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With a brief letter to Nature in 1972, Robert
May triggered a worldwide research program in
theoretical ecology and complex systems that
continues to this day[1]. Building on power-
ful mathematical results about large random
matrices, he argued that systems with suffi-
ciently large numbers of interacting components
are generically unstable. In the ecological con-
text, May’s thesis directly contradicted the long-
standing ecological intuition that diversity pro-
motes stability[2–4]. In economics and finance,
May’s work helped to consolidate growing con-
cerns about the fragility of an increasingly inter-
connected global marketplace[5–7]. In this Let-
ter, we draw on recent theoretical progress in
random matrix theory and statistical physics to
fundamentally extend and reinterpret May’s the-
orem. We confirm that a wide range of ecological
models become unstable at the point predicted
by May, even when the models do not strictly
follow his assumptions. Surprisingly, increasing
the interaction strength or diversity beyond the
May threshold results in a reorganization of the
ecosystem – through extinction of a fixed frac-
tion of species – into a new stable state whose
properties are well described by purely random
interactions. This self-organized state remains
stable for arbitrarily large ecosystem and sug-
gests a new interpretation of May’s original con-
clusions: when interacting complex systems with
many components become sufficiently large, they
will generically undergo a transition to a “typi-
cal” self-organized, stable state.

For an ecosystem of S species, May’s theorem concerns
the S×S community matrix J, whose entries Jij describe
how much the growth rate of species i is affected by a
small change in the population Nj of species j from its
equilibrium value N̄j [1]. The stability of this equilibrium
can be quantified in terms of the largest eigenvalue λmax

of J. If λmax is positive, the equilibrium is unstable, and
a small perturbation will cause the system to flow away
from the equilibrium state. In the 1950’s, Eugene Wigner
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derived a mathematical formula for the distribution of
eigenvalues in a special class of large random matrices[8].
May pointed out that the resulting estimate of the max-
imum eigenvalue λmax is actually more general, and ap-
plies whenever the Jij are sampled independently from
probability distributions with finite means µ and vari-
ances σ2[1]. With this result in mind, May considered a
simple ecosystem where each species inhibits itself, with
Jii = −1, but different species initially do not interact
with each other. This ecosystem is guaranteed to be sta-
ble for any level of diversity. He then examined how the
stability is affected by adding randomly sampled inter-
actions, and found that λmax typically becomes positive
when the root-mean-squared total strength σM =

√
Sσ2

of inter-specific interactions reaches parity with the intra-
specific interactions, that is, when σM = 1. For a given
pairwise interaction strength σ, this relation gives the
maximum diversity S compatible with ecosystem stabil-
ity.

This result has proven to be robust against a wide
array of changes in the assumptions, including adding
biologically realistic correlation structures to the ma-
trix, or incorporating the dependence of the community
matrix on population sizes in the Lotka-Volterra model
[9, 10]. In order to be stable at high diversities, a generic
ecosystem must have a fine-tuned interaction structure,
which can sometimes be justified in terms of biological
constraints[11–14]. Very recently, it was noted that the
required level of structure may emerge spontaneously in
simple models of population dynamics, typically through
extinction of some fraction of the initial set of species
[15, 16]. Surprisingly, the resulting self-organized states
were relatively insensitive to the network structure en-
coded in the interaction matrix. These works suggest
that May’s result might admit of a more intuitive inter-
pretation, and that the high-diversity states likely possess
interesting generic properties.

To explore these ideas, we devised a more concrete ver-
sion of May’s original thought experiment describing an
ecosystem consisting of S non-interacting species where
interactions are gradually turned on. May’s original ar-
gument only considered the local dynamics near a pre-
specified equilibrium point that eventually becomes un-
stable. Since we are interested in exploring what happens
after the onset of this instability, we must make addi-
tional modeling assumptions to arrive at a complete set of
nonlinear dynamics. We focus on MacArthur’s Consumer
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A
In a seminal paper in 1972, Robert May

studied complex ecosystems using Random
Matrix Theory. Nearly fifty years later it re-
mains unclear when and if real communi-
ties can be described as random dynamical
systems. Here, we show that adding even
a small out of noise to structured communi-
ties makes them indistinguishable from com-
pletely random ecosystems and provide ana-
lytic proof of a phase transition from special-
ized to typical ecosystems . Our results ex-
plain the success of statistical mechanics ap-
proaches at describing large-scale patterns in
ecological data.

