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Abstract 19 

Animals and their associated microbiomes share a long evolutionary history, influenced by a 20 

complex interplay between extrinsic environmental and intrinsic host factors. However, we know 21 

little about microbiome responses to long-lasting environmental and host-centred processes, which 22 

require studying microbiome changes through time. Here, we apply a temporal metagenomics 23 

approach to dental calculus, the calcified oral microbial biofilm. We establish dental calculus as a 24 

valuable tool for the study of host microbiome evolution by characterising the taxonomic and 25 

functional composition of the oral microbiome in a variety of wild mammals. We detect oral 26 

pathogens in individuals with evidence of oral disease, assemble near-complete bacterial genomes 27 

from historical specimens, characterise antibiotic resistance genes even before the advent of 28 

industrial antibiotic production, reconstruct components of the host diet and recover host genetic 29 

profiles. Our work demonstrates how dental calculus can be used in the future to study the 30 

evolution of oral microbiomes and pathogens, and the impact of anthropogenic changes on wildlife 31 

and the environment. 32 

 33 

Main 34 

Hosts and their associated microbiomes share a long evolutionary history, influenced by a complex 35 

interplay between host genetics and the environment1–4. On short temporal scales, experimental 36 

work in model organisms has provided important insights into a multitude of factors shaping the 37 

host-associated microbial community, including the effect of diet, reproductive status and rapid 38 

environmental change5–7. However, there is limited understanding of how the host-associated 39 

microbiome is influenced by population-level extrinsic and intrinsic processes that span multiple 40 

host generations, such as long-term environmental and host demographic changes. Similar to 41 

fossilised plant and animal remains, microbial fossils can offer a unique opportunity to study 42 

microbiome evolution and quantify how complex microbial communities and their individual 43 

members change through time. Unfortunately, host-associated microbiomes rarely persist after the 44 
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host’s death. An accessible and well-preserved exception is dental calculus, the calcified form of the 45 

microbial biofilm that forms on mammalian teeth8. Besides representing the oral microbial 46 

community, dental calculus also captures invading pathogens, host cells and dietary biomolecules, 47 

thus providing the opportunity for integrative investigations of microbial, dietary and host genetic 48 

factors from the same source material through sequencing of preserved DNA9–12. Dental calculus 49 

undergoes periodic mineralisation during an individual’s life, which reduces external contamination 50 

and facilitates DNA preservation through time8.  51 

 52 

To date, dental calculus has been studied in humans, where DNA sequencing has revealed shifts in 53 

oral microbiome composition associated with cultural transitions and allowed tracking of host-54 

pathogen co-evolution through time9–11. Many other mammals produce dental calculus, offering the 55 

opportunity to study the link between evolutionary, ecological and demographic factors, and 56 

microbiome evolution. Yet, this rich source of information remains virtually unexplored. Dental 57 

calculus is readily available from museum-preserved and archaeological specimens. Natural history 58 

collections have been extensively used to study the effects of human-driven changes in animal 59 

populations over the last few hundred years, such as population declines, range shifts and 60 

introduction of pollutants13–16. It may also be possible to infer the effects of these processes on host-61 

associated microbiomes and the potential of microbiomes to confer adaptations to changing 62 

environments17. To establish dental calculus as a standard research tool for the study of host-63 

associated microbiome evolution in diverse mammalian species, we used DNA sequencing to 64 

characterise the historical dental calculus microbiome of three evolutionarily distant mammalian 65 

species with distinct ecology, diet and physiology: European reindeer (Rangifer tarandus), 66 

Scandinavian brown bear (Ursus arctos), and eastern gorilla (Gorilla beringei). Reindeer are group-67 

living ruminant herbivores with a multigastric digestive system and specialised hypsodont molars 68 

adapted to an abrasive, fibrous diet. Brown bears are solitary omnivores with brachydont molars 69 

more adapted for a partially carnivorous diet. Gorillas are group-living folivores and specialised 70 
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hindgut fermenters. The close evolutionary relationship between gorillas and humans (the major 71 

source of the microbial reference databases used for microbiome taxonomic characterisation) and 72 

the previous successful reconstruction of the chimpanzee oral microbiome from dental calculus11 73 

prompted us to include gorillas to aid characterisation of previously unexplored microbiomes from 74 

the other two host species. We outline strategies to overcome the challenges of working with 75 

historical microbial DNA from non-model host species, including contamination issues and reference 76 

database biases, and demonstrate that a wealth of evolutionary, ecological and conservation-77 

relevant information can be obtained from historical dental calculus samples of diverse host species.  78 

 79 

Results 80 

Oral microbiome signature can be successfully recovered from dental calculus of non-human 81 

mammals  82 

DNA extraction, Illumina shotgun sequencing and metagenomics analyses were carried out on dental 83 

calculus collected from five reindeer (including forest, mountain and high arctic Svalbard ecotypes), 84 

six brown bears (from western and eastern Europe) and two eastern gorillas (one Grauer’s and one 85 

mountain gorilla) dating from 1861 to 1961 (Supplementary Table 1). Contamination of samples with 86 

modern DNA is a major problem faced by all historical genomic and metagenomic studies18. We used 87 

a combination of laboratory and bioinformatics procedures to quantify and reduce contamination. In 88 

the laboratory, we tested three surface decontamination treatments on the two gorilla dental 89 

calculus samples: UV exposure, a wash in EDTA-containing buffer, and no surface decontamination 90 

as a control. Following microbial taxonomic assignment with Kraken219, we determined that samples 91 

decontaminated with the EDTA wash contained the highest proportion of oral taxa (Supplementary 92 

Figure 1), and they were therefore retained for downstream analyses. We employed a multi-step 93 

bioinformatics approach, which relied on the availability of negative controls and the hallmarks of 94 

ancient DNA to identify and filter out contaminant taxa. More specifically, we flagged taxa as 95 

contaminants if they were present in the negative controls from the extraction and library 96 
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preparation stages20, had higher relative abundance in low biomass samples21, had predominantly 97 

long DNA fragments (Supplementary Figure 2) and lacked the typical post-mortem deamination 98 

patterns18 (Supplementary Figure 3).  99 

 100 

To determine the proportion of microbial communities in our samples that could be assigned to 101 

either well-characterised oral microbiome taxa or putative contaminating sources, we used the 102 

Bayesian classification tool SourceTracker22. While there was substantial variation between samples, 103 

an oral microbiome signature was present in dental calculus samples from all three host species 104 

(Figure 1a). Generally, the oral microbiome signature was highest in the two gorilla individuals 105 

(Supplementary Figure 4), likely the result of improved taxonomic classification due to the close 106 

phylogenetic relationship between gorillas and the source of the oral microbiome database 107 

