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Summary 

High-level cognition inevitably involves multiple component processes, which are difficult to 

distinguish at the neural level. We apply model-guided componential analysis to disaggregate 

components of verbal analogical reasoning, a hallmark of human intelligence. This approach 

integrates a sequential task design with representational and encoding analyses of fMRI data. 

The analyses were guided by three computational models of lexical and relation semantics that 

vary in the specificity of their relation representations. Word2vec-concat is nonrelational (based 

solely on individual word meanings); Word2vec-diff computes the generic relation between any 

word pair; and BART derives relational similarity from a set of learned abstract semantic 

relations (e.g., synonym, antonym, cause-effect). The predictions derived from BART, based on 

its learned relations, showed the strongest correlation with neural activity in regions including 

the left posterior parietal cortex (during both relation representation and relation comparison) and 

rostrolateral prefrontal cortex (during relation comparison). Model-guided componential analysis 

shows promise as an approach to discovering the neural basis of propositional thought. 

Keywords: relations, analogy, reasoning, rostrolateral PFC, posterior parietal cortex, Word2vec, 

BART, Representational Similarity Analysis (max=10) 
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Introduction 

A key component of human reasoning, creativity, and problem solving is the ability to 

draw inferences based not only on individual concepts, but also on relations between concepts. A 

paradigmatic example of relational processing is analogical reasoning (Holyoak, 2012). 

Reasoning by analogy is pervasive in daily life, and verbal analogies are closely linked to 

psychometric measures of intelligence; however, it remains unclear how the human brain 

achieves the essential component processes. To determine whether or not a verbal analogy in the 

canonical form A is to B as C is to D (denoted A:B::C:D; e.g., old:young :: hot:cold) is valid, 

multiple component processes must operate. First, it is necessary to encode the meanings of the 

individual words. Second, it is necessary to form an active representation of the semantic 

relation(s) between A and B (e.g., contrast), and that between C and D-—a process made 

challenging by the fact that the relations (unlike the individual words) are not present in the 

input. Finally, it is necessary to compare the two relations to assess the second-order similarity of 

the relation between A and B to that between C and D, to determine whether they are the same (a 

valid analogy) or different (invalid).  

Progress has been made in understanding how semantic representations of individual 

words are instantiated in a widespread brain network (Binder et al., 2009), with an intricate (but 

systematic) topographic gradation of semantic sensitivity across different regions of cortex (Huth 

et al., 2016; Carota et al., 2017; Pereira et al., 2018). Progress has also been made in pinpointing 

the neural mechanisms of relational comparisons, typically localized to a left-lateralized fronto-

parietal network (Vendetti & Bunge, 2014; Wendelken, Ferrer, Whitaker, & Bunge, 2016). This 

network includes left rostrolateral prefrontal cortex (RLPFC) in Brodmann areas (BA) 10 and 47, 

a region known to respond in a graded manner to increasing relational complexity (Bunge, 
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Helskog, & Wendelken, 2009; Christoff et al., 2001) and semantic distance between pairs of 

concepts (i.e., between A:B and C:D; Green et al., 2010, 2012; for meta-analyses see Hobeika et 

al., 2016; Vartanian, 2012). Parietal regions, particularly around the intraparietal sulcus (IPS) 

and supramarginal gyrus (SMG), have also been associated with relational reasoning across 

multiple domains and tasks, including relation comparison during analogical reasoning (for a 

meta-analysis see Wendelken, 2015). In addition, left lateral frontal areas (BA 44, 45, 46, and 6) 

appear to be involved in retrieving relational and abstract information in the context of verbal 

analogies (Bunge, Wendelken, Badre, & Wagner, 2004; Krawczyk, 2012; Rosa, Catricalà, 

Canini, Vigliocco, & Cappa, 2018).  

However, the cognitive processes that translate the meanings of individual words into 

semantic relations remain a mystery. The mechanisms that set the stage for relation 

comparison—forming representations of the semantic relations between individual words—has 

received almost no attention. Hence, it is unclear how non-relational single-word representations 

(broadly represented across cortex) give rise to semantic relations that are not directly provided 

in the input (e.g., how the words old and young generate an abstract relation representation such 

as contrast). This question has not been clearly addressed in neural studies, in part due to the fact 

that it is difficult to distinguish the representation of the relation itself from that of the individual 

concepts being related.  

In the present paper, we adopt an approach we term model-based componential analysis, 

which leverages recent advances in computational modeling to provide theoretical tools for 

localizing and characterizing representations of abstract semantic relations, as well as isolating 

component cognitive processes involved in analogy. Specifically, employing a sequential event-

related fMRI design (see DeWolf, Chiang, Bassok, Holyoak, & Monti, 2016), we separate the 
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construction of first-order relations (i.e., relations between words in a pair) from the second-

order assessment of similarity between relations (i.e., the analogical match between A:B and C:D 

relations) (see Figure 1).   

 

Figure 1. (a) Timing of events on each trial. Participants were shown two word pairs, first an A:B 

pair for 2 seconds, then a C:D pair for 2 seconds after a jitter, and finally a cue to make a yes/no 

decision about the validity of the analogy. Participants responded by pressing a button box, 

where the location of “yes” and “no” buttons varied from trial to trial, making it impossible to 

plan a specific motor response until the first two phases had been completed. In a rapid event-

related fMRI design, 16 healthy volunteers were asked to evaluate two pairs of semantic 

concepts. Each analogy was presented as two pairs of words, an A:B pair (e.g., rich:poor) 

followed by a C:D pair (e.g., hot:cold) exemplifying the same relation (here contrast) as the A:B 

pair (valid analogy), or else a C’:D’ pair (e.g., loss:grief) exemplifying a different relation (here 

cause-purpose) (invalid analogy). All analogies were based on word pairs exemplifying three 

abstract relation types (similar, contrast, and cause-purpose) from the Jurgens et al. (2012) 

norms (see Supplemental Material, Table S4). The A:B phase provided a relatively pure measure 

of neural activity involved in coding the individual A and B words and the A:B relation, whereas 

the C:D phase included neural activity required to maintain the A:B relation, represent the C:D 

relation, and compare the two. 