T S C M

After the phase transition σc = 1 , structured and random ecosystems become indistinguish-
able.
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There is a natural mapping between linear response functions of Cavity solutions and spec-
trums of Random matrix theory. The phase transition happens when the minimum eigenvalue
of A ij reaches 0.
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FIG. 1. Random interactions destabilize an ecosystem of specialist consumers. (A) Left: an ecosystem with system
size M = 5 starts with specialists consuming only one type of resource, resulting in a consumer preference matrix B = 1.
Right: off-target consumption coefficients C ∼ N ( µ

M
, σc√

M
) are sampled from a Gaussian distribution, resulting in an overall

consumer preference matrix C̄ = B+C. (B) Fraction of surviving species S∗/M vs. σc, numerically computed using M = 100
as described in the Methods, along with the corresponding results for a completely random ecosystem with B = 0. Also shown
are examples of the matrices C̄ employed in the simulations.

Resource Model (CRM) where interactions are mediated
by competition for M substitutable resources[17]. For
simplicity, we assume that S = M (though this does not
affect our main results). MacArthur’s model allows for
a wide range of exact mathematical results, but assumes
that the resources are themselves self-replicating entities.
To check the generality of our results, we also numeri-
cally analyzed generalizations of the CRM including the
case of constant flux of externally supplied resources,
and a model of microbial ecology with trophic feed-
backs where organisms can feed each other via metabolic
byproducts[18, 19]. These extended results can be found
in the Supplemental Information.

The identity of each species in these models is deter-
mined by its consumption preferences. A set of non-
interacting species can be constructed by engineering
each species to consume a different resource type, with
no overlap between consumption preferences. One can
imagine designing strains of E. coli where one strain only
expresses transporters for lactose, and another only ex-
presses transporters for sucrose, etc., with all other trans-
porters edited out of the genome, as illustrated in Fig-
ure 1(A). In such an experiment, horizontal gene trans-
fer would eventually begin distributing transporter genes
from one strain to another, so a realistic model would
have to allow for some amount of unintended resource
consumption. The resulting preference C̄iα of species i
for resource α is the sum of the identity matrix 1 and a
random component Ciα with variance σ2.

Figure 1(B) shows the results of adding non-specific
interactions to the CRM. Just as in May’s analysis, the
appropriate measure of the importance of the random
component is the root-mean-squared off-target consump-
tion σc =

√
Mσ2 (recall M = S). Since we are expecting

some species to go extinct in the self-organization pro-

Gaussian Noise

Binary Noise

(B)

(C)

(D)

Uniform Noise

(A)

FIG. 2. Community properties for structured and
random ecosystems. (A): Examples of designed interac-
tions B. Top: an identity matrix; Middle: a Gaussian-type
circulant matrix; Bottom: a block matrix. (B) Gaussian
Noise N (0, σc√

M
), (C) Uniform Noise: U(0, b) and (D): Bi-

nary Noise: Bernoulli(pc) are added to the engineered in-
teractions. Community properties including survival fraction
S∗/M , mean abundance 〈N〉 and mean square abundance〈
N2
〉

are shown for the different B listed above.

cess, we start by plotting the fraction of surviving species
S∗/M versus σc in the steady state of numerical simu-
lations with S = 100 species. At small values of σc, all
the species survive, as expected for a weakly interact-
ing ecosystem. As high as σc = 0.7, almost all of the
original species are still present in the community. But
between σc = 0.7 and σc = 1, there is a sharp transi-
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tion in community structure, which results in about half
of the original species becoming extinct. Remarkably,
the survival fraction converges to the same value as for a
completely random consumer preference matrix, and re-
mains finite as σc →∞. This means that arbitrarily high
amounts of diversity can be maintained at a given amount
of uncertainty σ in the model parameters by considering
a sufficiently large starting ecosystem. These numerical
predictions are in excellent agreement with analytic pre-
dictions for the limit S →∞ derived in the Methods.

We proceeded to investigate the properties of these
self-organized high-diversity states more closely. In ad-
dition to the number of surviving species, we considered
two other community-level properties: the mean popu-
lation size 〈N〉 over all species, and the second moment
of the population size 〈N2〉, which includes information
about the range of population sizes. Figure 2 shows that
both of these quantities are also well-approximated by
the random consumer preference matrix for σc > 1. This
convergence to random ecosystem behavior is quite ro-
bust, and remains present when a set of designed in-
teractions is added to the original noninteracting com-
munity before adding the random component. Figure
2 shows the results for two basic interaction structures:
a block structure with pre-defined groups of species ex-
hibiting strong intra-group competition, and a unimodal
structure where each species is more likely to consume
resources similar to its preferred resource. The only ef-
fect of the choice of structure is to adjust the threshold
value of σc where the transition takes place. The charac-
ter of the self-organized state is also robust to changes in
the sampling scheme for the random component. Gaus-
sian sampling allows the clearest comparison to May’s
result, but it produces some negative values, while con-
sumer preferences should always be positive. We there-
fore tested two sampling schemes that always produce
positive values: uniform sampling in the interval from 0
to b, and binary sampling with probability p of choos-
ing 1. Changing b or p affects both the mean and the
variance of the random component, and so the transi-
tion point cannot be directly compared to the Gaussian
case. But we still find that the large-scale properties be-
come similar to those of the random ecosystem when the
average total off-target consumption capacity over all M
resource types becomes greater than the original designed
capacity.