(humans). Human skin and laboratory reagents were the most common contamination sources, and 108 

were particularly abundant in specimens that did not undergo surface decontamination before DNA 109 

extraction (Supplementary Figure 5). One such bear sample (Ua6) contained high levels of 110 

contaminants (>70%) and no detectable oral microbiome signature, and was therefore excluded 111 

from all microbial analyses.  112 

 113 

Host species had distinct oral microbiome composition (Figure 1b; for abundance-based comparison 114 

see Supplementary Figure 6 and Supplementary Table 2). Approximately 30% of the variation 115 

between samples could be explained by host species (p=0.006) and < 10% each by surface 116 

decontamination, sequencing depth and abundance of human reads as measure of human DNA 117 

contamination (Supplementary Table 2). Microbial taxa that showed the greatest host species 118 

specificity (i.e. were only present in a single host species) were generally associated with either the 119 

mammalian oral microbiome or other mammalian body sites (Supplementary Table 3). To 120 

independently verify the host species-specific differences between reindeer and bear (gorillas were 121 

excluded due to the low sample size of 2), we used a random forests classifier on presence/absence 122 
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data. The correct host species could be assigned in 90.0% of cases, and the most important taxa for 123 

determining the host species generally included oral taxa, such as Streptococcus species, which were 124 

highly abundant in the bears but almost entirely absent in reindeer (Figure 1c-d). Reindeer 125 

individuals also had lower microbial diversity than bears and gorillas (Supplementary Figure 7, 126 

Shannon diversity index median ± interquartile range: 1.777 ± 0.288 (reindeer) vs. 3.794 ± 0.014 127 

(gorilla) vs. 3.836 ± 0.602 (bear), p=0.003). This low alpha diversity of the reindeer samples may 128 

reflect poor representation of reindeer oral taxa in the reference database, rather than true reduced 129 

diversity. 130 

 131 

 132 

Figure 1. Dental calculus of non-human mammals shows an oral microbiome signature and contains 133 

host-specific taxa. a) Proportions of source contributions to the microbial communities (identified 134 

taxonomically at the species and genus level) contained in the dental calculus samples estimated by 135 
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SourceTracker. Stars above bars indicate samples in which surface decontamination was performed 136 

before DNA extraction (white: UV only, grey: EDTA wash only, black: UV followed by EDTA wash). 137 

Note that each gorilla sample was processed in three different ways to determine the most efficient 138 

decontamination strategy (see Methods). b) NMDS ordination on Jaccard presence/absence distance 139 

matrix of microbial taxa per sample, coloured by host species. c) Random forest variable importance 140 

plot of the 30 most discriminatory taxa comparing bear and reindeer samples, based on 141 

presence/absence data after contamination filtering. d) CLR normalised abundance of the top 30 142 

taxa in (c) in the bear and reindeer samples. Taxa that were not detected in a sample are coloured 143 

grey. 144 

 145 

 146 

Oral pathogens in wild animals and functional repertoire of the mammalian oral microbiome 147 

While oral diseases are often thought of as an affliction of human dietary practices23, oral 148 

pathologies have been observed in animals24,25, including wild North American black bears26 and 149 

captive brown bears27. One of the brown bear specimens in our study (Ua9) was sampled from a 150 

caries lesion (Figure 2a). The most abundant microbial taxa in Ua9 included members of the 151 

Lactobacillus casei group (L. casei, L. paracasei, L. rhamnosus and L. zeae) and mutans streptococci 152 

(such as the closely related Streptococcus mutans and S. ratti28), species that have been associated 153 

with caries lesions in humans29,30 (Figure 2b). Species in the L. casei group in particular have been 154 

associated with active caries lesions in humans29,30. One additional bear individual had signs of caries 155 

(Ua7), but was sampled from a healthy tooth, rather than a caries lesion, and its microbiome 156 

taxonomically appeared more similar to the other bear samples without macroscopic signs of oral 157 

disease (Figure 2b). The biogeography of the oral microbiome in humans has been found to be site-158 

specific31, suggesting that even within a diseased individual, the oral microbiome could differ 159 

between healthy and carious sites. Cariogenic bacteria including mutans streptococci and S. mitis 160 

group species were identified in most bear samples without signs of oral disease, as were bacterial 161 
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species associated with the periodontal ‘red complex’ pathogens (Porphyromonas gingivalis, 162 

Treponema denticola, and Tannerella forsythia)32. However, these samples lacked members of the L. 163 

casei group. Human studies suggest that dental caries is a complex disease that depends more on 164 

the environment of the oral cavity and the functions performed by the microorganisms, than on the 165 

specific taxonomic composition33. The same potentially pathogenic taxa were also found in gorilla 166 

and some reindeer samples, suggesting that they represent members of the healthy mammalian oral 167 

cavity. 168 

  169 

By performing shotgun sequencing, we were also able to gain first insights into the functional 170 

potential of the microbial communities captured in dental calculus. We used the HumanN2 171 

pipeline34 to assign KEGG orthologues35 to our filtered microbial reads, and cluster these functions 172 

into MetaCyc metabolic pathways36. In contrast to the taxonomic results, we observed no clear 173 

functional differences between host species (Supplementary Figure 8 and Supplementary Table 2). 174 

Instead, we identified core functional pathways shared across individuals and host species that were 175 

generally involved in essential metabolic processes, such as energy production and biomolecule 176 

synthesis (Supplementary Figure 9), functions common to most living organisms37. Conserved 177 

functional properties despite differing community compositions is a common phenomenon in 178 

ecosystems, including the human microbiome37,38. However, this inference could also be driven by 179 

limitations of the functional reference databases, which are mostly centred on global mechanisms39 180 

and do not allow for more fine-grained functional characterisation. We did identify pathways that 181 

have been shown to be enriched in human oral sites, such as those involved in biosynthesis of 182 

components of lipopolysaccharide (e.g. ADP-D-glycero-β-D-manno-heptose and lipid A)37. Among the 183 

basic functions that can be expected from an oral microbial community, we identified a number of 184 

metabolic pathways that were particularly abundant in the carious bear Ua9. They were generally 185 

involved in carbohydrate fermentation and acid production (Figure 2c), functions commonly 186 

performed by bacteria that colonise the oral cavity and are also associated with the emergence and 187 
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progression of dental caries33. Correspondingly, in Ua9, enzymes encoded by L. paracasei and 188 

mutans streptococci substantially contributed to one of these pathways (P461-PWY, Figure 2c).  189 

 190 

The presence of the cariogenic bacterium L. paracasei in Ua9 was further confirmed through de novo 191 

assembly of a high-quality metagenome-assembled genome (MAG) (Supplementary Table 4). The 192 

presence of typical DNA damage patterns adds support that the MAG is likely endogenous (Figure 193 

2d). We additionally recovered five other high-quality MAGs from two bear and two reindeer 194 

specimens, which had typical DNA damage patterns and were taxonomically classified as strains 195 

related to potentially oral bacteria (Streptococcus and Haemophilus) (Supplementary Table 4). One 196 

