170</u>
- 586 21. Geng Y, Bush M, Mosyak L, Wang F, Fan QR. Structural mechanism of ligand activation
- 587 in human GABA(B) receptor. Nature. 2013; 504(7479):254-261.
- 588 <u>https://doi.org/10.1038/nature12725</u> PMID: <u>24305054</u>
- 589 22. Damak S, Rong MQ, Yasumatsu K, Kokrashvili Z, Varadarajan V, Zou SY, et al. Detection
- 590 of sweet and umami taste in the absence of taste receptor T1r3. Science. 2003;
- 591 301(5634):850-853. <u>https://doi.org/10.1126/science.1087155</u> PMID: <u>12869700</u>
- 592 23. Robert X, Gouet P. Deciphering key features in protein structures with the new
- 593 ENDscript server. Nucleic Acids Res. 2014; 42(W1):W320-W324.
- 594 <u>https://doi.org/10.1093/nar/gku316</u> PMID: <u>24753421</u>
- 595 24. Tamura M, Nakatsuka T, Tada M, Kawasaki Y, Kikuchi E, Okai H. The Relationship
- 596 between Taste and Primary Structure of " Delicious Peptide" (Lys-Gly-Asp-
- 597 Glu-Glu-Ser-Leu-Ala) from Beef Soup. Agricultural and Biological Chemistry. 1989;
- 598 53(2):319-325. <u>https://doi.org/10.1271/bbb1961.53.319</u>
- 599 25. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-
- 600 MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res.
- 601 2018; 46(W1):W296-W303. <u>https://doi.org/10.1093/nar/gky427</u> PMID: <u>29788355</u>

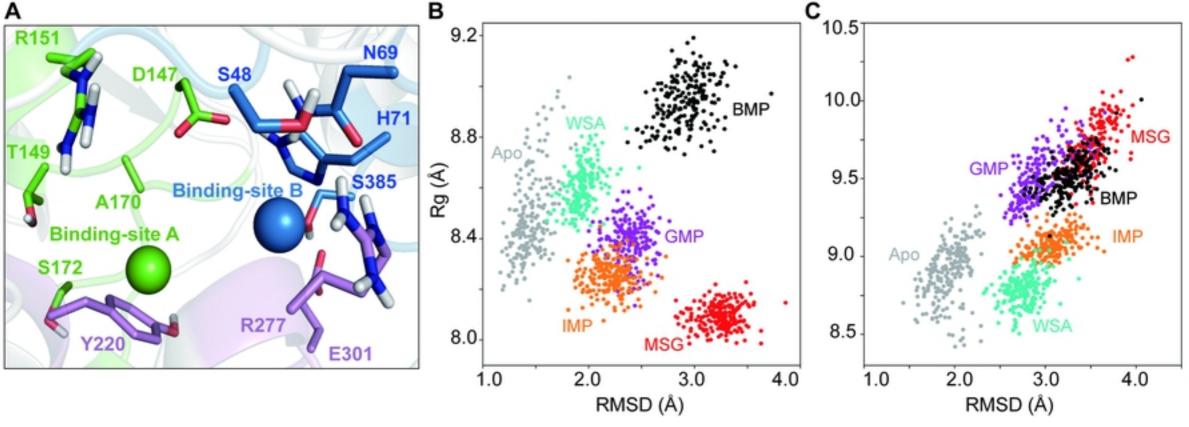

- 602 26. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, et al. The Amber
- biomolecular simulation programs. J Comput Chem. 2005; 26(16):1668-1688.
- 604 <u>https://doi.org/10.1002/jcc.20290</u> PMID: <u>16200636</u>
- 605 27. Salomon-Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular
- simulation package. Wires Comput Mol Sci. 2013; 3(2):198-210.
- 607 <u>https://doi.org/10.1002/wcms.1121</u>
- 608 28. Trott O, Olson AJ. Software News and Update AutoDock Vina: Improving the Speed and
- 609 Accuracy of Docking with a New Scoring Function, Efficient Optimization, and
- 610 Multithreading. J Comput Chem. 2010; 31(2):455-461.
- 611 <u>https://doi.org/10.1002/jcc.21334</u> PMID: <u>19499576</u>
- 612 29. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4
- 613 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J Comput
- 614 Chem. 2009; 30(16):2785-2791. <u>https://doi.org/10.1002/jcc.21256</u> PMID: <u>19399780</u>
- 30. Sotriffer CA, Flader W, Winger RH, Rode BM, Liedl KR, Varga JM. Automated docking of
- 616 ligands to antibodies: Methods and applications. Methods. 2000; 20(3):280-291.
- 617 https://doi.org/10.1006/meth.1999.0922 PMID: 10694451
- 618 31. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H. and Pedersen, L.G. A smooth
- 619 particle mesh Ewald method. J. Chem. Phys., 1995; 103(19):8577–8593.
- 620 <u>https://doi.org/10.1063/1.470117</u>
- 621 32. Miyamoto, S.; Kollman, P. SETTLE: An analytical version of the SHAKE and RATTLE
- algorithm for rigid water models. J Comput Chem. 1992; 13(8):952–962.
- 623 <u>https://doi.org/10.1002/jcc.540130805</u>
- 624