Finally, we examined the stability of the ecosystems.
For comparison with May’s results, we obtained effective
competition coefficients Aij between species in a gener-
alized Lotka-Volterra model, by assuming that the re-
source abundances always remain close to their steady
state values, as illustrated in Figure 3(A). This matrix
is related to May’s community matrix by Jij = −N̄iAij .
For the symmetric interaction matrices arising from the
consumer resource model, one can prove that the largest
eigenvalue λmax of J reaches zero from below only when
the smallest eigenvalue λmin of A reaches zero from above
(see Methods). Figure 3(B) shows how the eigenvalues
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FIG. 3. Effect of random interactions on ecosys-
tem stability. (A): The bipartite interactions C̄iα in
MacArthur’s consumer-resource model can be mapped to
pairwise competition coefficients Aij in generalized Lotka-
Volterra equations through Aij =

∑
α∈M∗ C̄iαC̄

T
αj . (B) Spec-

tra of Aij at different σc for B = 1. The red solid line is the
Marchenko-Pastur distribution. (C): Comparison between
numerical simulations and analytic results for the minimum
eigenvalue of A at different σc. (D): Comparison between nu-
merical simulations and analytic solutions for the mean sensi-
tivity ν of steady-state population sizes to changes in species’
growth rates. See Methods for detailed calculations.

of A change as σc increases. Initially, all the eigenvalues
of the noninteracting community are identical, but with
increasing σc the distribution spreads out, and reaches
the threshold of stability λmin = 0 at σc ≈ 1. In the
Methods we show analytically using the Cavity method
[20, 21] that the transition point approaches 1 as S →∞,
in agreement with expectations based on May’s analysis.

But for σc > 1, we observe two new phenomena
that were not accessible in May’s original framework.
First, the spectrum is well-described by the eigenvalue
distribution for interactions resulting from completely
random consumer preference matrices, known as the
Marchenko-Pastur Distribution[22]. This is consistent
with our earlier observations on community-level observ-
ables that all coincided with the random case for suffi-
ciently large σc. Secondly, the minimum eigenvalue in
the Marchenko-Pastur Distribution is located at λmin =
σ2
c (1−

√
S∗/M∗)2, where M∗ is the number of resource

types that persist at nonzero abundance in the steady
state. As we saw earlier, about half the species go ex-
tinct when σc > 1, leading to S∗/M∗ < 1, so that λmin is
always positive. This means that the random ecosystem
is stable, for arbitrarily large values of σc.

The spectrum of A also contains quantitative informa-
tion about the degree of ecosystem stability. Specifically,
as shown in the Methods, the sum of the inverse eigenval-
ues

∑
i(1/λi) = tr(A−1) measures the average response

of the steady-state population size N̄i to a given pertur-
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bation of the species’ growth rate. Figure 3(D) shows
that this quantity is initially constant as σc is increased
from 0, then diverges at σc = 1, and finally rapidly de-
creases to near zero. In the Methods we provide ana-
lytical calculations based on the cavity method confirm-
ing that this divergence is a signature of a continuous
phase transition, analogous to the increased sensitivity
near ecological tipping points known to result in large
stochastic fluctuations [23, 24].

The foregoing analysis leads to a reinterpretation of
May’s theorem as a bound on the feasibility of bottom-up
engineering in complex systems. As the number of com-
ponents increases, small uncertainties in each of the in-
teraction parameters eventually overwhelm the designed
interactions, and destabilize the intended system state.
But the system generically finds a new typical stable state
which may be even more stable than the originally engi-
neered one. Importantly, our work suggests that cross-
ing the May transition generically gives rise to typical
random ecosystems rather than a specialized phase as
was found in a recent analysis of the Generalized Lotka-
Volterra model [16]. For this reason even when the cumu-

lative parameter uncertainties preclude a priori predic-
tion of the detailed structure of the new state, methods
from statistical physics and Random Matrix Theory can
be employed to predict system-level properties [15, 25].
Further development of these methods and their appli-
cations will play an important role in enabling top-down
control of systems beyond the May bound and helping to
identify assembly rules for microbial communities [26]
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A. Sanchez, Science 361, 469 (2018).