Streptococcus MAG assembled from Ua9 was identified as closely related to S. ratti, which likely 197 

reflects the high abundance of mutans streptococci identified by Kraken (Figure 2b). Two other high-198 

quality MAGs were recovered from one bear specimen but could not be assigned known taxonomy 199 

and thus possibly represent novel bacteria specific to the bear oral cavity. 200 

 201 

 202 
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 203 

Figure 2. Identification of oral pathogens in a specimen with evidence of oral disease. a) Sampling 204 

site from a caries lesion from the bear specimen Ua9. b) Kraken2 CLR normalised abundance of 205 

cariogenic bacteria (Streptococcus and Lactobacillus species) and periodontal pathogens (Treponema 206 

denticola, Porphyromonas gingivalis and Tannerella forsythia, highlighted in red text). Taxa that 207 

were not detected in a sample are coloured grey. c) Relative abundance of MetaCyc metabolic 208 

pathways involved in sugar fermentation to acids in brown bear samples (P461-PWY: hexitol 209 

fermentation to lactate, formate, ethanol and acetate; PWY-5100: pyruvate fermentation to acetate 210 

and lactate). Relative contribution of bacterial species to each pathway in each sample is shown 211 

where known. Note the differences in y-axis scale for each pathway. d) Deamination plot of Ua9 212 

reads mapping to the metagenome-assembled genome L. paracasei (highlighted in blue in (a)) 213 

showing the frequency of C-to-T (red), G-to-A (blue) and all other (grey) substitutions along the 5’ 214 

and 3’ ends of the reads. The drop in C-to-T and G-to-A substitution frequencies at position 1 is 215 
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explained by reduced ligation efficiency to barcoded adapters with terminal C or G bases40 216 

(Supplementary Tables 9-10). 217 

 218 

 219 

Antimicrobial resistance (AMR) genes are present in wild animal microbiomes 220 

The presence of bacteria carrying AMR genes has been documented in the human oral 221 

microbiome10,41. We therefore investigated whether oral microbial communities of wild animals 222 

contain AMR genes and whether their abundance differs across host species. To this end, we 223 

investigated both global AMR potential in the entire microbial community and the diversity of AMR 224 

genes chromosomally encoded by an oral bacterial pathogen with reported multi-drug resistance, 225 

Acinetobacter baumannii42. To survey global AMR potential, we blasted the contamination-filtered 226 

reads against the Comprehensive Antibiotic Resistance Database (CARD)43 and assigned the top 227 

match for each read to its respective gene family under the Antibiotic Resistance Ontology (ARO) 228 

(Figure 3a). To identify AMR genes encoded by A. baumannii, we extracted reads aligned by MALT44 229 

to the species using MEGAN45. We used the EAGER pipeline46 to identify reads that mapped to the 230 

plasmid-free chromosome and subsequently processed these reads in CARD, as above (Figure 3b). 231 

We also confirmed that the identified A. baumannii chromosomal reads exhibited characteristic 232 

deamination patterns consistent with post-mortem DNA damage (Figure 3c). Both globally and in 233 

the A. baumannii-specific analysis, gorillas and bears tended to have greater AMR potential 234 

compared to reindeer, in terms of both relative abundance (proportion of reads) and diversity 235 

(number) of AMR gene families identified. Similar trends were observed in the global dataset when a 236 

more conservative, marker-based method of AMR gene family identification was used 237 

(Supplementary Figure 10). With our limited sample numbers, we observed no obvious differences 238 

in AMR potential in samples collected before and after the start of industrial-scale antibiotics 239 

production in the 1940s47. However, our analyses are in line with previous studies on historical 240 

human and permafrost microbiomes that demonstrate that many of the underlying molecular 241 
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mechanisms conferring resistance to (modern) antibiotics have existed in the environment long 242 

before mass antibiotics production10,48. For example, we identified the presence of PER beta-243 

lactamases in A. baumannii reads in both Ua7 (dating from 1922) and Ua9 (dating from 1942) (Figure 244 

3b). PER-1 is an extended-spectrum beta-lactamase conferring resistance to third generation 245 

cephalosporins and was first observed in Acinetobacter species in the late 1990s49,50. This 246 

investigation opens doors for the use of dental calculus as a tool to study AMR evolution through 247 

time in wild animals from diverse geographic locations, and for determining the potential of wildlife 248 

to serve as reservoirs for clinically-relevant AMR factors. 249 

 250 

 251 

 252 

Figure 3. Antimicrobial resistance (AMR) genes can be recovered from historical dental calculus from 253 

specimens collected prior to the advent of industrial-scale antibiotics production in the 1940s. a) 254 

Proportion of global AMR genes identified in all contamination-filtered reads in each sample. b) 255 

Proportion of Acinetobacter baumannii chromosomally-encoded AMR genes identified in each 256 
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sample. Samples are grouped by host species and ordered by year with pre-1940 samples separated 257 

from post-1940 samples by dashed vertical lines. The top nine most abundant AMR gene families are 258 

shown, with the remainder grouped into ‘other’. Number of contamination-filtered reads (in 259 

millions) is shown above the bars for each sample in (a), and number of reads (in thousands) 260 

mapping to the chromosome of A. baumannii is shown in (b). c) A. baumannii is an endogenous 261 

member of the mammalian oral microbiome, as evidenced by the presence of typical DNA post-262 

mortem damage patterns exemplified in reindeer Rt5.  Frequency of C-to-T (red), G-to-A (blue) and 263 

all other (grey) substitutions are shown along the 5’ end of the reads. 264 

 265 

Dental calculus as source of dietary information 266 

To explore the potential of dental calculus to provide insights into the dietary composition of each 267 

host species, we taxonomically profiled all eukaryotic reads (excluding those mapping to host and 268 

human during data preprocessing) from our samples using MALT44 and MEGAN45 (Figure 4a). We 269 

observed a number of likely spurious mappings and/or contamination, such as to the bovine genus 270 

Bos, which showed mapping of reads from all three host species and the negative controls (Figure 271 

4b). In bears, only few plant-based dietary components were identified and we found no clear 272 

patterns for mammalian or invertebrate putative dietary items, as similar taxa were also present in 273 

some reindeer and/or gorilla samples, which are not expected to consume mammals. We were able 274 

to infer population-specific dietary characteristics in gorilla and reindeer samples, although in many 275 

cases the taxa identified in our analyses are likely close relatives to the consumed species, which are 276 

not well represented in the reference databases. For example, among reads that mapped to the 277 

Poaceae family in the mountain gorilla sample, approximately 28% mapped to Phyllostachys, a genus 278 

of Asian giant timber bamboo (Figure 4b). Mountain gorillas are known to consume a related 279 

Arundinaria alpina bamboo51, the genome of which is not currently available. We also identified 280 

Galium vines in the mountain gorilla (Figure 4b), consistent with the known dietary preferences of 281 