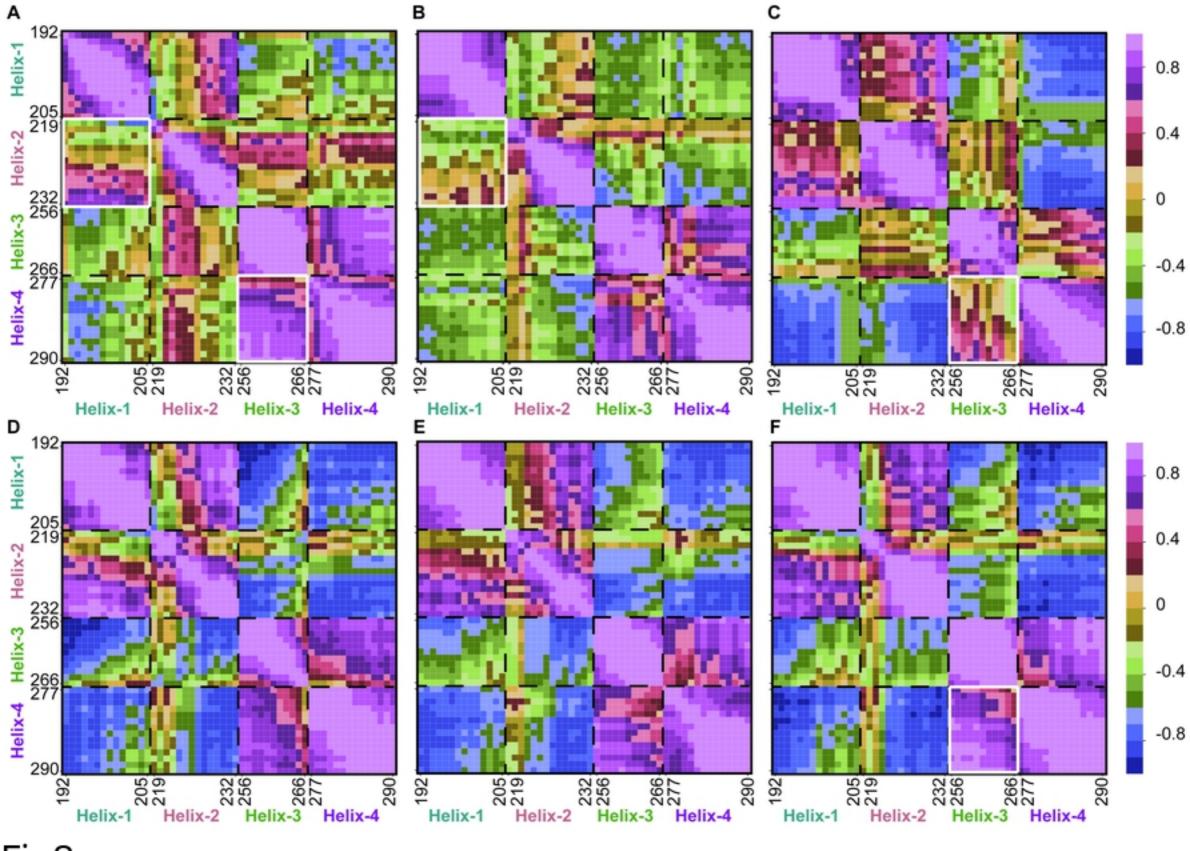

- 625 33. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB:
- 626 Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J
- 627 Chem Theory Comput. 2015; 11(8):3696-3713.
- 628 <u>https://doi.org/10.1021/acs.jctc.5b00255</u> PMID: <u>26574453</u>
- 629 34. Ponder JW, Case DA. Force fields for protein simulations. Adv Protein Chem. 2003;
- 630 66:27-85. <u>https://doi.org/10.1016/S0065-3233(03)66002-X</u> PMID: <u>14631816</u>
- 631 35. Lemons, Don S. Paul Langevin's 1908 paper "On the Theory of Brownian Motion" ["Sur
- la the?orie du mouvement brownien," C. R. Acad. Sci. (Paris) 146, 530–533 (1908). Am J
- 633 Phys. 1997; 65(11):1079-1081. <u>https://doi.org/10.1119/1.18725</u>
- 634 36. Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual molecular dynamics. J Mol Graphics.
- 635 1996; 14, 33–38. <u>https://doi.org/10.1016/0263-7855(96)00018-5</u>
- 636 37. Amadei A, Linssen AB, Berendsen HJ. Essential dynamics of proteins. Proteins. 1993;
- 637 17(4):412-425. <u>https://doi.org/10.1002/prot.340170408</u> PMID: <u>8108382</u>
- 638 38. Chen J, Wang J, Xu B, et al. Insight into mechanism of small molecule inhibitors of the
- 639 MDM2–p53 interaction: Molecular dynamics simulation and free energy analysis. J Mol
- 640 Graph Model, 2011; 30:46-53. <u>https://doi.org/10.1016/j.jmgm.2011.06.003</u> PMID:
- 641 <u>21764342</u>
- 642