 

To guide our investigation, we employed three computational models that each instantiate 

a distinct approach to the possible form of relation representations in the brain (Figure 2). These 

models (see Online Methods) all take as inputs semantic representations of individual words, 

termed word embeddings, which are feature vectors created using a deep-learning algorithm, 

Word2vec (Mikolov et al., 2013; Le & Mikolov, 2014; Zhila et al., 2013). After learning to 
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predict words in local contexts taken from a large text corpus, Word2vec yields a 300-

dimensional vector as the semantic representation for an individual word. Recent work has 

shown that these representations can predict the similarity of neural responses to individual 

words (Anderson et al., 2017; Pereira et al., 2018). However, additional computations are 

necessary to model relation representations.

  

Figure 2. Model-guided approach to discovering neural signatures of specific relations. For any 

two word pairs (e.g., rich:poor, hot:cold), three alternative models are used to predict 

dissimilarity based on the cosine distance between the representations of each individual word 

pair, using 300-dimensional Word2vec vectors as inputs (left). Word2vec-concat (nonrelational) 

concatenates the vectors for individual words in a pair; Word-2vec-diff (generic relation) defines 

the relation as the difference vector; BART (specific relations) creates a new relational vector for 

each pair based on previously-learned relations. The neural response to each word pair (right) is 

obtained, allowing a calculation of dissimilarity between patterns of voxels. Neural 

dissimilarities are compared with computational predictions in order to arbitrate between 

alternative models. 

 

Two of the models used in the present study (Word2vec-concat and Word2vec-diff) are 

based directly on the Word2vec output (Mikolov et al., 2013). The third model is a recent 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/596726doi: bioRxiv preprint 

https://doi.org/10.1101/596726
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

version of Bayesian Analogy with Relational Transformations (BART; Lu, Wu, & Holyoak, 

2019; see also Lu, Chen, & Holyoak, 2012). Each model makes different predictions about how 

pairs of words, and the relation between them, might be represented. Under Word2vec-concat, 

the meaning of the two words within a pair is a simple aggregate of the semantic vectors of the 

two individual words. This model is nonrelational, instead capturing semantic similarity across 

pairs based solely on the meanings of the individual words. This model allows us to identify 

patterns of similarity based on lexical semantics, separate from any representation of the relation 

between the two words within each pair. The similarity between any two word pairs is computed 

by the cosine distance between the two concatenated vectors. 

Under Word2vec-diff, the first-order relation between two words is defined in a generic 

fashion as the difference between the semantic vectors of each word within a pair; second-order 

similarity of relations is assessed by the cosine distance between the two difference vectors that 

form the analogy. This difference-vector method has been used by deep learning models to 

achieve some degree of success in solving verbal analogies (e.g., Mikolov et al., 2013). 

The third model, BART, aims to represent the specific semantic relation(s) between each 

pair of words (Lu et al., 2019). BART is trained with a small number of word pairs (~20 pairs) as 

positive examples of each specific relation, acquiring representations of a set of specific relations 

(e.g., synonym, antonym, cause-function) that could link any two words. Then for any word pair, 

the model can estimate the probability that the word pair instantiates each learned relation. The 

resulting vector of relation probabilities provides a distributed representation of the specific 

relation between the two words. To solve a verbal analogy between two word pairs, BART 

assesses their second-order relation similarity based on the cosine distance between the two 

distributed patterns of relations. Using behavioral measures, BART has been shown to be more 
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successful than Word2vec-diff in predicting human judgments of relation typicality and in 

solving verbal analogies (Lu et al., 2019). 

To test the three models as predictors of neural processing during distinct component 

processes of analogical reasoning, we applied fMRI methods in conjunction with several analytic 

techniques that comprise model-based componential analysis. First, on each trial we employed a 

sequential presentation of components of a verbal analogy problem (first the A:B pair, followed 

separately by the C:D pair) in order to distinguish the process of relation representation from that 

of second-order relation comparison. Second, we employed multivariate pattern analysis to 

assess the degree to which brain activity during the encoding of semantic relations (i.e., A:B 

phase) and the second-order relational comparison (i.e., C:D phase) reflect specific semantic 

relations. Finally, to disentangle the component processes of analogical reasoning, we performed 

a multivariate Representational Similarity Analysis (RSA; Kriegeskorte & Kievit, 2013; 

Kriegeskorte, Mur, & Bandettini, 2008; Nili et al., 2014) on the A:B phase, coupled with a 

univariate correlational analysis of model-based relational dissimilarity in the C:D phase. 