Virunga mountain gorillas for which these plants are among the six most frequently consumed 282 
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taxa51,52. Salicaceae plants, e.g. Salix (willows) were identified in all reindeer (Figure 4b), consistent 283 

with the known browsing behaviour of these animals53. A number of Arctic plants were identified in 284 

the Svalbard reindeer (Rt1 and Rt7) that are known or likely components of the high Arctic reindeer 285 

diet, including Saxifraga spp. and Oxyria spp54 (Figure 4b). Furthermore, reads assigned to rumen 286 

ciliates from the Ophryoscolecidae family (Entodinium caudatum and Epidinium ecaudatum) were 287 

identified in one of the reindeer samples (Rt11). These protozoa are important facilitators of 288 

digestive processes in ruminants55. Similarly, in the microbial analyses, several microbial taxa specific 289 

to the reindeer were identified as Methanobrevibacter species associated with the rumen of 290 

domesticated bovines and ovines56. Ruminants regurgitate large amounts of rumen material into the 291 

oral cavity when chewing cud, and a study in sheep has found that oral swabs contain a proportion 292 

of rumen-associated microbes57. It is therefore plausible that dental calculus of ruminants also 293 

captures a subset of the rumen microbiome.  294 

 295 
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 296 

 297 

Figure 4. Host diet can be inferred from dental calculus. a) MALT/MEGAN CLR normalised abundance 298 

of eukaryotic reads at the family taxonomic level. Taxa that were not detected in a sample are 299 

coloured grey. Broad groups of eukaryotes are designated by horizontal black lines. Black arrows 300 

indicate selected families for which genus-specific relative abundances were plotted in (b). b) 301 

Proportion of reads mapping to specific eukaryotic genera in different host species, including blank 302 
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controls (visualised as Tukey boxplots). Gorilla samples are divided into the two subspecies 303 

(mountain and Grauer’s gorillas) and reindeer are divided into the Svalbard ecotype and “other” 304 

ecotypes (mountain and forest) to illustrate population-specific differences in dietary components. 305 

The Bovidae genus Bos is included as an example of spurious mappings, due to the presence of reads 306 

in samples from multiple host species and blank controls. Image credit: Entodinium caudatum photo 307 

by Sharon Franklin and colourisation by Stephen Ausmus 308 

(https://www.ars.usda.gov/oc/images/photos/feb06/d383-2/), other images by Katerina Guschanski 309 

and Jaelle Brealey.  310 

 311 

 312 

Recovery of host genomic profiles 313 

In addition to microbial remains, dental calculus also entraps host cells and thus can serve as a 314 

source for host DNA12,58. We therefore identified host DNA preserved in dental calculus samples 315 

(including bear Ua6 excluded from the microbial analyses) by mapping the reads to reference 316 

genomes of the host species’ closest phylogenetic relatives. For mitochondria, 2.6-99.7% (median 317 

91.2%) of the genome was covered by at least one read in each study sample with the coverage 318 

depth ranging from 0.02 to 174x (Supplementary Table 5). Indeed, the high abundance of host reads 319 

in some samples allowed us to reconstruct complete mitochondrial genomes from five specimens 320 

(Supplementary Table 5). For nuclear genomes, 0.004-21.3% (median 0.346%) were covered by at 321 

least one read, with maximum genome-wide coverage of 0.3x. We compared the recovered genomic 322 

profiles to published genomes from the same species. Mitochondrial haplotypes could be placed 323 

within species-specific mitochondrial networks (Figure 5a and Supplementary Figures 11-12, note 324 

that only a single reference genome is currently available for reindeer, which limited our inferences 325 

for this species). In bears, the mitochondrial haplotype network reflected known differences in 326 

colonization history of Scandinavia from west and east59: one of the two Swedish bear samples 327 

(Ua14 from central Sweden) was placed together with central European bears and the other (Ua9 328 
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from northern Sweden) with Russian/Alaskan individuals (Figure 5a). Projection of low-coverage 329 

host nuclear genomes onto the PCA space pre-calculated from high-quality published genomes 330 

clearly assigned all study samples to their correct species (reindeer), subspecies (gorilla), and 331 

even to broader geographic populations of origin (brown bear) (Figure 5b-d).  332 

 333 

 334 

Figure 5. Host population genetic structure can be reconstructed from dental calculus. a) mtDNA 335 

haplotype network for brown bears. Each circle represents a sample, with ticks on the connecting 336 

lines showing the number of base pair substitutions between the haplotypes. Dotted lines 337 

represent identical haplotypes or in the case of dental calculus samples (shown in light blue), the 338 

predicted most closely related haplotype. Sample labels include country and locality of specimen 339 

collection. b-d) PCA of modern high-coverage genomes and low-coverage dental calculus samples 340 

projected onto the modern genomes for gorilla (b), brown bear (c) and reindeer (d). Samples 341 

cluster together with their respective species. Dental calculus gorilla samples cluster most closely 342 

to their subspecies of origin. Dental calculus brown bear samples from western Europe and 343 
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Russia cluster with the modern genomes from the “Western Europe” clade (consisting of Spain, 344 

Greece, Slovenia, Italy (Alps), Sweden and Slovakia) and the Russian clade, respectively. Dental 345 

calculus reindeer samples cluster with the single available reindeer reference genome.  346 

 347 

Dealing with current limitations: Contamination and database biases 348 

Dental calculus has been little explored outside of human research, yet it can be a treasure trove of 349 

information about evolutionary and ecological processes of the host and its oral microbiome. 350 

However, research on microbiomes from the past, including from dental calculus, is hindered by a 351 

number of challenges. We have established rigorous methodology for overcoming the problem of 352 

contamination, which affects all historical genomic and metagenomic studies18. Through a 353 

combination of laboratory and computational procedures, we reduced the proportion of 354 

contaminants and systematically increased the proportion of the bacterial communities attributed to 355 

the oral microbiome (Supplementary Figure 1). However, the SourceTracker results indicated that 356 

some proportion of human skin taxa remained in our samples. Several bacterial species colonise 357 

multiple niches within the host37,38, which can obscure distinction of a genuine signal from a likely 358 

contaminant. For example, S. mitis, Staphylococcus epidermidis and Corynebacterium matruchotii 359 

are found in the human mouth, nostrils and skin38. This limitation is not specific to our dataset, but 360 

poses greater problems for studies based on historical samples that are expected to be subject to 361 

contamination. The other common limitation faced by our and many other studies is the reliance on 362 

microbial reference databases. These databases are heavily biased towards microbial species with 363 

medical or agricultural significance60, restricting read-based analyses of metagenomics data from 364 

non-human hosts. A large proportion of microbial taxa identified in our samples remained 365 

unassigned to any source microbiome by SourceTracker. Although some of these taxa may be 366 

members of other microbial communities not included as a source in our analysis, we expect that by 367 

studying a novel environment (the non-human oral microbiome) we will encounter unique microbial 368 

taxa. In the absence of a dedicated reference database from the study species, an alternative 369 
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approach is de novo MAG assembly60,61. Given the fragmented and damaged nature of ancient DNA, 370 

this technique poses great challenges for historical microbiome studies. However, our study 371 

demonstrates that with deeper sequencing MAG recovery may be able to complement read-based 372 

analyses of historical microbiome samples. This is particularly important in non-model species, 373 

where reference database bias is a problem. 374 

 375 

Discussion 376 

With the development of high-throughput sequencing techniques and methodological advances in 377 