[19] R. Marsland III, W. Cui, J. Goldford, A. Sanchez, K. Ko-
rolev, and P. Mehta, PLoS computational biology 15,
e1006793 (2019).

[20] G. Bunin, Physical Review E 95, 042414 (2017).
[21] M. Advani, G. Bunin, and P. Mehta, Journal of Statis-

tical Mechanics: Theory and Experiment 2018, 033406
(2018).

[22] V. A. Marchenko and L. A. Pastur, Matematicheskii
Sbornik 114, 507 (1967).

[23] M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin,
S. R. Carpenter, V. Dakos, H. Held, E. H. Van Nes,
M. Rietkerk, and G. Sugihara, Nature 461, 53 (2009).

[24] L. Dai, D. Vorselen, K. S. Korolev, and J. Gore, Science
336, 1175 (2012).

[25] M. Barbier, J.-F. Arnoldi, G. Bunin, and M. Loreau,
Proceedings of the National Academy of Sciences 115,
2156 (2018).

[26] J. Friedman, L. M. Higgins, and J. Gore, Nature ecology
& evolution 1, 0109 (2017).

[27] S. Butler and J. P. O’Dwyer, Nature Communications 9,
2970 (2018).

[28] A. Altieri and S. Franz, Physical Review E 99, 010401
(2019).

[29] E. Agliari, F. Alemanno, A. Barra, and A. Fachechi,
arXiv preprint arXiv:1811.08298 (2018).

[30] R. B. Dozier and J. W. Silverstein, Journal of Multivari-
ate Analysis 98, 678 (2007).

[31] R. Couillet and M. Debbah, Random matrix methods for
wireless communications (Cambridge University Press,
2011).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/596551doi: bioRxiv preprint 

https://doi.org/10.1101/596551
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

METHODS

A. Model

In this work, we will focus primarily on MacArthur’s consumer-resource model(MCRM)[17]. This model consists
of S species or consumers with abundances Ni (i = 1...S) that can consume one of M substitutable resources with
abundances Rα (α = 1...M)

{
dNi
dt = Ni(

∑
β C̄iβRβ −mi)

dRα
dt = Rα(Kα −Rα −

∑
j NjC̄jα)

(1)

The consumption rate of species i for resource α is encoded by the element C̄iα in the S ×M matrix C̄. Kα is
the carrying capacity of each resource α. mi is some minimum maintenance cost that species i must harvest from
resources in order to grow. Note, both the species and resource abundances Ni and Rα must be strictly non-negative.
When the system is in the steady state, some species and resources can vanish. We denote the numbers of surviving
species and resources by S∗ and M∗, respectively.

To construct our mechanistic version of May’s analysis, we decompose the consumer matrix C̄ into two parts:
C̄ = B + C with B encoding a pre-designed set of resource-mediated interactions, and C a random matrix encoding
“off-target” consumption. We consider three types of B (see Figure 2): the identity matrix, a square Gaussian-type

circulant matrix Biα = e−min(i,|M−i|)2/r2 with r = 7[27] and a block matrix with identical 10× 10 blocks(all elements
are 1 inside the 10× 10 block). We also consider three types of random matrices C. In all cases, each element in the
matrix is sampled independently from an underlying probability distribution. The three distributions we consider are
a normal distribution with mean zero and standard deviation σc/

√
M , a uniform distribution where each element is

sampled uniformly from [0, b], and a Bernoulli distribution where each element can be +1 with probability pc and 0
with probability 1− pc (i.e Binary Noise).

For all simulations, unless otherwise specified the default choices for parameters are: M = 100, µ = 0, K = 10,
σK = 1 , m = 1 and σm = 0.1 and each data point is averaged from 4000 independent realizations. For Figure 3
(C, D), each data point is averaged from 8000 independent realizations. All simulations are available on GitHub at
https://github.com/Emergent-Behaviors-in-Biology/typical-random-ecosystems.

1. Alternative Models used in SI

To test the generality of our results, we also simulated more complicated variants of the consumer resource model
(see Figure S1). First, we simulated a consumer resource model with linear resource dynamics. In this case, the
second equation in (1) is replaced by

dRα
dt

= Kα −Rα −
∑
i

NiCiαRα. (2)

This small change can significantly change the ecosystem properties, because it prevents resources from going extinct
in the steady state. In the simulations, we set M = 100, µ = 1, K = 10, σK = 1 , m = 1 and σm = 0.1 and each data
point is averaged from 4000 independent realizations.