Our overarching aim was not only to separate broad component processes of analogical 

reasoning, but also to determine the form of the information used to code individual semantic 

relations at the neural level. Each of the three computational models generates distinct 

predictions for similarity of neural processing during both relation formation (A:B phase) and 

relation  comparison (C:D phase). Word2vec-concat bases its predictions solely on the meanings 

of the individual words in a pair. This model would be expected to predict neural patterns in 

brain areas previously linked to the semantics of individual words (notably left-lateralized 

frontal, temporal, and parietal cortices). Word2vec-diff and BART generate competing 

predictions about both the representation of relations and about the degree of relation similarity 
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between two word pairs that enter into an analogical comparison. Word2vec-diff derives its 

predictions from a generic measure of the difference in meaning between the two words in a pair, 

whereas BART derives its predictions from learned representations of a set of specific semantic 

relations. Given the superior performance of BART on behavioral tests of human relation 

judgments, including verbal analogies (Lu et al., 2019), we hypothesized that BART (rather than 

Word2vec-diff) would be the better predictor of neural activity associated both with 

representation of first-order relations and with second-order comparisons of relations. Based on 

previous work reviewed above, the areas most likely to exhibit sensitivity to similarity of 

relations during the comparison process were expected to be the left RLPFC and left IPS. 

Results 

Univariate analyses: Localization of relation representation and comparison 

In order to identify regions engaged in relation representation and relation comparison, 

we computed the univariate main effects (see Online Methods) for the A:B and C:D phases (i.e., 

A:B – rest, C:D – rest) using FSL. As shown in Figure 3 (left), in the A:B stage, related word 

pairs elicited mostly left-lateralized frontal and temporal activity, bilateral parietal activity, and 

activity in the occipital lobe (see Supplementary Material, Table S1, for detailed list). The C:D 

stage, compared to simple fixation, recruited many of the same regions as did the A:B stage 

(likely involved in processing each word of the C:D pair and encoding their semantic relation), 

as well as unique activations likely involved in second-order relation assessment for relation 

comparison. Specifically, the A:B and C:D stimuli shared activations in the inferior lateral 

occipital cortex (BA19), fusiform gyrus (BA37), and left frontal regions spanning the 

rostrolateral prefrontal cortex (BA10 and BA47).  In addition, processing C:D word pairs 

uniquely led to a greater BOLD response in left inferior frontal gyrus (pars triangularis, pars 
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opercularis; BA44, 45) as well as bilateral superior parietal cortex (in BA7; for a full list see 

Supplementary Material, Table S2).  

As shown in Figure 3 (right), the (univariate) comparison of C:D and A:B phases 

revealed a fronto-parietal network, mainly left lateralized, presumably involved in the process of 

second-order relation comparison, which recruits additional regions beyond those related to 

processing individual words and their semantic relation(s). Specifically, the contrast uncovered 

significant clusters in the left RLPFC (BAs 10, 47), replicating prior results implicating this 

region in complex relational comparisons (Christoff et al., 2001; Bunge et al., 2009), as well as 

in the left inferior frontal gyrus (BAs 44 and 45), bilateral posterior parietal (BA7) and occipital 

cortices (BA19).   

 

Figure 3. Univariate analysis results. Left: Main effects of A:B and C:D phases of trials. Cluster 

were obtained by contrasting each phase (i.e., A:B, C:D) to simple fixation.  Right: C:D – A:B 

univariate contrast. Regions in which activity while reading the C:D word pair was greater than 

when reading the A:B word pair. Depicted group-level activations were obtained with a non-

parametric permutation approach (FSL randomize), significance was set at p=0.05 FWER, 

cluster corrected with threshold-free cluster enhancement (TFCE; Smith & Nichols, 2009). 
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Multivariate classification analyses: Decoding abstract relations in the brain  

To characterize the representations of abstract semantic relations in the brain, we first 

performed a searchlight classification analysis (Kriegeskorte, Goebel, & Bandettini, 2006), to 

find areas capable of systematically distinguishing different abstract relations on the basis of 

their spatial pattern of activations during the A:B and C:D phases.  

Figure 4. Searchlight results. Regions in which the three general semantic relations could be 

discriminated from each other during different phases of the analogy task. 

 

As shown in Figure 4, the general semantic relations instantiated by the word pairs 

(similar, contrast, and cause-purpose) could be reliably distinguished above chance level during 

the A:B phase in large areas of the brain, including frontal and temporal cortices (most 

pronounced in the left hemisphere), and bilateral parietal cortices, as assessed by a Wilcoxon 
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signed-rank test with TFCE cluster correction (Smith & Nichols, 2009). The three semantic 

relations could also be reliably distinguished during the C:D trials, in many of the same regions, 

as well as in additional regions in the right hemisphere (particularly across frontal and temporal 

cortices). Overall, the overlap in regions capable of distinguishing the three semantic relations 

across both A:B and C:D phases (areas in yellow in Figure 3) matches very closely the areas 

previously suggested to be part of the semantic representation system for single words (Binder et 

al., 2009; Carota et al., 2017; de Heer et al., 2017; Huth et al., 2016), and also includes the 

parietal regions previously associated more specifically with relational reasoning (Wendelken, 

2015).  

Representational Similarity Analysis (A:B phase): Representing semantic relations 

In order to assess the computations reflected within the regions highlighted above, we 

employed Representational Similarity Analysis (RSA; Kriegeskorte & Kievit, 2013; 

Kriegeskorte et al., 2008; Nili et al., 2014). For each individual participant, theoretical patterns of 

dissimilarity across word pairs predicted by each of three computational models (Word2vec-

concat, Word2vec-diff, BART) were compared to the empirical pattern of dissimilarity across 

word pairs observed in neural activity patterns in pre-selected regions of interest (ROI; see 

Online Methods) during the A:B phase. These analyses were conducted at the level of individual 

word pairs; hence the size of each Representational Dissimilarity Matrix (RDM) was 144 x 144 

(see Figure 5). 
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Figure 5. Theoretical Representational Dissimilarity Matrices (RDMs) of size 144 x 144 (i.e., 

based on individual word pairs) derived from three computational models. Theoretical RDMs 

capturing the cosine distance between the vector representation for each word pair were 

correlated with empirical RDMs derived from brain activity patterns within each regions of 

interest (ROI), using Spearman’s rho and corrected for the false discovery rate (FDR) at the 0.05 

level. ROIs included BAs 9, 10m, 10l, 44, 45, 46 and 47, in frontal cortex; and the intraparietal 

sulcus (IPS), superior parietal lobule (SPL), angular gyrus (AG) and posterior supramarginal 

gyrus (pSMG), in parietal cortex.  ROIs were selected on the basis of previous literature and 

defined on the basis of anatomical atlases (see Online Methods for details). 