metagenomic analyses of ancient samples, the time is ripe to venture into the study of the diversity 378 

of environmental and host-associated microbial communities from the past. The temporal 379 

perspective provided by historical and ancient samples allows us to study many fundamental 380 

evolutionary processes, including those with direct relevance to human and ecosystem health. Our 381 

study describes a rigorous roadmap for the analysis of historical microbiomes and illuminates a 382 

magnitude of biological questions that can benefit from the study of dental calculus remains. We 383 

demonstrate that a single sample source can be used to link the host microbial community to host 384 

genetics, diet and even disease. While larger sample sizes are needed to substantiate the biological 385 

inferences of our preliminary findings, our study establishes dental calculus as a tool for the 386 

exploration of a broad variety of research topics. Questions of interest include the evolution of host-387 

associated microbiome through multi-generational changes in the host environment, such as climate 388 

change, alterations in host population demography and genetic diversity, the invasion of new 389 

habitats, or changes in competitive regimes. Temporal sampling of dental calculus also provides 390 

insights into oral disease emergence and the progression of antimicrobial resistance in host-391 

associated microbiomes. These processes can be of interest to both evolutionary biologists and the 392 

public health sector, since wild animal populations can act as sources and reservoirs for emerging 393 

zoonotic pathogens62,63 and contribute to the spread of antimicrobial resistance64,65. In addition, our 394 

dietary results indicate that dental calculus can be used to infer population-specific dietary 395 
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characterises, particularly if complemented with microfossil analysis from the same material and 396 

stable isotope analysis of teeth or bones66–68, which can be extended to extinct species (e.g. 69 ). We 397 

envision that in the future, our integrative approach will be applied to many different questions in 398 

ecology and evolution. 399 

 400 

Materials and methods 401 

Sample collection 402 

Dental calculus was collected from two eastern gorilla (Gorilla beringei) specimens from the Royal 403 

Museum for Central Africa (Brussels, Belgium), as well as five reindeer (Rangifer tarandus) and six 404 

brown bear (Ursus arctos) specimens from the Swedish Natural History Museum (Stockholm, 405 

Sweden). Skulls were macroscopically examined for dental calculus deposits and evidence of oral 406 

diseases. Calculus was removed from the surfaces of the teeth with disposable sterile scalpel blades 407 

and deposited in sterile microcentrifuge tubes.  408 

 409 

Sample processing and DNA extraction 410 

All laboratory protocols were performed in a dedicated ancient DNA laboratory following stringent 411 

procedures to minimise contamination18. Initially, calculus samples were processed without surface 412 

decontamination (Supplementary Table 1). We then tested the effect of surface contamination on 413 

the two gorilla samples using three treatments: exposing the calculus to UV light (245 nm) for 10 414 

min, washing the calculus in 500 µl of 0.5 ethylenediaminetetraacetate (EDTA) for 30 seconds, and 415 

no surface decontamination as a control. Based on real-time PCR of libraries prepared from these 416 

samples (see below), we determined that neither decontamination treatment substantially reduced 417 

library quantity and thus continued with a surface decontamination procedure consisting of the UV 418 

light exposure followed by the EDTA wash for all subsequent calculus samples (Supplementary Table 419 

1). The pellet was taken forward for DNA extraction. Sample weight ranged from < 5 mg to 20 mg. 420 

DNA extractions were performed following a silica-based method70. Briefly, samples were incubated 421 
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overnight at 37oC in extraction buffer (0.45M EDTA, 0.25 mg/ml Proteinase K). The DNA from the 422 

supernatant was combined with binding buffer (3M sodium acetate, 5M guanidine-hydrochloride, 423 

40% (v/v) isopropanol, 0.05% (v/v) Tween-20) and processed through the spin columns from High 424 

Pure Viral Nucleic Acid Large Volume kits (Roche, Switzerland). Purified DNA was eluted in either 45 425 

µl of EB buffer (10 mM tris-hydrochloride (pH 8.0) (Qiagen, The Netherlands) or 45 µl of TE buffer 426 

(10 mM tris-hydrochloride (pH 8.0), 1 mM EDTA), both supplemented with 0.05% (v/v) Tween-20 427 

(Supplementary Table 1). Ten blanks were included during five extraction batches and carried 428 

through library preparation. 429 

 430 

Library preparation and sequencing 431 

Double-stranded Illumina libraries were prepared following 71 and we included a double-barcoding 432 

double-indexing strategy to guard against index hopping and retain absolute certainty about sample 433 

of origin40,72. Briefly, blunt-end repair reactions were performed using 20 µl of each extract and 434 

purified using MinElute columns with elutions in 22 µl of EB buffer (Qiagen, The Netherlands). 435 

Adapters containing inline 7 bp barcodes (Supplementary Tables 1 and 6) were ligated to both ends 436 

of the blunt-ended DNA, which was subsequently purified with MinElute columns and eluted in 22 µl 437 

of EB buffer. After the adapter fill-in reaction, Bst 2.0 polymerase (New England BioLabs, USA) was 438 

inactivated with a 15 min incubation at 80oC. Seven library blanks were included in four library 439 

preparation batches. The adapter-ligated libraries were quantified using a real-time PCR assay with 440 

preHyb primers40 (Supplementary Table 6) and the estimated fragment number was used to 441 

approximate the number of indexing PCR cycles needed for sequencing. All extraction and library 442 

blanks were consistently lower in DNA content than samples, as measured by real-time PCR, thus 443 

one extraction blank and one library blank were randomly selected for subsequent indexing and 444 

sequencing. Libraries were double-indexed with unique P5 and P7 indices so that each sample had a 445 

unique barcode-index combination (Supplementary Table 1). Indexing PCR reactions were 446 

performed with 18 µl of adapter-ligated library in 50 µl reactions, with 1 µl PfuTurbo Cx hotstart 447 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/596791doi: bioRxiv preprint 

https://doi.org/10.1101/596791
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

polymerase (2.5 U/µl, Agilent Technologies, USA), 5 µl 10X PfuTurbo Cx reaction buffer, 0.5 µl dNTP 448 

mix (25 mM) and 1 µl of each indexing primer (10 µM). After an initial incubation for 2 min at 95oC, 449 

12 cycles of 30 sec at 95oC, 30 sec at 59oC and 1 min at 72oC were performed, followed by a final 450 

step of 10 min at 72oC. Reactions were purified with MinElute columns and eluted in 10 µl of EBT 451 

buffer. The indexed libraries were quantified using a real-time PCR assay with i7 and i5 indexing 452 

primers40 (Supplementary Table 6) and library DNA fragment length distribution was determined by 453 

the 2200 TapeStation system. The mean fragment length after library preparation and excluding the 454 

148 bp adapter sequences was 70 bp, similar to what has been observed in previous historical 455 

sequencing libraries12,73. Five microliters of each sample library were pooled along with a randomly 456 

selected extraction blank and library blank. Size selection was performed on the pooled library with 457 