Second, we simulated a generalization of the MacArthur’s Consumer Resource model we call the Microbial Con-
sumer Resource Model (MicroCRM). The MicroCRM was introduced in [18] and refined in [19] to simulate microbial
communities. In this model, in addition to consuming resources species can produce new resources through cross-
feeding. This dramatically changes the resource dynamics through the introduction of trophic feedbacks. Unlike the
original CRM and the extensio to linear resource dynamics, the MicroCRM possesses no Lyapunov function. Full
details of the model are available in the appendix of [19]. In particular, the dynamics we use are described in equation
(17)[19] with the leakage rate l = 0.4. The fraction of secretion flux secreted to the same resource type is fs = 0.45,
the fraction of secretion flux to ’waste’ resource is fw = 0.45 and variability in secretion fluxes among resources is
d0 = 0.2. We set M = 100, µ = 1, K = 10, σK = 1 , m = 1 and σm = 0.1 and each data point is averaged from 4000
independent realizations.
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B. Sensitivity to Parameter Perturbations

We begin by defining four susceptibility matrices that measure how the steady-state resource and species abundances
respond to changes in the resource supply and species death(growth) rates:

χRαβ =
∂R̄α
∂Kβ

, χNiα =
∂N̄i
∂Kα

, νRαi =
∂R̄α
∂mi

, νNij =
∂N̄i
∂mj

(3)

where the bar X̄ over the variable X denotes the steady-state (equilibrium) solution.
For the extinct species and resources, by definition the susceptibilities are zero. For this reason, we focus only on

the surviving resources and species. At steady-state, equation (1) gives:

0 =
∑
α∈M∗

C̄iαR̄α −mi (4)

0 = Kα − R̄α −
∑
j∈S∗

N̄jC̄jα (5)

where M∗ and S∗ denote the sets of resources and species, respectively, that survive in the ecosystem at steady-state.
Differentiating these equations yields the relations

0=
∑
α∈M∗

C̄iα
∂R̄α
∂Kβ

, δαβ=
∂R̄α
∂Kβ

+
∑
j∈S∗

∂N̄j
∂Kβ

C̄jα

δij=
∑
α∈M∗

C̄iα
∂R̄α
∂mj

, 0=
∂R̄α
∂mi

+
∑
j∈S∗

∂N̄j
∂mi

C̄jα. (6)

Substituting in for the partial derivatives using the susceptibility matrices defined above, we have:

0 =
∑
α∈M∗

C̄iαχ
R
αβ , δαβ = χRαβ +

∑
j∈S∗

χNjβC̄jα

δij =
∑
α∈M∗

C̄iαν
R
αj , 0 = νRαi +

∑
j∈S∗

νNji C̄jα. (7)

These two equations can be written as single matrix equation for block matrices:(
C̄ 0
1 C̄T

)(
νR χR

νN χN

)
= 1 (8)

To solve this equation, we define a S∗ × S∗ matrix: Aij =
∑
α∈M∗ C̄iαC̄

T
αj . A straightforward calculation yields

χRαβ = δαβ −
∑
i∈S∗

∑
j∈S∗

C̄TαiA
−1
ij C̄jβ (9)

χNiα =
∑
j∈S∗

A−1
ij C̄jβ , νRαi =

∑
j∈S∗

C̄TαjA
−1
ji (10)

νNij = −A−1
ij , i, j ∈ S∗ and α, β ∈M∗ (11)

C. Cavity Solution

For an initially non-interacting ecosystem B = 1, the effect of random off-target consumption on system-scale
properties can be computed analytically in the M,S → ∞ limit using the cavity method [20, 21]. The cavity
calculation is straightforward but tedious. For this reason, it is helpful to introduce the notation:

• M∗

M = φR, 〈R〉 = 1
M

∑
β Rβ and qR = 1

M

∑
β R

2
β =

〈
R2
〉

, where M∗ is the number of surviving resources.

• S∗

S = φN , 〈N〉 = 1
S

∑
j Nj and qN = 1

S

∑
j N

2
j =

〈
N2
〉
, where S∗ is the number of surviving species.

• Ciα ≡ µ
M + σcdiα assuming 〈diα〉 = 0, 〈diαdjβ〉 =

δijδαβ
M . with 〈ciα〉 = µ

M , 〈ciαcjβ〉 =
σ2
c

M δijδαβ + µ2

M2 ≈ σ2
c

M δijδαβ .
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• Kα = K + δKα with 〈Kα〉 = 1
M

∑
βKβ = K, 〈δKαδKβ〉 = δαβσ

2
K .

• mi = m+ δmi with 〈mi〉 = m, 〈δmiδmj〉 = δijσ
2
m.