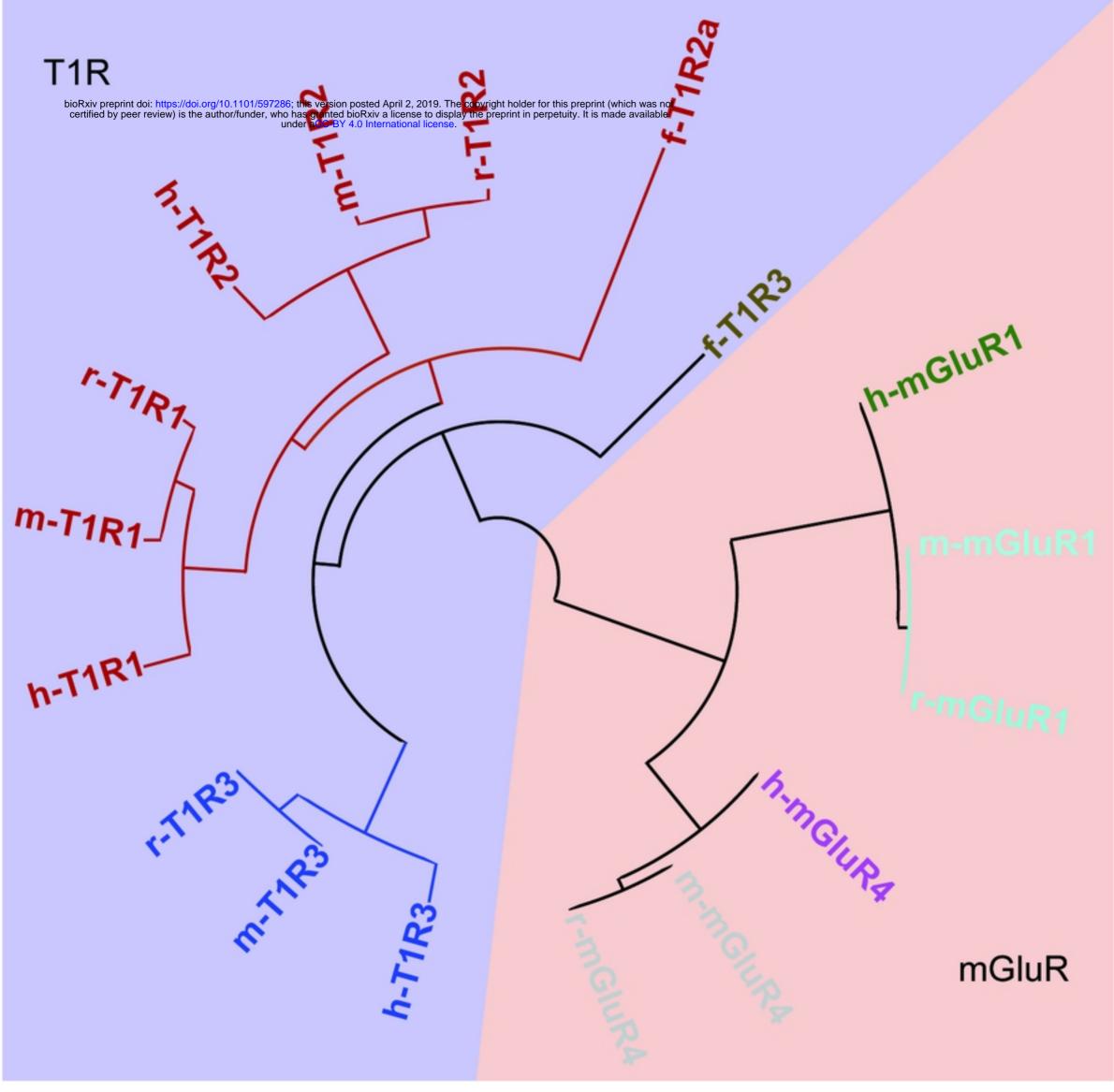

Extracellular N-Terminus

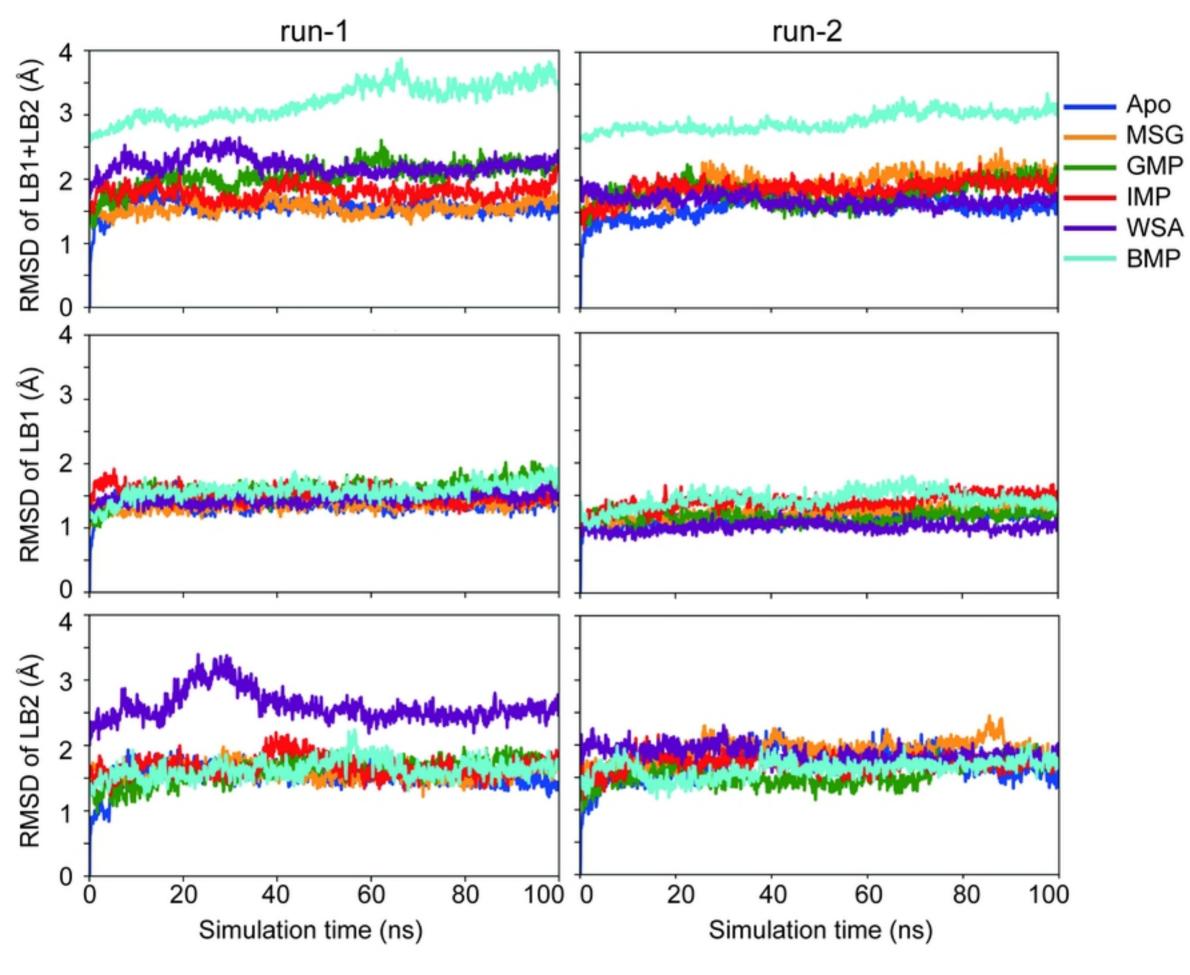



Intracellular C-Terminus

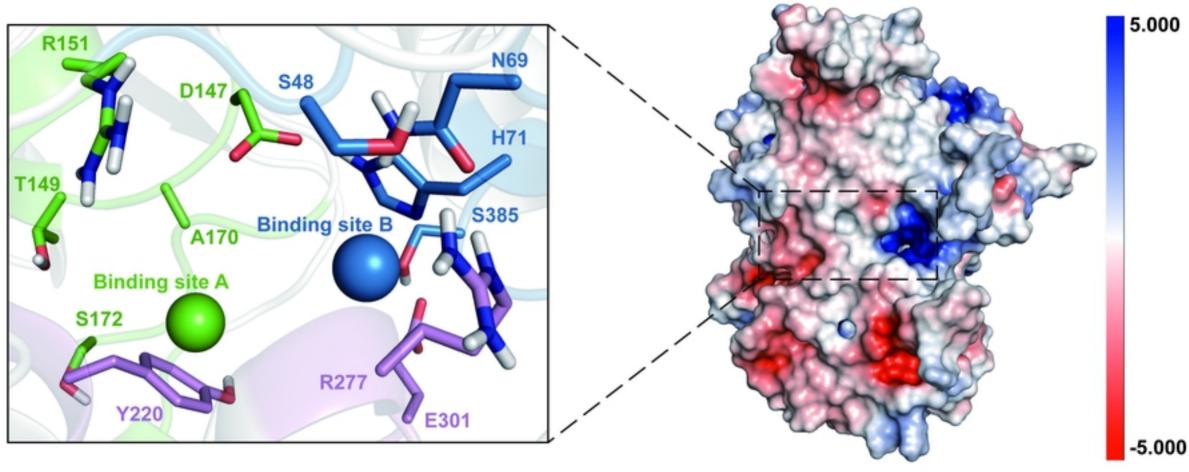







HT1R1			β1	β2	β3 ╋		тт <mark>β4</mark> д	αl 000000000	00000000
HT1R1 HT1R3 RT1R1 RT1R3 FT1R2a FT1R3 1EWK_A 1EWK_B	21 . 19 .1 20 . 20 .	AP LC1 FSCQR T ES SSLC1 QS T D PNWFN N IS S S	SPGFSLPG SPGFSLPG SQQFKAQG TSEFHLRG TDLFSMPG RSVARMDG	DYVLGGLF DFLLAGLF DYLLGGLF DIKLGGLF DVIIGALF	PLGEAEE SLHGDCI PLGTTEE NIHYVAJ PIKEQSN SVHHQPE	QVRHRPEVILC EAGLESETEPSS QVRHRPLVISC EATLNQETQPNG EATLNQETQPNG EVSNDLTKLNS PAEKVPERKCGE PAEKVPERKCGE	PVCTRFSS DRPDSFNG ILCTRFSP SS.KLFIL VSCDSLNK IREQ	NGLLWALAM HGYHLFQAM LGLFLAMAM PNYRRFQMM DGLGRALVM YGIQRVEAM	KMAVEEINNK RFTVEEINNS KMAVEEINNG RFSVEEINNS KYAVEEINAN FHT <mark>LDKIN</mark> AD
HT1R1		TT -	β5	عع	α2	т	т		β6
HT1R1 HT1R3 RT1R1 RT1R3 FT1R2a FT1R3 1EWK_A 1EWK_B	87 S 89 S 87 S 85 S 90 S 93 P	DLLPG <mark>L</mark> RI ALLPN I TI SLLPN V SI QLLPG V KI VLLPN I TI	LGYDLFDTC LGYDLFDTC LGYQMFDHC LGYXIYNTC LGYKIYNTC LGSEIRDSC	SEPVVA <mark>M</mark> K SESAN.VY SEPVVTMK SDIHS RHSAVIVR WHSSVALE	PSLMFLA ATLRVLA PSLMFMA FPGIFKI PALSFL QSIEFI	SLPGQHHIELQG AKAGSRDIAAYC ALQGPRHIEIQK AKVGSQSIAAYC LSVNDLIRPWE CEKSNGTLSVEC RDSLISIRDEKD RDSLISIRDEKD	NYTQYQPR DLRNHSSK NYTQYQPR DASTGLPN NYTDYETD GLNRCLPD	· · · · · · · · · · · · · · · · · · ·	
HT1R1		α3 0000000	η1	β7	η2 0000	β8		α4 (Helix-1) 00000000	β9