AMPure XP beads (Beckman Coulter, USA), selecting for fragments approximately 100-500 bp in 458 

length, and the purified library eluted in 36 µl of EB buffer. The final pooled library was quantified 459 

using a Qubit High Sensitivity fluorometer and on the 2200 TapeStation system. The pooled library 460 

was first sequenced by SciLifeLab Uppsala on 2 lanes of the Illumina HiSeq 2500 using paired-end 461 

125 bp read length v4 chemistry, followed by an additional 2 lanes on the Illumina HiSeq 2500 in 462 

rapid mode using paired-end 100 bp read length v2 chemistry. 463 

 464 

Data processing 465 

Sequencing data were demultiplexed and assigned to each sample with an in-house python script 466 

based on the unique combination of barcodes and indices. Overlapping paired-end reads were 467 

merged and adapters and low quality terminal bases (phred scores ≤ 30) were removed with 468 

AdapterRemoval v2.2.274. Barcode sequences were removed from the 5’ and 3’ ends of merged 469 

reads with an in-house python script. Forward reads from the unmerged read pairs (i.e. pairs that 470 

did not contain overlapping regions of at least 11 bp between the forward and reverse reads) were 471 

also retained for analyses. The 5’ barcode was removed with an in-house python script and the 3’ 472 

barcode with any remaining adapter sequence removed with AdapterRemoval. Reads from the two 473 
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lanes within the same sequencing run were concatenated into a single file per sample. Merged reads 474 

from the two separate runs were also concatenated into a single file per sample. Reads with a length 475 

< 30 bp were filtered out with AdapterRemoval and reads with mean base quality < 30 were filtered 476 

out with PrinSeq-Lite v0.20.475. Duplicate reads were removed by randomly keeping one read among 477 

those reads having an identical sequence. The Illumina sequencing control phage PhiX was spiked 478 

into our sequencing runs and has been reported to have been erroneously integrated into many 479 

microbial reference genomes76,77. Reads were therefore mapped to PhiX (accession: 480 

GCA_000819615.1) with bwa mem v0.7.1778,79 and the unmapped reads retained with SAMTools 481 

v1.980 and BEDTools v2.21.081. To remove reads originating from the host organism and from human 482 

contamination, we mapped all reads in a sample to a combined reference consisting of the human 483 

genome82 (RefSeq accession: GCF_000001405.38) and the respective host genome 484 

(GCF_000151905.2 (Gorilla gorilla gorilla)83, GCF_003584765.1 (U. arctos horribilis)84 and 485 

GCA_004026565.1 (Rangifer tarandus)) with bwa mem. The unmapped reads were retained with 486 

SAMTools for downstream microbial taxonomic analyses.  487 

 488 

Taxonomic assignment 489 

Merged and unmerged unmapped reads were assigned taxonomy using the k-mer based classifier 490 

Kraken2 v2.0.719 with the standard Kraken2 database (all archaea, bacteria, viruses and the human 491 

genome in RefSeq; built 2019-03-01). We used Kraken-biom 492 

(https://github.com/smdabdoub/kraken-biom) to extract the summarised number of reads assigned 493 

at the genus and species levels. These assignments were taken into R (https://www.R-project.org/) 494 

for further processing and analysis. 495 

 496 

We also taxonomically binned the contamination-filtered reads (see below) against a wider database 497 

by alignment with MALT v0.4.044 (parameters as per 12: semi-global alignment, 85% minimum 498 

identity threshold, 0.01% minimum support threshold and a top percent value of 1.0) against an 499 
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index built from the entire NCBI nucleotide database 500 

(ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz, modified 31-05-2018) using a step size of 4 to 501 

reduce index size. The results were viewed in MEGAN Community Edition v6.10.545. Due to relatively 502 

low specificity leading to spurious alignments that required manual curation, we did not use the 503 

MALT/MEGAN results for microbiome analyses, but took them forward for specific bacterial 504 

alignments as well as for eukaryotic taxonomic assignments (see below). 505 

 506 

Identifying contamination 507 

We used several complementary approaches to identify and remove contaminating bacterial taxa 508 

from the Kraken taxonomy assignments.  509 

 510 

SourceTracker analysis: Potential contribution of source microbiomes to samples was estimated with 511 

SourceTracker v1.022 in R, using the Kraken2 genus- and species-level assignments. Source 512 

sequencing reads were processed through the same pipeline as sample reads, and included soil85, 513 

human skin86, human gut37,38, human supragingival plaque37,38, human medieval dental calculus12 and 514 

laboratory reagent20 microbiomes (Supplementary Table 7).   515 

 516 

Fragment length: Given our library fragment length distribution peak at 70 bp, consistent with 517 

historical degraded DNA, and our paired-end sequencing approach of 100 bp, we expected that the 518 

majority of reads stemming from authentic historical microorganisms would be successfully merged 519 

by AdapterRemoval. In contrast, modern contaminating taxa with longer fragment lengths should be 520 

predominantly found among the unmerged reads. We therefore compared the raw read counts of 521 

each taxon between the merged and unmerged reads on a per sample basis (Supplementary Figure 522 

2). The difference in read number between the unmerged and merged reads for each taxon in each 523 

sample was calculated and the distribution of all differences > 0 (i.e. more reads observed in the 524 

unmerged reads) was investigated (Supplementary Figure 2). Taxa identified as outliers (defined as a 525 
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difference > 1.5 interquartile ranges above the third quartile) in at least one sample were filtered out 526 

as putative contaminants. While it is possible that certain microbial structural features, e.g. the thick 527 

cell wall in Gram-positive bacteria, might bias preservation towards specific taxa and thereby affect 528 

our fragment length analysis18, a recent study of microbial DNA perseveration in human dental 529 

calculus found no association between cellular structures and microbial DNA fragmentation12. 530 

Nonetheless, we confirmed that the majority of taxa in our putative contaminant list were non-host-531 

associated environmental microorganisms through a literature search. 532 

 533 

Statistical identification of contaminants: Contamination derived from environmental sources 534 

(including the laboratory) is expected to be present in samples at approximately similar absolute 535 

amounts and will therefore be disproportionally more abundant in samples with low numbers of 536 

total sequenced reads20,87. This concept has been implemented in the R package decontam21, which 537 

was used to identify and remove all taxa that showed an inverse relationship between taxon 538 

abundance and total number of sequences included in the sequencing pool per sample, as estimated 539 

by real-time PCR.   540 

 541 

Presence in blanks: SourceTracker analysis demonstrated that the two blank samples contained taxa 542 

associated with soil and human skin microbiomes (Supplementary Figure 1). However, low levels of 543 

sample cross-contamination are common during laboratory processing. Conservatively filtering out 544 

all taxa observed in the blanks might remove genuine signals. We therefore screened all taxa that 545 

were present in the blanks against the Human Oral Microbiome Database (HOMD)88. Taxa that were 546 

not present in HOMD were classified as contaminants and removed from further analysis. 547 