• γ = M
S and for the identity matrix γ = 1.

Following similar steps as in [21], we perturb the ecosystem with a new species and resource N0 and R0. Ignoring
O(1/M) terms yields the following equations:

dNi
dt

=Ni

Ri−m+
∑
β

(
µ

M
+ σcdiβ)Rβ + (

µ

M
+σcdi0)R0−δmi

 (12)

dRα
dt

= Rα

K+δKα−Rα −Nα−
∑
j

(
µ

M
+σcdjα)Nj − (

µ

M
+σcd0α)N0

 (13)

dN0

dt
=N0

R0 −m+
∑
β

(
µ

M
+σcdjα)Rβ−δm0

 (14)

dR0

dt
=R0

K + δK0 −R0 −N0 −
∑
j

(
µ

S
+ σcdj0)Nj

 (15)

Denote by N̄α/0, R̄α/0 and N̄i, R̄α the equilibrium values of the species and resources before and after adding the
newcomers, respectively. These can be related to each other using the susceptibilities defined above:

N̄i = N̄i/0 − σc
∑
j

νNij dj0R0 − σc
∑
β

χNiβd0βN0 (16)

R̄α = R̄α/0 − σc
∑
i

νRαidi0R0 − σc
∑
β

χRαβd0βN0 (17)

It is is helpful to introduce new auxiliary random variables:

zN =
∑
β

σcR̄β/0d0β − δm0 (18)

zR =
∑
j

σcN̄j/0dj0 − δK0 (19)

where 〈zN 〉 = 0, σzN =
√
σ2
cqR + σ2

m and 〈zR〉 = 0, σzR =
√
σ2
cqN + σ2

K . Following calculations analogous to [21] and

noting that γ = M
S = 1 yields:

R̄0 = max

[
0,
σ2
cχ(K − µ 〈N〉+ zR)− µ 〈R〉+m− zN

(1− σ2
cν)σ2

cχ+ 1

]
(20)

N̄0 = max

[
0,

(1− σ2
cν)(µ 〈R〉 −m+ zN ) +K − µ 〈N〉+ zR

(1− σ2
cν)σ2

cχ+ 1

]
(21)

Cavity equations for the susceptibilities can be obtained directly by differentiating these equations:

ν =
1

M

∑
i

νNii =
∂
〈
N̄0

〉
∂m

= − φN (1− σ2
cν)

(1− σ2
cν)σ2

cχ+ 1
(22)

χ =
1

M

∑
α

χRαα =
∂
〈
R̄0

〉
∂K

=
φRσ

2
cχ

(1− σ2
cν)σ2

cχ+ 1
(23)

Two solutions are found:

σc < 1, χ = 0, ν =
φN

σ2
cφN − 1

(24)

σc > 1, χ =

(
φR −

1

σ2
c

)(
1− φN

φR

)
, ν = − φN

σ2
c (φR − φN )

(25)

The comparison between cavity solutions and numerical simulations are given in Figure S3 and Figure 3(C).
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1. Three Regimes of Behavior

To understand these solutions and behaviors better, it is helpful to consider three regimes: Regime A where σc � 1,
Regime B where σc ≈ 1, and Regime C where σc � 1. Equation (25) shows the linear response function χ in Regime
B: σc ∼ 1 and Regime C: σc � 1 are only different at order 1/σ2

c . After the phase transition σ∗c = 1, a slight increase
of σc will induce a transition from Regime B into Regime C. This explains the dramatic drop of the species packing
shown in Figure 1(B). In Regime A (σc � 1), the equations for the steady-states become

R0 = max [0,m− zN ] , N0 = max [0,K + zR] (26)

For Regime C (σc � 1), the solution is well approximated by

R0 = max

[
0,
K − µ 〈N〉+ zR

1− σ2
cν

]
(27)

N0 = max

[
0,
µ 〈R〉 −m+ zN

σ2
cχ

]
, (28)

in agreement with the equations obtained in [21] for purely random interactions.