HT1R1 HT1R3 RT1R1 RT1R3 FT1R2a FT1R3 1EWK_A 1EWK_B	145 H 146 D 145 H 140 F 148 Q 163 G	STNRAATT SSELAMVT NTDHAVTT SSELALIT SSELALIT SSEMVTV SSSVAIQV	TAALLSPFL TGKFFSFFL TAALLGPFL TGKFFSFFL TAPIFMTNL IGKLLGFFL ZQNLLQLFD	MPQVSYGA MPLVSYEA MPQVSYSA FPMVSYGC MPQISFGA IPQIAYSA	SSETLS SMELLS SSVVLS SMDRLS SGSVFS SGSVFS TSDKFS TSDKFS TSIDLS	KRQYPSFLRTV RETFPSFFRTV KRKFPSFLRTV RETFPSFFRTV ENLYPSFLRTV SLVYPSFFRTV KTLYKYFLRVV	PSDRVQLT PSDRHQVE PSDRVQLQ HSNKDVIN PSDIRQVD PSDTLQAR	AAAELLQEF VMVQLLQSF AVVTLLQNF AIVGIILNF AMVQLIKKF AMLDIVKRY	GWNWVAALGS GWVWISLIGS SWNWVAALGS NWRWVAFLYS NWNWVAVVGS NWTYVSAVHT
HT1R1	bioRxiv pr	eprint doi: https:/ by beer review) is	(Helix-2) /døi.org/10.1101/59 the author/funder.	7286; this version p who has granted bit	osted April 2, 2 oRxiv a license	019. The copyright holder f to display the preprint in pe	or this preprint (whi erpetuity. It is made	ich was not $\beta 11$	(Helix-4) α7
HT1R1 HT1R3 RT1R1 RT1R3 FT1R2a FT1R3 1EWK_A 1EWK_B	217 SI 215 DI 217 Y 215 DI 210 DI 218 EI 233 E	DDYGQLG DEYGRQGI GDYGQLG DDYGREGI DDYGREGI DEFGKDGI GNYGESGI	QALENQAT SIFSALAA VQALEELAV SIFSGLAN LEQFKNKIE VQQFSKKAE DAFKELAA	GQGICIAF ARGICIAH PRGICVAF SRGICIAH DSEICLAF DMGVCVAY QEGLCIAH	CONTRACTOR CONTRACTOR EGLVPFS EGLVPQF YKAINVN QGLIPIY SDKIYSN	RADDSRLGKVQ RADDSRLGKVQ SARVGDPRMQ IDTSGQQLGKVV TDYL IDPKPAIQ NAGEKSFDRLLR	CLMRHLAQ DVLHQVNQ SMMQHLAQ QVLRQVNQ QVFKQIEE TIINNIQT KLRERLP	AGATVVVF SSVQVVLLF ARTTVVVVF SKVQVVVLF QNIKVIVVF TEVKVVVF .KARVVVCF	ASVHA <mark>A</mark> HALF SNRHLARVFF ASARAVYSLF APKVYAEAVV SLVSPAVSFF CEGMT <mark>V</mark> RGLL