 548 

Removal of contaminants from reads: For all downstream analyses, reads mapping to all species-549 

level taxa (bacteria, archaea and viruses) identified as putative contaminants were removed from 550 

the fastq files. To this end, one reference genome for each taxon was downloaded from GenBank 551 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/596791doi: bioRxiv preprint 

https://doi.org/10.1101/596791
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

(Supplementary Table 8; accessed 2019-04-11) and reads were mapped to the reference genomes 552 

with bwa mem v0.7.17, relaxing the mismatch parameter (-B) to 3 in order to map reads from closely 553 

related strains. Only unmapped reads were passed onto further analyses. 554 

 555 

Microbial analyses 556 

Genome size normalisation: Taxa with larger genomes will generally contribute more sequencing 557 

reads to a library, biasing read-based abundance estimates89. To account for this bias, the number of 558 

reads per taxon within a sample was normalised by dividing by the estimated average genome size 559 

of each respective taxon. Estimated average prokaryotic and viral genome sizes were calculated 560 

using publicly available genome sizes from the RefSeq database (accessed 2019-02-15)90. In cases 561 

where no genome size data were available for a given species, the average genome size of taxa in 562 

that genus was used. 563 

 564 

Abundance filtering: Taxa present at < 0.03% relative abundance (normalised read count divided by 565 

sum of  normalised read counts in a sample) were removed, as filtering of low-abundance species 566 

reduces false-positive taxonomic assignments91. The filtering threshold was selected by testing a 567 

series of thresholds commonly applied in metagenomics studies, ranging from 0.01 – 568 

0.1%92(Supplementary Figure 13). From this analysis, we identified the threshold (0.03%) that 569 

yielded a microbial community with a complexity which was most similar to what has been observed 570 

in other dental calculus12 and oral microbiome studies93–96 (i.e. approximately 100-300 taxa). 571 

 572 

Abundance normalization: In high-throughput microbiome sequencing datasets, the total number of 573 

reads obtained is an arbitrary value set by the sequencing instrument and absolute abundance of 574 

each taxon is unknown97. Therefore, to account for the compositional nature of the data, we applied 575 

the centred log-ratio (CLR) transformation98. Because log transformation is only possible for positive 576 

values, we dealt with 0 count values by adding a pseudo-count to the normalised read count for 577 
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every taxon in every sample. Due to the genome size normalisation, we set the pseudo-count to the 578 

equivalent of one read divided by the average genome size for all taxa. 579 

 580 

Statistical analyses: We used the R package vegan99 for diversity estimates. The Shannon index100 581 

was used to estimate alpha diversity, via the diversity function on the raw read count data (i.e. prior 582 

to genome size normalisation and CLR transformation), because the calculation of the metric 583 

required positive integers. Differences between host species were investigated with an AIC-based 584 

stepwise regression to determine the best-fit general linear model, with surface decontamination, 585 

sequencing depth (number of unmapped reads per sample) and proportion of human reads per 586 

sample included as covariates.  587 

 588 

Beta diversity (a measure of inter-individual variation) was investigated based on the 589 

presence/absence of microbial taxa. Jaccard distances, calculated using the vegdist function, were 590 

used for ordination with non-metrical multidimensional scaling (NMDS), and permutational 591 

multivariate analysis of variance (PERMANOVA) with the adonis function in vegan. Host species, 592 

surface decontamination, number of unmapped reads per sample, and proportion of human reads 593 

per sample were included as covariates in the adonis model. To determine whether differences in 594 

within-group variation between host species was biasing inferences of a host-specific oral 595 

microbiome signature, a distance-based test for homogeneity of multivariate dispersions was 596 

performed with the vegan function betadisper. No such differences were detected, adding 597 

confidence to the PERMANOVA results. The same set of beta analyses were repeated using 598 

Euclidean distances calculated on the CLR normalised abundance data.  599 

 600 

To identify taxa which discriminated between host species, we carried out a random forest 601 

classification based on presence/absence data using the R package randomForest101 with 10000 602 

trees. This approach reports the out-of-bag estimated error (how often an individual was incorrectly 603 
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assigned to a host species) and the variable importance (mean decrease in accuracy) of each taxon, 604 

which reflects the importance of the given taxon in determining the correct host species. For this 605 

analysis, the gorilla samples were excluded due to low sample size (n=2). We also investigated a 606 

subset of taxa unique to each host species and shared by > 50% of samples from this species to 607 

determine whether they were likely oral taxa. As the two gorilla samples did not share any taxa, we 608 

investigated all of the taxa unique to each of the two samples. We then compared these sets of taxa 609 

to the HOMD88 and classified those present as ‘oral’. Taxa not present in the HOMD were manually 610 

classified as ‘oral’ (based on the presence in the oral microbiome of non-human mammals), ‘host-611 

associated’ (present in non-oral mammalian microbiomes) or ‘not host-associated’ through a 612 

literature search.  613 

 614 

Functional analysis 615 

Classification: The functional genic content of the microbial community in dental calculus was 616 

characterised by running the contamination-filtered reads through the HUMAnN2 pipeline34, which 617 

identifies species-specific genes with the taxonomic profiler MetaPhlAn2102 and a built-in microbial 618 

pangenome database representing all known nonredundant protein-coding potential for each 619 

species identified by MetaPhlAn2, and more general functional characterisation by alignment with 620 

DIAMOND103 against the UniRef90104 database. The mappings are weighted by quality and sequence 621 

length to estimate species-specific and total community gene family abundance. Metabolic 622 

pathways are also reconstructed based on genes annotated to metabolic enzymes in MetaCyc36, and 623 

the pathway abundance and coverage are reported. 624 

 625 

CLR normalisation, NMDS ordination and PERMANOVA were carried out for the pathway 626 

abundances as for the microbial analyses outlined above. Core pathways were defined as those 627 

containing > 50% of the required enzymes in a sample (i.e. per sample pathway coverage > 0.5) for 628 
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the total community (i.e. not stratified by microbial species). Relative (proportional) abundance for 629 

specific pathways stratified by microbial species was also calculated by HUMAnN2 for each sample. 630 

 631 

Antimicrobial resistance profiles 632 

Global: Contamination-filtered reads were aligned to the Comprehensive Antibiotic Resistance 633 

Database (CARD) v3.0.1 (modified 2019-02-19)43, a curated collection of resistance determinant 634 

sequences, with blast v2.7.1+105,106 using default parameters. The Antibiotic Resistance Ontology 635 

(ARO) accession number associated with each CARD sequence was used to obtain the AMR gene 636 

family of each sequence. Where reads matched multiple sequences in the CARD, the best hit was 637 

identified based on highest bit score. Where multiple hits had the same bit score, we compared the 638 

ARO terms and if all hits shared the same ARO information, we randomly chose one hit to carry 639 

forward. When ARO information was not identical, we manually identified a common higher level 640 

term of the hits: for example, if all hits were to different beta-lactamases, we referred to the gene 641 

family as “unclassified beta-lactamase”. We then calculated the number of reads per ARO accession 642 

per sample and normalised it by sample sequencing depth (number of reads post-contamination 643 

filtering). The abundance of ARO gene families for each sample was calculated by summing across 644 

the ARO accession abundances associated with each gene family. 645 

 646 

Targeted: All complete genomes for A. baumannii (n=133) available at NCBI Genome (accessed 647 