D. Lotka-Volterra Model, Wishart Matrix and Marchenko-Pastur Law

In this section, we show how the generalized Lotka-Volterra model can be related to the CRM, and in particular,
the how the steady states of the two models can be made to coincide. Solving for the steady-state values of the
non-extinct resources by setting the bottom equation in (1) equal to zero gives:

R̄α = Kα −
∑
i

NiC̄iα

Substituting this into the top equation in (1) gives:

dNi
dt

= Ni

 ∑
α∈M∗

CiαKα −mi −
∑
j

AijNj


where we have defined an interaction matrix Aij =

∑
α∈M∗ C̄iαC̄

T
αj and M∗ is the set of surviving resources. We

can use this equation to solve for the steady-state (equilibrium) abundances of non-extinct species, and arrive at the
expression:

N̄i =
∑
j∈S∗

A−1
ij (

∑
α∈M∗

CjαKα −mj)

where S∗ is the set of surviving species. In terms of N̄i, the Lotka-Volterra equations become:

dNi
dt

= −N̄i
∑
j

Aij(Nj − N̄j) (29)

with community matrix

Jij =

(
∂

∂Nj

dNi
dt

)
{N̄j}

= −N̄iAij . (30)

In May’s work, Jij is assumed to be an i.i.d. random matrix and an extension of Wigner’s arguments about Gaussian
random matrices is used to compute the leading eigenvalue [1]. Since the N̄i are not known a priori, the stability of
Lotka-Volterra type dynamics are more easily studied in terms of the eigenvalues of Aij , using the connection between
the leading eigenvalues of J and A derived below. Furthermore, for the Lotka-Volterra model obtained from the
MCRM, A is the outer product of a random matrix C̄ with itself, i.e., a Wishart matrix. The underlying reason for
this is the bipartite nature of the MCRM resulting from the presence of two types of degrees of freedom: resources and
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species [28, 29]. Wishart matrices are well-known to follow a different eigenvalue distribution, the Marchenko-Pastur
law[22] given by

ρ(x) =
1

2πσ2
ccx

√
(b− x)(x− a) (31)

where c = S∗

M∗ .

For the problem we are studying, the bounds of the Marchenko-Pastur distribution are given by: a(c) = σ2
c (1−√c)2

and b(c) = σ2
c (1 +

√
c)2. In Regime C: the random phase, the spectrum of A is extremely well described by ρ(x) (see

Figure 3(B) and Figure S2). The Marchenko-Pastur law also allows us to find a analytic expression for the minimum
eigenvalue of A:

λmin = σ2
c (1−√c)2. (32)

E. Relating the eigenvalues of A and J

In this section, we prove that the largest eigenvalue λmax of the community matrix J (which controls the Lyapunov
stability of the fixed point) is negative if and only if the smallest eigenvalue λmin of the Lotka-Volterra competition
matrix A is positive. For this stability analysis, we remove the rows and columns corresponding to species that go
extinct in the steady state, since allowing Ni = 0 trivially generates zero eigenvalues. J and A will always refer to
the resulting matrices of dimension S∗ × S∗.

We start by defining the diagonal matrix N̄, whose nonzero elements are the equilibrium population sizes N̄i. This
lets us write

J = −N̄1/2(N̄1/2AN̄1/2)N̄−1/2 (33)

where N̄1/2 is the diagonal matrix whose entries are the square roots of the population sizes. This equation says that
J is similar to −W ≡ −N̄1/2AN̄1/2, which implies that they share the same eigenvalues.

Since W and A are both symmetric matrices, their eigenvalues are all real, and the positivity of all the eigenvalues
is equivalent to the positive-definiteness of the matrix.

Now we note that W is positive definite if and only if A is positive definite. For if A is positive definite, then
xTAx > 0 for all column vectors x 6= 0, including the column vector x = N̄1/2y for any column vector y 6= 0. But this
implies that yT N̄1/2AN̄1/2y > 0 for all y 6= 0, i.e., that W is positive definite. Conversely, if W is positive definite,
then yT N̄1/2AN̄1/2y > 0 for all y 6= 0, including y = N̄−1/2x for any x 6= 0. But this implies that xTAx > 0 for all
x 6= 0, i.e., that A is positive definite.

We conclude that the eigenvalues of W are all positive if and only if the eigenvalues of A are all positive. Therefore
the largest eigenvalue of J = −N̄1/2WN̄−1/2 is negative if and only if the smallest eigenvalue of A is positive, as
claimed in the main text.