									-
HT1R1	0	0000	β12		η3 000 (η4 β13	٥	<u>α8</u> 00000000	тт
HT1R1 HT1R3 RT1R1 RT1R3 FT1R2a FT1R3 1EWK_A 1EWK_B	285 E 285 N 2 285 N 2 284 R 2 285 S 2 273 E 2 285 E 1 301 S 2	SVVLTNLS YSISSRLS SVVLANLS SVVLANLS SAVQLNVS EVIKKNLS AMRRLGV	BPKVWVAS. GKVWVAS. SPKVWVAS. NKVWIAD. G.VWIAS. GEFSLIGS	EAWALSRH EAWLTSDL EDWAISTY ESWLTSDL DGWAISDK SSWADRDE DGWADRDE	ITGVPGI VMGLPGN ITSVTGI VMTLPNI VYSLPNI VIEGYEV		QKRAVPGL RGAQLHEF QQRQVPGL RGALLPEF ETETLELL SPEVRSFD SPEVRSFD	QQQQQQQQ KAFEEAYAR PQYVKTHLA KEFEESYVR SHYVETRLA SPFTEVLFK DYFLKLRLD DYFLKLRLD	TT ADKKAPRPCH LATDPAFCSA AVTAAPSACP LAADPTFCAS KIHEASPTEK TNTRNPWFPE TNTRNPWFPE
HT1R1 HT1R3 RT1R1 RT1R3 FT1R2a FT1R3 1EWK_A	285 E 285 N 2 285 N 2 284 R 2 285 S 2 273 E 2 285 E 1 301 S 2	SVVLTNLS YSISSRLS SVVLANLS SVVLANLS SAVQLNVS EVIKKNLS AMRRLGV	BPKVWVAS. GKVWVAS. SPKVWVAS. NKVWIAD. G.VWIAS. GEFSLIGS	EAWALSRH EAWLTSDL EDWAISTY ESWLTSDL DGWAISDK SSWADRDE DGWADRDE	ITGVPGI VMGLPGN ITSVTGI VMTLPNI VYSLPNI VIEGYEV	QRIGMVLGVAI AQMGTVLGFLQ QGIGTVLGVAV ARVGTVLGFLQ DSIGTVIGFID VEANGGITIKLQ VEANGGITIKLQ	QKRAVPGL RGAQLHEF QQRQVPGL RGALLPEF ETETLELL SPEVRSFD SPEVRSFD PVVTIPGF	QQQQQQQQ KAFEEAYAR PQYVKTHLA KEFEESYVR SHYVETRLA SPFTEVLFK DYFLKLRLD DYFLKLRLD	TT ADKKAPRPCH LATDPAFCSA AVTAAPSACP LAADPTFCAS KIHEASPTEK TNTRNPWFPE TNTRNPWFPE QTDGGDTEQK