 

Neural RDMs derived from the left BA44 and BA45, pSMG, SPL, and the toMTG were 

significantly correlated with all three models (see Figure 6). This finding suggests that these 

regions represent relational information as well as lexical semantics, consistent with prior reports 

that these regions are involved in the formation and/or retrieval of relational information 

(Krawczyk, 2012; Vendetti & Bunge, 2014; Wendelken, Ferrer, Whitaker, & Bunge, 2016). 

Interestingly, neural similarity in the inferior parietal sulcus (IPS) significantly correlated with 

similarity patterns derived from the two models that capture relation similarity (Word2vec-diff: 

Mean Spearman’s rho r  = 0.005, p = 0.002 with FDR correction, and BART, r = 0.009, p = 

0.015), but not with the RDM derived from the Word2vec-concat model, which only captures 
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semantics of individual words. This finding is consistent with prior studies and meta-analyses 

indicating that the IPS region (and others within the posterior parietal cortex) plays an important 

role in relational representation (Wendelken, 2015). In addition, within the left parietal cortex, 

the BART-derived RDM yielded a significantly stronger correlation with the neural RDM than 

did that derived from Word2vec-diff in two areas (IPS: t(15) = 2.39, p = 0.033 with FDR 

correction; SPL: t(15) = 2.38, p = 0.047). Notably, none of the theoretical RDMs correlated with 

the neural patterns of activity in rostrolateral PFC (BA10m, BA10l), consistent with the 

hypothesis that the RLPFC is primarily engaged when making second-order comparisons 

between relations, rather than representing single relations. 

 

Figure 6.  Results from RSA analysis for representation of abstract semantic relations during A:B 

phase.  Spearman correlations between ROI-derived neural RDMs and theoretical RDMs (all of 

size 144 x 144) derived from the computational models. Difference bars indicate that the 

correlation values were significantly different.  
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Univariate relational dissimilarity analysis (C:D phase): Second-order relation comparison 

With respect to the phase in which the A:B and C:D relations are compared to assess the 

validity of the analogy (i.e., C:D phase), all models considered here make the general prediction 

that the difficulty of identifying a valid analogy is proportional to the (word or relation-based) 

similarity of the A:B and C:D word pairs, with greater dissimilarity making the analogy harder to 

verify. In order to derive a measure of relational dissimilarity from each of the three models, for 

every valid A:B::C:D analogy (144 problems in total) we calculated the cosine distance between 

the representations of A:B and C:D specified by each model, with higher cosine distance 

implying greater dissimilarity between the two pairs of words. For each individual participant, 

the theoretical relational dissimilarity scores derived from each model were then correlated 

(using Spearman’s rho) with observed mean ROI activity during the C:D phase of each valid 

analogy. 

As shown in Figure 7, comparison of theoretical relational dissimilarity and neural 

activity shows that prefrontal ROIs were significantly correlated with both the predictions of 

Word2vec-concat (BA44: r = 0.045, p (FDR corrected) = 0.03; BA45: r = 0.068, p = 0.003; 

BA47: r = 0.052, p = 0.026; BA10l: r = 0.057, p = 0.009), and BART (BA9: r = 0.06, p = 0.022; 

BA44: r = 0.105, p = 0.003; BA45: r = 0.135, p < 0.001; BA10m: r = 0.052, p = 0.022; BA10l: r 

= 0.069, p = 0.006), but not with the predictions of Word2vec-diff.  

A follow-up regression analysis (see Online Methods) revealed that in each of these 

prefrontal ROIs, the BART model explained unique variance in brain activities after accounting 

for the influence of word meanings as measured by the predictions of Word2vec-concat. The 

analysis revealed significant semi-partial correlations (BA44: r = 0.109, p (FDR-corrected) = 

0.015, BA45: r = 0.136, p = 0.005, BA 10l: r = 0.07, p = 0.01, BA 47: r = 0.139, p = 0.006). The 
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stepwise regression with a reversed order revealed that Word2vec-concat did not predict variance 

beyond that attributable to BART. In addition, the BART model, but neither of the alternative 

ones, was significantly correlated with activity in subregions of parietal cortex (AG: r = 0.085, p 

< 0.001; pSMG: r = 0.055, p = 0.014; and trending in the IPS, r = 0.0521, p = 0.081). BART’s 

predictions of relational dissimilarity were also correlated with activation levels in temporal 

cortex (pSTG: r = 0.088, p = 0.004; pMTG: r = 0.076, p = 0.007; toMTG: r = 0.078, p=0.003; 

aSTG: r = 0. 082, p = 0.003; TP: r = 0.079, p = 0.001), perhaps reflecting the need to represent 

and maintain multiple semantic relations during the comparison process. In general, the process 

of relation comparison appears to be dominated by relational dissimilarity as measured by the 

BART model, which explicitly represents relations that support analogical inference. 