2019-03-28) were downloaded and the fasta files concatenated into one file representing the 648 

‘pangenome’. The plasmid sequences were removed to exclude analysis of reads that map to 649 

plasmids, since plasmids can be exchanged between bacterial species through horizontal gene 650 

transfer, which can lead to erroneous taxonomic identification. Reads assigned by MALT to A. 651 

baumannii on at least the species level were identified in each sample by MEGAN. These reads were 652 

then mapped to the plasmid-free pangenome with bwa mem. All mapped reads were extracted with 653 

SAMTools (samtools fastq -F4) and aligned to CARD as per the global AMR analysis outlined above. 654 
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The abundance of A. baumannii ARO gene families for each sample was calculated by summing 655 

across ARO accession abundances normalised by number of reads mapping to each bacteria. 656 

 657 

Marker-based: Contamination-filtered reads were also compared to a set of AMR gene family 658 

marker sequences built via ShortBRED107 from CARD v3.0.1 (modified 2019-02-19) using UniProt 659 

Reference Cluster 90 (UniRef90, modified 2019-05-08)108 as the background. Normalised counts 660 

(reads per kilobase of reference sequence per million sample reads) for each family in each sample 661 

were subsequently analysed as above. 662 

 663 

Metagenome-assembled genome (MAG) recovery 664 

We attempted to recover MAGs from our samples following a similar strategy as described in Zhou 665 

et al. 2018109 and Parks et al. 201761. Reads were assembled into contigs with MEGAHIT110. Sample 666 

depth profiles were generated by mapping reads back to the contigs with BBMap v38.08 (Bushnell 667 

B., BBMap, https://sourceforge.net/projects/bbmap/). Contigs > 1500 bp in length were grouped 668 

into genome bins based on co-abundance and sequence composition probabilities using 669 

MetaBAT2111, where each bin theoretically represents the genome of a single strain. The quality of 670 

each bin was assessed using the lineage-specific workflow in CheckM112. High quality bins were 671 

classified as those with an estimated > 90% genome completeness and < 5% strain contamination61. 672 

The taxonomic lineage of each high quality bin, as defined in the Genome Taxonomy Database 673 

(GTDB)113, was determined with GTDB-Tk (https://github.com/ecogenomics/gtdbtk) using the 674 

classify workflow.  675 

 676 

mapDamage profiles 677 

Deamination rates and plots were generated using mapDamage114 via the EAGER pipeline46. During 678 

this investigation, we observed unusual damage patterns in several of our samples – rather than the 679 

expected incremental rise in deamination towards read ends, several samples showed a drop in the 680 
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frequency of C-to-T substitutions from the penultimate base to the terminal base (e.g. Figure 2d [L. 681 

paracasei from Ua9] compared to Supplementary Figure 3 [Streptococcus sp. Z15 from Rt7]). It has 682 

been suggested previously that barcodes with a terminal G or C have reduced ligation efficiency to 683 

damaged cytosines at 5’ ends of reads40. We therefore examined damage profiles for 14 most 684 

abundant bacterial taxa in the post-filtering dataset (Supplementary Table 9), only considering cases 685 

with more than 10000 reads mapping to a taxon reference genome in a given sample. We found that 686 

samples containing barcodes with a terminal G or C were more likely to show the unusual pattern (χ2 687 

= 31.11, df = 1, p-value < 0.0001) (Supplementary Table 10). 688 

 689 

Dietary component recovery 690 

Counts of reads assigned by MALT to eukaryotic taxa were exported from MEGAN at the family and 691 

genus level and imported into R. Taxa with <10 assigned reads across all samples were excluded 692 

from further analysis. At the family level, assigned read counts were normalised across samples by 693 

adding a pseudo-count of 0.1 and applying the CLR transformation. The proportion of specific genera 694 

per sample was calculated by taking genus level read counts and normalising by sample sequencing 695 

depth. 696 

 697 

Host genome recovery 698 

We collected published whole genome sequence data for 1 reindeer (GCA_004026565.1), 1 white-699 

tailed deer (GCA_002102435.1), 47 gorillas115–117, 24 brown bears and 3 polar bears118–121. Reads 700 

were mapped either merged (ancient samples), or paired-end (modern samples) to an outgroup 701 

reference genome assembly (white-tailed deer: GCA_002102435.1, human: GCA_000151905.3 and 702 

polar bear: GCA_000687225.1) using bwa mem on default settings. Next, we excluded reads with 703 

a mapping quality score < 30 and removed duplicate reads with SAMTools v0.1.19. Additionally, 704 

for each study host species, we mapped all reads to the mitochondrial references of white-tailed 705 
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deer (NC_015247.1), polar bear (NC_003428.1) and western gorilla (NC_011120.1), respectively, 706 

following the same pipeline. 707 

 708 

To investigate host genomic variation, we generated pseudo-haploid sequences for each 709 

individual by randomly selecting a single high-quality base call (BaseQuality ≥30, MapQuality ≥30) 710 

at each site covered by at least 1 read, excluding sites within repetitive regions (as identified 711 

from the repeatmask tracts) and for modern genomes sites with >2 times genome-wide coverage 712 

to minimize false bases from spurious mappings. A reference set of high quality polymorphisms 713 

was made from all bi-allelic autosomal sites in the modern genomes and we then projected the 714 

low-coverage dental calculus samples onto the precalculated PCA space using the lsqproject 715 

function in smartpca122. 716 

 717 

Mitochondrial genome variation was investigated following the same pipeline but calling the 718 

majority allele at each covered site. We then used popart123 to create haplotype networks for all 719 

near-complete mitochondrial genomes (>90% complete). For the incomplete mitochondrial 720 

genomes, we calculated pairwise-divergence to each of the modern genomes to obtain the most 721 

likely closest related haplotype. 722 

 723 

In addition we also obtained de novo mitochondrial genomes using MITObim v1.9124, a 724 

mitochondrial baiting and iterative mapping method, which reconstructs complete mitochondrial 725 

genomes from next generation sequencing data. The mitochondrial genomes of the western lowland 726 

gorilla (Gorilla gorilla gorilla, NC_011120.1), the brown bear (Ursus arctos, NC_003427.1) and the 727 

reindeer (Rangifer tarandus, KM506758.1) were used as bait sequences for the mitochondrial 728 

genome assembly of the eastern gorilla, brown bear and reindeer samples, respectively. The merged 729 

host reads were used as input files for each sample. All mitochondrial genomes were annotated with 730 

the MITOS WebServer125 using default parameters. 731 
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 732 

Data availability 733 

All sequencing data are archived at the European Nucleotide Archive under the accession number 734 

PRJEBxxxxx. Sample metadata is provided in Supplementary Table 1. 735 
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