HT1R1 HT1R3 RT1R1 RT1R3 FT1R2a FT1R3 1EWK_A 1EWK_B	285 E 2 285 N 2 284 R 2 285 S 2 273 E 2 285 E 1 301 S 2 301	SVVLTNLY YSISSRLS SVVLANLY YSILHDLS SAVQLNVY EVIKKNL AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY	BPKVWVAS. GKVWVAS. PKVWVAS. PKVWVAS. FG.VWIAS. GEFSLIGS GEFSLIGS GEFSLIGS GEFSLIGS SWCSSNQLC SWCSNQLC SWCSNQLC SWCSNQLC SWCSNQLC SWCSNC SWCSSNQLC SW	EAWALSRH EAWLTSDL EDWAISTY ESWLTSDL DGWAISDK SSWADRDE DGWSLNKK PQCDCITL RECHTFTT SQCDYIML CNCSNLSV PECWSLSP PNFKKVCT	HTMP. QNVS. QNLSSGI KSLLN. ANVS. LPS	QRIGMVLGVAI AQMGTVLGFLQ QGIGTVLGVAV ARVGTVLGFLQ DSIGTVIGFID VEANGGITIKLQ VEANGGITIKLQ	QKRAVPGL RGAQLHEF QQRQVPGL RGALLPEF ETETLELL SPEVRSFD SPEVRSFD PVVTIPGF QQQQQQQQ SAYNAYRA QIFSVYAA QIFATYAA FSFPVYAA TAFSVYAA VINAIYAM	QQQQQQQQQ KAFEEAYAR PQYVKTHLA KEFEESYVR SHYVETRLA SPFTEVLFK DYFLKLRLD DYFLKLRLD TDFIYSALS Q9 QQQQQQQQQQ VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH	TT ADKKAPRPCH LATDPAFCSA AVTAAPSACP LAADPTFCAS KIHEASPTEK TNTRNPWFPE QTDGGDTEQK QLLGCDTEQK QLLGCTSEIC NTLQCNASGC QLLGCTSEIC NTLQCNVSHC NTLRCGSDRC KLLECNSAAC ALCPGHVGLC
HT1R1 HT1R3 RT1R1 RT1R3 FT1R2a FT1R3 1EWK_A 1EWK_B HT1R1 HT1R1 HT1R1 HT1R3 RT1R1 RT1R3 FT1R2a FT1R2a FT1R3 1EWK_A	285 E 2 285 N 2 284 R 2 285 S 2 273 E 2 285 E 1 301 S 2 301	SVVLTNLY YSISSRLS SVVLANLY YSILHDLS SAVQLNVY EVIKKNL AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY AMRRLGVY	BPKVWVAS. GKVWVAS. PKVWVAS. PKVWVAS. FG.VWIAS. GEFSLIGS GEFSLIGS GEFSLIGS GEFSLIGS SWCSSNQLC SWCSNQLC SWCSNQLC SWCSNQLC SWCSNQLC SWCSNC SWCSSNQLC SW	EAWALSRH EAWLTSDL EDWAISTY ESWLTSDL DGWAISDK SSWADRDE DGWSLNKK DGWSLNKK TT RECQAFMA PQCDCITL RECHTFTT SQCDYIML CNCSNLSV PECWSLSP PNFKKVCT PNFKKVCT	HTMP. QNVS. QNLSSGI