 

Figure 7. Relation comparison in the brain. Correlation between model-derived relational 

dissimilarity and mean activity in each ROI during the C:D phase. Difference bars are only 

shown for regions that were correlated with more than one model, and indicate that one model 

explained significantly more variance (see Online Methods) than the other.   
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Discussion  

 The present study combined computational approaches and neuroimaging in a model-

guided componential analysis of the representation and comparison of abstract semantic 

relationships in the brain. By using a sequential presentation with clear temporal phases (DeWolf 

et al., 2016), we were able to decouple the neural activity associated with encoding the 

representation of the individual words in a pair and the relation between them from that 

associated with the comparison of two relations (while also separating these high-level reasoning 

processes from planning for a motor response). Furthermore, we were able to distinguish 

between alternative accounts of how semantic relations are coded and compared in the brain. Our 

analyses were guided by three computational models developed in the fields of machine learning 

(Mikolov et al., 2013) and cognitive science (Lu et al., 2019). The three models were provided 

with identical inputs (300-dimensional vectors representing the meaning of individual words) 

and generated the same final measure of similarity (cosine distance); however, each instantiates a 

distinct measure of similarity between word pairs.  One model (Word2vec-concat) is 

nonrelational, simply predicting similarity based on the meanings of individual words in pairs. 

The other two (Word2vec-diff and BART) each predict similarity based on relations between the 

words, but differ with respect to whether it is assumed that relational representations can be 

captured by a generic operation (Word2vec-diff), or are acquired through learning specific 

relations (BART).  

 Our findings establish a close link between neural representations for meanings of 

individual words and neural representations for relations instantiated by a pair of words. We 

found that the process of solving verbal analogies based on abstract relations activated brain 

regions that spanned the bilateral prefrontal, temporal, and parietal cortices. It appears that 
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abstract semantic relations are encoded at least in part by recruiting the same broad semantic 

network that has been identified in studies of the semantic representations of individual words 

(Binder et al., 2009; Carota et al., 2017; de Heer et al., 2017; Huth et al., 2016). 

In addition to identifying the semantic network recruited in solving verbal analogy 

problems, tests of the predictions of the computational models provided a more complete picture 

of the neural computations underlying basic components of analogical reasoning. By applying 

Representational Similarity Analysis (Kriegeskorte et al., 2008) to neural activity in different 

ROIs during the A:B phase (i.e., the period when an active representation of the semantic 

relation(s) between the words in a single pair is being generated), we tested the effectiveness of 

the three models in predicting empirical patterns of similarity among the BOLD signals for 

individual word pairs. Similarities of relations between word pairs derived from the BART 

model (on the basis of learned relation representations) provided the strongest predictors of 

similarities among neural responses in multiple ROIs within left dorsolateral PFC (but not 

RLPFC), the temporo-occipital junction, and parietal cortex. At the same time, similarities 

derived from Word2vec-concat (based on the meanings of individual words) were reliably 

related to neural patterns within dorsolateral PFC and parietal cortex. These findings are 

consistent with the hypothesis that generation of an active representation of the semantic relation 

between a pair of words involves processing of the meanings of the individual words, as well as 

of the relation between them. 

An ROI-based univariate analysis of relational dissimilarity was performed on the C:D 

phase of each trial for valid analogies. This analysis was designed to relate the computational 

models to patterns of neural activity elicited by comparison of the A:B and C:D word pairs in the 

process of assessing whether the analogy was valid. For each model, a measure of relational 
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dissimilarity between the A:B and C:D relations was correlated with overall neural activity in 

each ROI. The BART model generated the strongest and most reliable correlations for several 

ROIs within the frontal, parietal, and temporal cortices. The significant association between the 

predictions of the BART model and the activity pattern detected in posterior temporal ROIs is 

consistent with previous work showing that these regions play an important role in comparing 

relationships that link triplets of elements (actor, agent, patient) across different sentence 

structures (Monti, Parsons, & Osherson, 2009, 2012). Our findings for frontal and parietal 

cortices support the hypothesis that second-order relation comparisons are based on a network 

that transmits abstract representations formed in the parietal cortex to the RLPFC, where abstract 

relational reasoning is performed (Wendelken, 2015).. 

 The fact that similarity measures derived from the BART model yielded stronger and 

more reliable predictions of relational processing—both of individual relations, and of 

comparisons between relations—than did the Word2vec-diff model is consistent with 

computational evidence favoring the former model as an account of human relational judgments. 

Based on human behavioral results, BART predicts judged typicality of relation examples more 

accurately than does Word2vec-diff, and comes closer to achieving human levels of accuracy in 

solving verbal analogies (Lu et al., 2019). The relative success of the BART model in predicting 

patterns of neural activity is directly relevant to a debate as to whether or not individual semantic 

relations have explicit representations (for discussion see Popov, Hristova, & Anders, 2017). 

Whereas Word2vec-diff provides only a generic representation of relational similarity (i.e., the 

difference vector between semantic vectors for two words), BART learns specific representations 

of individual semantic relations, which then collectively provide a distributed representation of 

the relations(s) linking any word pair. The neural evidence favoring the BART model of relation 
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similarity thus supports the hypothesis that the brain encodes explicit representations of 

individual semantic relations, such as synonym, antonym, and cause-effect. Our findings thus 

have clear implications for the nature of the neural code for abstract semantic relations. 

