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ABSTRACT 
Motor behaviors are continually shaped by a variety of processes such as environmental influences, 
development, and learning1,2. The resulting behavioral changes are commonly quantified based on 
hand-picked features3–10 (e.g. syllable pitch11) and assuming discrete classes of behaviors (e.g. distinct 
syllables)3–5,9,10,12–17. Such methods may generalize poorly across behaviors and species and are 
necessarily biased. Here we present an account of behavioral change based on nearest-neighbor 
statistics18–23 that avoids such biases and apply it to song development in the juvenile zebra finch3. First, 
we introduce the concept of repertoire dating, whereby each syllable rendition is dated with a “pseudo” 
production-day corresponding to the day when similar renditions were typical in the behavioral 
repertoire. Differences in pseudo production-day across renditions isolate the components of vocal 
variability congruent with the long-term changes due to vocal learning and development. This 
variability is large, as about 10% of renditions have pseudo production-days falling more than 10 days 
into the future (anticipations) or into the past (regressions) relative to their actual production time. 
Second, we obtain a holistic, yet low-dimensional, description of vocal change in terms of a behavioral 
trajectory, which reproduces the pairwise similarities between renditions grouped by production time 
and pseudo production-day24. The behavioral trajectory reveals multiple, previously unrecognized 
components of behavioral change operating at distinct time-scales. These components interact 
differently across the behavioral repertoire—diurnal change in regressions undergoes only weak 
overnight consolidation4,5, whereas anticipations and typical renditions consolidate fully2,6,25. Our 
nearest-neighbor methods yield model-free descriptions of how behavior evolves relative to itself, 
rather than relative to a potentially arbitrary, experimenter-defined, goal3–5,11. Because of their 
generality, our methods appear well-suited to comparing learning across behaviors and species1,26–32, 
and between biological and artificial systems.  

RESULTS 
Juvenile male zebra finches acquire complex, stereotyped, vocalizations through a months-long 
process of sensory-motor learning3,28,33–38. We obtained continuous audio recordings between 40 days 
post hatch (dph) and up to 120 dph (70.3±14.9 consecutive days, mean and STD across 7 birds). Birds 
were isolated from other males after birth and live-tutored between ages 44 and 67 (Fig. 1A, Methods). 
Audio recordings were band-passed (0.5k-8kHz) and segmented into individual syllable renditions 
represented as song spectrograms (Fig 1B, between 563124 and 1260715 renditions per bird). During 
development, both syllable order, i.e. syntax, as well as the spectral structure of individual syllables 
are altered39. Largely independent mechanisms, with distinct anatomical substrates, may underlie 
learning of these two properties of the song40,41. Here we focus on characterizing change in spectral 
structure.  
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Learning curves differ across behavioral features 
In the context of learning, behavioral change is often described through “learning curves”, which depict 
how particular features of the behavior, like overall task-performance or syllable pitch, change over 
time3–6,42. Learning curves can provide a parsimonious description of change for behaviors that are 
intrinsically low-dimensional, like reflexive eye-movements43, or that are constrained to low-
dimensional output spaces, like the position of a planar manipulandum1,2,7,8,29. Change in complex, 
high-dimensional behaviors like singing3, however, can be difficult to capture with “learning-curves” 
alone. 

To illustrate this point, we compute the time evolution of a few hand-picked spectral features of a 
single birdsong syllable at a particular developmental stage. Here we consider three linear features 
(Fig. 1D-F, insets; see methods for the definition of the features). The strength of each feature for a 
given rendition corresponds to the dot product of the rendition spectrogram with the linear kernel 
defining the feature. The corresponding “learning curve” is obtained by plotting feature strength over 
time, across two adjacent days (Fig. 1D-F, black lines).  

The three chosen features result in substantially different descriptions of the time-course of change 
for the same syllable. The first feature becomes progressively stronger during the day, and these 
changes are consolidated overnight (Fig. 1D; strong consolidation). The second feature also becomes 
stronger during the day, but these changes are largely lost overnight (Fig. 1E; weak consolidation). The 
third feature does not change much during the day but strengthens overnight (Fig. 1F; offline learning). 
Notably, strong consolidation6,25, weak consolidation4,5, and offline learning6,44,45 have all been 
reported in the past30, albeit in different behaviors and species. Figures 1D-F show that these different 
patterns of change can coexist within a single complex behavior.  