KSLLN. ANVS. LPS	TT CONSIGNULGVAU CONSIGNULGVAU CARVGTVLGFLQ CONSIGNULGFLQ CANGGITIKLQ CANGTIKLQ CANGTI	QKRAVPGL RGAQLHEF QQRQVPGL RGALLPEF ETETLELL SPEVRSFD SPEVRSFD PVVTIPGF QQQQQQQQ SAYNAYRA QIFSVYAA QIFATYAA FSFPVYAA TAFSVYAA VINAIYAM	QQQQQQQQQ KAFEEAYAR PQYVKTHLA KEFEESYVR SHYVETRLA SPFTEVLFK DYFLKLRLD DYFLKLRLD TDFIYSALS Q9 QQQQQQQQQQ VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH VYAVAHGLH	TT ADKKAPRPCH LATDPAFCSA AVTAAPSACP LAADPTFCAS KIHEASPTEK TNTRNPWFPE QTDGGDTEQK QLLGCDTEQK QLLGCTSEIC NTLQCNASGC QLLGCTSEIC NTLQCNVSHC NTLRCGSDRC KLLECNSAAC ALCPGHVGLC
HT1R1 HT1R3 RT1R1 RT1R3 FT1R2a FT1R3 1EWK_A 1EWK_B HT1R1 HT1R1 HT1R1 RT1R3 FT1R2a FT1R3 1EWK_A 1EWK_B HT1R1 HT1R1 HT1R1 HT1R1 HT1R1 HT1R3 RT1R1 RT1R3 RT1R1 RT1R3 RT1R1 RT1R3 FT1R2a FT1R3 FT1R2a FT1R3	285 E3 285 N3 284 R3 285 S1 273 E3 285 E1 301 S2 301 S2 302 S	SVVLTNLY YSISSRLS SVVLANLY YSILHDLS SAVQLNVY EVIKKNLY AMRRLGVY AMRLGVY AMRL	PKVWVAS. GKVWVAS. PKVWVAS. PKVWVAS. PKVWVAS. PKVWVAS. PKVWVAS. PKVWVAS. GEFSLIGS GEFSLIGS GEFSLIGS SWCSSNQLC SWCSSNQLC SWCSSNQLC SWCSSNQLC SWCSSNQLC SWCSSNQLC SWCSTNQLC SPKUSPAC SWCSTNQLC SWCSTNQLC SWCSTNQLC CEVMGPRC SUPSTICE SWOLLEN All SWOLLEN PWOLLEN PWOLLEN PWKLLEVL SRKLIPFL	EAWALSRH EAWLTSDL EDWAISTY ESWLTSDL DGWAISDK SSWADRDE DGWADRDE DGWSLNKK COCCLCITL RECHTFTT SQCDCITL RECHTFTT SQCDYIML CNCSNLSV PNFKKVCT PNFKKVCT PNFKKVCT PNFKKVCT PNFKKVCT SQCDYIML SP PNFKKVCT SQCDYIML SP PNFKKVCT SQCDYIML SP SQCDYIML SP SQCDYIML SP SQCDYIML SP SQCDYIML SP SQCDYIML SP SQCDYIML SP