 The present study focused on abstract semantic relations. These are particularly important 

because a pool of abstract relations provides basic elements that can be used to represent more 

specific relations (Lu et al., 2019). However, further research will be required to determine the 

extent to which the neural basis for relational reasoning may differ for more concrete semantic 

and visuospatial relations (e.g., inferring that grasping a hammer enables it to be lifted). More 

generally, future studies may benefit from applying the overall strategy of model-guided 

componential analysis. This approach has the potential to be used to analyze patterns of neural 

activity underlying semantic representations of information units more complex than individual 

words. Careful task design (e.g., presenting a problem in sequential phases) can be used to 

separate key component processes. Alternative computational models can then be used to 

generate item-level predictions of neural similarity, which can be tested by methods such as 

Representational Similarity Analysis.  This approach shows promise in making it possible to 

decouple component processes and to identify specific representations involved in high-level 

reasoning. Future work should aim to develop and test well-specified models of how 

propositions and larger knowledge units are represented in the brain and used to reason.  

Online Methods 

Participants 

Sixteen participants (8 female) were recruited at the University of California, Los Angeles 

(UCLA) through a flyer distributed in the Psychology department.  Participants signed informed 
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consent prior to the experimental session, and were paid $50 for their participation in the 1-hour 

study, in compliance with the procedures accepted by the local institutional review board (IRB). 

Stimuli  

The stimuli were a set of analogy problems constructed from word pairs taken from a 

normed set of examples of abstract relations (Jurgens, Turney, Mohammad, & Holyoak, 2012). 

These norms were in turn based on a linguistic taxonomy of semantic relations (Bejar, Chaffin, 

& Embretson, 2012). The full norms include examples of word pairs instantiating ten general 

types of relations, each including five to ten more specific relations, for a total of 79 distinct 

relations. For the present study, we focused on three relation types with three specific relations 

drawn from each, for a total of nine relations: similar (synonym, attribute similarity, change); 

contrast (contrary, directional, pseudoantonym); cause-purpose (cause:effect, 

cause:compensatory action, activity:goal).  For each relation, we selected 16 word pairs from 

among the most highly rated (i.e., most prototypical) examples. In making this selection we 

avoided duplicate pairs that were simple reversals (e.g., happy-sad and sad-happy), choosing in 

such cases the pair with the higher typicality rating. Pairs that included conspicuously long or 

low-frequency words were also excluded. Because for some subcategories it proved difficult to 

identify 16 pairs that passed our selection criteria, we also included some pairs that Jurgens et al. 

(2012) had used as “seed” examples to elicit word pairs from humans. These were considered 

excellent examples (most taken from Bejar et al., 2012). The full list of word pairs is provided in 

Supplementary Materials, Table 4. 

Counterbalancing to Form Analogy Problems  

Using the 144 (16 examples × 9 specific relations) distinct word pairs selected as 

described above, we formed pairs of pairs to create verbal analogy problems in the form A:B :: 
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C:D (valid) or else A:B :: C’:D’ (invalid), where all pairs were drawn from the pool of 144. For 

the invalid pairs, the C’:D’ pair was drawn from a different relation type than was A:B. We 

avoided creating invalid items using different specific relations within the same general relation 

type (e.g., specific relations contrary and pseudoantonym, both subtypes of contrast) because 

pilot work suggested that such “near-miss” problems would lead to excessive errors. At the same 

time, C’:D’ pairs always instantiated a natural semantic relation (rather than being semantically 

anomalous), forcing participants to consider the paired relations carefully in judging validity of 

the analogies. 

Counterbalancing was used to create four complete sets of analogy problems. To form an 

individual set, for each of the nine specific relations, eight of the 16 pairs were assigned to the 

A:B role and four to the C:D role. The remaining four pairs were assigned to the C’:D’ role 

associated with A:B pairs for four of the six specific relations representing the two remaining 

general relation types. Assignments to the C:D role were random subject to the above restriction. 

Subject to all of the above restrictions, specific 4-term analogy problems were created by random 

pairing of word pairs. Each set thus consisted of 72 analogy problems (9 specific relations x 8 

problems each). For each specific relation, four problems were valid and four were invalid. 

Within a set of 72 problems, each of the 144 word pairs occurred twice in the A:B role and once 

in each of the C:D and C’:D’ roles. The same procedure was used to create a total of four sets, 

each with 72 problems distributed as described above. Across all four sets, each of the 144 word 

pairs appeared in each role with the same proportions (i.e., twice as often as A:B than as C:D or 

C’D’). The four sets, with a total of 288 problems (4 sets x 72 problems each), were treated as 

four blocks administered to each participant. The procedure for problem generation ensured that 

any individual analogy problem occurred only once in the set of 288 problems. The order of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/596726doi: bioRxiv preprint 

https://doi.org/10.1101/596726
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

problems was randomized within each block, and the order of the four blocks was 

counterbalanced across participants. The overall aim of this procedure for problem creation was 

to ensure that data analyses could be based on neural patterns associated with each of the 16 

word pairs representing each of the nine specific relations (144 pairs in total), in each of the three 

possible roles (A:B, C:D, C’:D’), while avoiding any confounding between specific pairs and 

roles. Finally, each of these four sets was further split into two sets of 36 for presentation 

convenience.  