F. Correspondence between RMT and cavity solution

Our numerical simulations show that after the transition, our ecosystems are well described by purely random
interactions. This suggests that we should be able to derive our cavity results using Random Matrix Theory (RMT).
We now show that this is indeed the case. Our starting point are the average susceptibilities which are defined as:

χ =
1

M

∑
α∈M

χRαα =
1

M

∑
α∈M∗

χRαα (34)

ν =
1

S

∑
i∈S

νNii =
1

S

∑
i∈S∗

νNii . (35)

From the cavity calculations, we only care about χRαβ and νNij , because the other susceptibilities are lower order in

1/M .
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We can combine these equations with (10) and (11) to obtain

χ =
1

M

∑
α∈M∗

χRαα =
1

M
Tr(χRαβ) (36)

=
1

M
Tr(δαβ)− 1

M
Tr

∑
i∈S∗

∑
j∈S∗

C̄TαiA
−1
ij C̄jβ


=
M∗

M
− 1

M
Tr

∑
i∈S∗

∑
j∈S∗

A−1
ij C̄jβC̄

T
βh


=
M∗

M
− S∗

M
= φR − γ−1φN (37)

We now show that the cavity solutions are consistent with results from RMT using equations (10) and(11) in Regime
A and Regime C described in the main text.

1. Regime A: C̄ = 1

This regime happens when σc � 1. Substituting, C̄ = 1 into equations (10) and (11) yields

χ = 0, ν = −1. (38)

This is consistent with the cavity solution equation (24) with σc = 0 since in this case S∗ = S = M .

2. Regime C: C̄iα i.i.d. N (0, σc/
√
M)

In this regime, σc � 1. In this case, Aij =
∑
α∈S∗ C̄iαC̄

T
αj takes the form of a Wishart Matrix. We will exploit this

to calculate χ and ν. Notice,

ν =
1

S

∑
i∈S∗

νNii = − 1

S
Tr(A−1

ij ) = − 1

S

S∗∑
i=1

λ−1
i (39)

where λi is the eigenvalue of Aij . From the Marchenko-Pastur law [22], we know that the eigenvalues of a random
Wishart matrix obey the Marchenko-Pastur distribution. Substituting equation (32) into the expression for ν and
replacing the sum with an integral yields:

ν = −S
∗

S

∫ b

a

1

x
ρ(x)dx (40)

= −S
∗

S

a+ b− 2
√
ab

4σ2
cy
√
ab

= − 1

σ2
c

φN
φR − γ−1φN

The second line of equation (40) is obtained by transferring the integral function to a complex analytic function and
applying the residue theorem. This result is the same as the cavity solution equation (25) when σc � 1.

3. Regime B using the Stieltjes transformation

In Regime B, it hard to estimate the minimum eigenvalue. We can use Stieltjes transformation of information-plus-
noise-type matrices which are well studied in wireless communications[30, 31], where B represents the information
encoded in the signal and C is the noise in wireless communications. In this case, we have

C̄iα = 1+ Ciα, Ciα i.i.d. N (0, σc/
√
M).
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Aij =
∑
α∈M∗

C̄iαC̄
T
αj =

∑
α∈M∗

CiαC
T
αj + Ciα + CTαi + 1 (41)

Using Theorem 1.1 in Dozier and Silverstein[30], the Stieltjes transform m(z) of Aij satisfies

σ4
czm

3 − 2σ2
czm+ (σ2

c + z − 1)m− 1 = 0 (42)

The asymptotic spectrum of Aij can be obtained by m(z), the solution of equation (42) with

ρ(x) = lim
ε→0+

m(x− iε)−m(x+ iε)

2iπ
(43)

The result is shown in Figure S4. The minimum eigenvalue reaches 0 nearly at σ∗c = 1, as predicted by the cavity
solution.
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Supplementary Information

Cross-Feeding

Linear Resource Dynamics(A)

(B)

FIG. S1. Community properties for generalized consumer-resource models under Gaussian noise. (A) Linear resource dynamics:
the resource dynamics is changed to dRα

dt
= Kα − Rα −

∑
iNiCiαRα. (B) With cross-feeding: the dynamics is described in

equation (17) in Supplementary Information of [19]. The noise is only applied on the consumption matrix and D is kept the
same at different σc. In both models, B = 1. See Methods for parameter values. Each data point is averaged over 4000
independent realizations.
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FIG. S2. Spectra of Aij in different cases. (A) Uniform Noise: U(0, b) and Binary Noise: Bernoulli(pc); B is an identity
matrix. (B) Gaussian noise and B is a circulant matrix. (C) Gaussian noise and B is a block matrix. Note that S∗,M∗ in
Aij are obtained from numerical simulations.
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FIG. S3. Comparison between numerical simulations and cavity solutions for χ at different σc. Note S∗ and M∗ are obtained
from the numerical simulations, although in principle they could be obtained by solving the cavity equations directly.
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FIG. S4. The asymptotic spectrum of Aij for different values of σc by solving equation (43) numerically.
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