SQCDYIML SP SQCDYIML SP SQCDYIML SP SQCDYIML SP SQCDYIML SP SQCDYIML SP SQCDYIML SP SQCDYIML SQCDYIML SV SQCDYIML SV SQCDYIML SV SQCDYIML SV SQCDYIML SV SQCDYIML SV SQCDYIML SV SV SV SV SV SV SV SV SV SV SV SV SV	ITGVPGI VMGLPGN ITSVTGI VMTLPNI VYSLPNI VIEGYEV UIEGYEV UIEGYEV UIEGYEV UIEGYEV SNTSLEP BI7 TT HKDTVAF GGLPLRF HENTVAF RDLTLQF SNTSLEP	TT CONSIGNULGVAU CONSIGNULGVAU CARVGTVLGFLQ CONSIGNULGFLQ CANGGITIKLQ CANGTIKLQ CANGTI	QKRAVPGL RGAQLHEF QQRQVPGL RGALLPEF ETETLELL SPEVRSFD SPEVRSFD PVVTIPGF QQOQQQQQ SAYNAYRA QTFSVYAA QTFSVYAA QTFSVYAA CIFATYAA FSFPVYAA TAFSVYAA VINAIYAM VINAIYAM VINAIYAM S18 JIAWDWNG LKLWVWQG IIAWDWNG LKLWVWQS SUVFWNS VIQRIWEN IMNLQYTE	QQQQQQQQQ KAFEEAYAR PQYVKTHLA KEFEESYVR SHYVETRLA SPFTEVLFK DYFLKLRLD DYFLKLRLD TDFIYSAIS QQQQQQQQQQ QQQQQQQQQQ QYAVAHGLH VYAVAHGLH VYSVAQALH VYAVAHGLH VYSVAQALH VYAVAHGLH VYSVAQALH VYAVAHGLH VYSVAQALH VYAVAHGLH VYSVAQALH VYAVAHGLH VYAVAHGLH VYSVAQALH SVPRLHDVG PEWTFEIIG PTPVLHTVG SGNAEEVGS QS.LSSVG ANRYDYVHV	TT ADKKAPRPCH LATDPAFCSA AVTAAPSACP LAADPTFCAS KIHEASPTEK TNTRNPWFPE QTDGGDTEQK QLLGCASGAC NTLQCNASGC QLLGCTSEIC NTLQCNVSHC NTLQCNVSHC NTLQCNVSHC NTLRCGSDRC KLLECNSAAC ALCPGHVGLC TT SSTWSPVQLN RFN.GSLR SASLSPVHLD TFN.GTLQ YHFQSSIHLS SYRSANLS G.TWHEGVLN

HT1R1


HT1R1 HT1R3 RT1R1 RT1R3	548 550 547 555	R E	s s	T T	Т	C C	F F	R P	R R	R T	s V	R E	F	L L	A A	W W	G H	E E	P P	A I	v s	L
FT1R2a FT1R3 1EWK A		-	-	-	:	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
1EWK_B		:	:		:																	

S1

S3

S4