Procedure  

The experiment was administered using PsychoPy2 (Peirce, 2009). On each trial (see 

Figure 1), participants were first shown the A:B word pair for 2s, then the C:D pair for 2s (with 

an average .5s jitter in between). The words “yes” or “no” then appeared on the left and right of 

the screen, indicating the assignment of two response buttons used to indicate whether or not the 

two pairs represented the same relation. Critically, the assignment of “yes” and “no” buttons was 

randomly varied, ensuring that participants could not begin planning a motor response during the 

earlier phases of the trial. 

fMRI Data Acquisition  

Data were acquired on a 3 Tesla Siemens Prisma Magnetic Resonance Imaging (MRI) 

scanner at the Staglin IMHRO Center for Cognitive Neuroscience at UCLA. Structural data were 

acquired using a T1-weighted sequence (MPRAGE, TR = 1,900 ms, TE = 2.26 ms, voxel size 1 

mm3 isovoxel). Blood oxygenation level dependent (BOLD) data were acquired with a T2*-

weighted Gradient Recall Echo sequence (TR = 1,000 ms, TE = 37 ms, 60 interleaved slices 

(2mm gap), voxel size 2x2x2 mm, 6x multiband acceleration). 

fMRI Preprocessing 
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Data preprocessing was carried out using FSL (Jenkinson, Beckmann, Behrens, 

Woolrich, & Smith, 2011; Smith et al., 2004). Prior to univariate analyses, data underwent 

preprocessing steps including motion correction, slice-timing correction (using Fourier-space 

time-series phase-shifting), spatial smoothing using a Gaussian kernel of 5 mm full-width half-

max, and highpass temporal filtering (Gaussian-weighted least-squares straight line fitting, with 

s=50.0s). Data from each individual run were analyzed employing a univariate general linear 

model approach (Monti, 2011) inclusive of a pre-whitening correction for autocorrelation. 

 Spatial smoothing was omitted from the above preprocessing steps for classification and 

Representational Similarity Analysis in order to preserve spatial heterogeneities. Beta-series 

(Rissman, Gazzaley, & D’Esposito, 2004) parameter estimates were derived using the Least 

Squares-Separate, LS-S approach (Mumford, Turner, Ashby, & Poldrack, 2012). The LS-S 

algorithm iteratively estimates parameters for each trial using a general linear model including a 

regressor for that trial as well as another regressor for all other trials. 

Univariate Analyses 

The general relation type was coded separately for the  A:B and C:D phases of each trial 

(including both valid and invalid trials) . A univariate analysis using the GLM approach was  

performed to identify regions engaged in representing semantic relations. The response phase of 

each trial was included as a condition of non-interest, as well as motion parameters. The GLM 

analysis was carried out using FSL FEAT (Smith et al., 2004, Jenkinson et al., 2011). Data from 

individual runs were aggregated employing a mixed effects model (i.e., employing both the 

within- and between-subject variance), and using automatic outlier detection. 

Statistical significance for univariate analyses were assessed using FSL randomize with 

TFCE cluster correction (Smith & Nichols, 2009; Winkler, Ridgway, Webster, Smith, & 
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Nichols, 2014). The following contrasts are displayed in Figure 3 of the main text: (left) A:B – 

rest, C:D – rest; (right) C:D – A:B.  

Classification Analyses 

Classifiers were trained to distinguish between the three general relation types (similar, 

contrast, cause-purpose), and were evaluated using a leave-one-run-out cross-validation 

approach (see (Etzel & Braver, 2013). For each participant, two such classifications were run: 

one on the A:B phase and one on the C:D phase (including both valid and invalid trials). We 

used a 5mm radius sphere and a linear SVM (Abraham et al., 2014; Pedregosa et al., 2011). 

Statistical significance was assessed using FSL randomise with TFCE cluster correction (Smith 

& Nichols, 2009; Winkler, Ridgway, Webster, Smith, & Nichols, 2014).  

ROI Selection 

We selected a number of ROIs related to relational and semantic representation using the 

Juelich, Sallet, Neubert, and Harvard Oxford atlases in FSL (Desikan et al., 2006). The variety of 

atlases was used so ROIs would be roughly the same size, and so that ROIs would cover 

previously-reported coordinates based on the following meta analyses of studies of relational 

reasoning: Krawczyk (2012), Hobeika et al. (2016), Wendelken (2015), and Wendelken et al. 

(2016). The ROIs associated with relational reasoning fell within the left lateral fronto-parietal 

network defined by the aforementioned reviews. This included Brodmann area (BA) 10, which 

was separated into a medial BA10 (BA10m) defined by the Sallet dorsal frontal connectivity 

parcellation, and a lateral BA10 (BA10l) defined by the Neubert ventral frontal connectivity 

parcellation. These two ROIs, together with BA47 (see below), were selected to fully cover the 

area of previously-reported activations in rlPFC. We also selected areas from the ventrolateral 

and dorsolateral PFC, including BA9 (defined using the Sallet frontal connectivity parcellation) 

and BAs 44 and 45 (defined by the Harvard Oxford atlas). In the parietal cortex, we used the 
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Juelich histological atlas. We created the IPS ROI by taking the union of all IPS subdivisions 

(Wendelken, 2015). We also selected the superior frontal lobe (SPL 7A), and two subdivisions of 

the inferior parietal lobe (PFm and PGa) corresponding to the angular gyrus and posterior 

supramarginal gyrus. 

In addition to the above ROIs, we selected additional regions associated with semantic 

representation. These were BA 47 (selected using the Neubert frontal connectivity parcellation), 

and broad regions of the temporal cortex (temporal pole, aSTG, aMTG, aITG, pMTG, pSTG, 

toMTG) corresponding to regions selected in a recent study of semantic representation (Carota et 

al., 2017) and mentioned by another review of the neural distribution of semantics (Binder et al., 

2009). 

 As a control, cerebral spinal fluid (CSF), a region that would not plausibly be involved in 

processing of abstract semantic relations, was included as a “region of disinterest”. A spherical 

CSF ROI was manually drawn for each participant using the anatomical T1 image and registered 

to functional space. 

Details of Computational Models 

 All quantitative models used to create theoretical RDMs for the RSA analysis were based 

directly (Word2vec-concat, Word2vec-diff) or indirectly (BART) on the outputs of a machine 

learning model, Word2vec (Mikolov et al., 2013). This model takes a large text corpus (Google 

News) as input, examines distributional statistics relating each word to neighboring words in 

sentences (local context), and outputs a modular vector representation for each individual word, 

termed a word embedding. Word2vec vectors of length 300 were obtained for all words used in 

the present study. Word2vec-concat (the concatenation of the vectors for the two words in a pair) 

and Word2vec-diff (the difference vector derived from the two individual vectors) were 

calculated and used to create theoretical RDMs. 
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 The BART model (Bayesian Analogy with Relational Transformations; Lu, Wu & 

Holyoak, 2019) was applied to learn specific relations between word pairs. BART takes as inputs 

pairs of positive and negative examples of a given relation, where each pair is represented by the 

concatenation of the Word2vec vector for each word. For example, a vector formed by 

concatenating the individual vectors for love and hate would constitute a positive example of the 

antonymy relation, but a negative example of the category membership relation. The model used 

supervised learning with 20 positive examples and a fixed set of 64-74 negative instances (the 

top example for each relation from each general category other than that of the target relation) to 

form weight distributions representing each of the 79 relations in the Jurgens et al. (2012) norms. 

For each word pair used in the study, these learned weights were used to calculate the posterior 

probability that the pair instantiated each of the 79 learned relations. The vector of length 79 

formed by these posterior probabilities represented the specific relation between the two words 

in the pair. These vectors were used to create BART’s theoretical RDMs.  

Representational Similarity Analysis 

Representational Similarity Analysis (RSA; Kriegeskorte & Kievit, 2013; Kriegeskorte, 

Mur, & Bandettini, 2008; Nili et al., 2014) was used to characterize the similarities of neural 

responses across pairs. RSA characterizes the representation in a brain region by a 

representational dissimilarity matrix (RDM), and compares this empirical matrix with a 

theoretical model. An RDM is a square symmetric matrix, with each entry referring to the 

dissimilarity between the activity patterns associated with two trials (e.g., entry (1,2) would 

represent the dissimilarity between activity patterns on trial 1 and trial 2). Procedurally, each 

element of the RDM is calculated as 1 minus the Pearson correlation between the beta-series for 

each pair of trials (Carota, Kriegeskorte, Nili, & Pulvermüller, 2017; Nili et al., 2014).  
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Hypothesis models were manually generated to reflect idealized RDMs expected given a 

theoretical representational space. We generated theoretical RDMs from each of the three 

computational models. Each model uses a different calculation to yield a feature vector 

characterizing a word pair; however, the RDM was calculated in the same way for all models, as 

the cosine distance between word-pair representations.  

RDMs and hypothesis models were compared by calculating a “second-order similarity” 

(Nili et al., 2014), defined as the Spearman correlation coefficient between the two matrices. All 

analyses were carried out using Python, making extensive use of the machine learning packages 

Scikit-learn (Pedregosa et al., 2011) and NiLearn (Abraham et al., 2014). Data and analysis code 

are available upon request. 

Univariate Relational Dissimilarity Analysis 

All the models of analogical comparison considered in the present paper make the 

general prediction that the difficulty of deciding the validity of an analogy will be related to the 

relation-based similarity of the A:B and C:D word pairs, with greater similarity making the 

decision easier. In this analysis, only trials consisting of valid analogies (i.e., A:B :: C:D) were 

included so that the relation representations during the C:D phase would not be confounded by 

additional cognitive operations associated with processing a relation inconsistent with A:B. To 

derive a specific prediction from each of the three candidate models in the paper, for every valid 

analogy of word pairs, A:B::C:D, a relational dissimilarity measure was calculated by taking the 

cosine distance between the representations of A:B and of C:D specified by the model (i.e., 

higher cosine distance implies greater dissimilarity between the two pairs). These model-derived 

relational dissimilarity scores for each trial were then correlated (using Spearman’s rho) with 

mean ROI activity to identify brain regions that track relational dissimilarity according to the 
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predictions from each of the alternative models. The resulting p values were adjusted for 

multiple comparisons by controlling the false discovery rate (FDR) at q = 0.05 and are reported 

in the main text. 

Follow-up RegressionAanalysis 

 Within regions that were significantly correlated with both BART and Word2vec-concat 

models (Figure 7), the general trend was that BART-derived predictions showed greater 

correlation with ROI-derived relational similarity than with Word2vec-concat, the model based 

on word similarity. In these ROIs (BA44, BA45, BA47, BA10l), a semipartial correlation 

analysis was performed to determine whether these two models captured the same or different 

information. Word2vec-concat relational dissimilarity scores were first  regressed out of the 

ROI-based similarity scores, and subsequently the resulting residuals were correlated with the 

relational dissimilarity predictions from BART. (See main text for results.) The reverse analysis 

was also performed, in which BART relational dissimilarity predictions were regressed out of 

ROI-based dissimilarity scores and then correlated with the Word2vec-concat predictions. No 

regions showed a significant impact of Word2vec-concat after controlling for the variance 

predicted by BART. That is, Word2vec-concat did not appear to capture any information about 

relational dissimilarity beyond that accounted for by the BART model. The associated p-values 

were corrected for the false discovery rate at q = 0.05 and the adjusted values are reported in the 

main text of the paper. 
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