Past studies relying on only one or a few hand-picked features of behavior, like pitch3 or entropy 
variance4,5, may thus have provided a biased, and possibly misleading, picture of the time course of 
change during vocal development. One approach to avoiding this bias might be to attempt to identify 
all features undergoing change. This would be cumbersome, since the relevant features are likely to 
differ both across syllables and stages of development3. Because the relevant features differ across 
syllables, the song would additionally have to be clustered into distinct syllables. This requirement is 
particularly problematic for behavior that does not appear to be clustered (e.g. juvenile song) and 
when the number of clusters changes over time (Extended Data Fig. 1). A related approach is to directly 
track the similarity of vocalizations to the tutor song11. However, the “goal” of vocal development 
reflects not just the tutor song, but also innate song priors of largely unknown nature46. Focusing on 
similarity to tutor song thus also leads to a biased description of change, as it potentially blends out 
critical components of the learning process.  

Nearest-neighbor based non-parametric assessment of behavioral change 
Here we develop a novel, non-parametric, high-dimensional characterization of behavioral change that 
does not rely on features, but rather provides a “holistic” description of behavioral change based on 
nearest-neighbor statistics19–21,47,48. We analyze spectrogram segments of fixed duration (e.g. 60ms) 
aligned to syllable onset. The segments are represented as real valued vectors !"  where # indexes all 
renditions produced by a bird. The nearest-neighbor of syllable rendition !"  is defined as the data point 

that is closest to it based on Euclidean distance in spectrogram space: $$" = &'()#*+,!" − !+,
.

 
where # and / range over the entire dataset (Fig. 1C). The set of 0 nearest-neighbors of rendition # 
defines its local neighborhood. Each data point has an associated production time, 1" ∈ ℝ, i.e. the bird’s 
age when singing !". Larger values of 0 result in more global views of the learning process. However, 
0 should be small enough to not mix different clusters within a neighborhood (Extended Data Fig. 1C). 
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To explore visually how spectrograms change with learning, we first represent the data for a given bird 
with Barnes Hut t-stochastic neighbor embedding23. This non-linear dimensionality reduction 
technique visualizes high dimensional data by finding a low dimensional arrangement of the data 
points that predominantly preserves local neighborhoods. Each point in such a low dimensional 
embedding (Fig. 2A) corresponds to a spectrogram segment !"  and different locations in the 
embedding space correspond to different vocalization types (Fig. 2B). The embedding suggests that 
vocalizations change from undifferentiated subsong49 (Fig. 2A, middle) to clearly differentiated 
syllables falling into at least four categories (Fig. 2A, syllables a, b, c and introductory note i; same 
labels as in Fig. 1B). Initially, individual syllable renditions are highly variable, and averages of 
neighboring syllables are undefined and blurry (Fig. 2B, bottom-left panels) but over time stereotyped 
syllable types emerge (Fig 2B, e.g. top row). This emergence of clustered syllables from un-clustered 
subsong is confirmed by standard clustering algorithms (Extended Data Fig. 1). Note that the 
embedding does not reproduce all local structure in the underlying data, as nearest neighbors in the 
embedding space are not necessarily nearest neighbors in the full high dimensional data (Fig. 2A, black 
crosses mark high-d neighbors). Behavioral change should therefore not be quantified in low-
dimensional embeddings, but rather directly on the high-dimensional data.  

Specifically, we quantify behavioral change by analyzing the composition of local neighborhoods18,20,47 
(Extended Data Fig. 2). For each data point, we compute the histogram of production times over its 
neighborhood (the “neighborhood production times”; Fig. 2C) and summarize all histograms as a 
neighborhood mixing-matrix (Fig 2D; Extended Data Fig. 2C). Each value of this matrix represents the 
similarity between vocalizations from two production times. Deviations from zero indicate that 
vocalizations from the corresponding production times are more (> 0) or less (< 0) similar (i.e. mixed 
at the level of neighborhoods) than expected from a shuffling null-hypothesis.  

The mixing-matrix for the example bird depicts an initial, largely stationary subsong phase (Fig. 2D, 
bottom-left; all pairs of days<0 have high similarity). Marked changes occur at tutor onset (Fig. 2D, 
days=0) and more gradual changes afterwards (Fig. 2D, days>0; similarity largest along the diagonal). 
A similar progression is observed across all recorded birds (Extended Data Fig. 3).  

To obtain a more accessible representation of the mixing matrix, we use non-metric multi-dimensional 
scaling50 to represent the similarity structure between vocalizations from different production times 
as a behavioral trajectory (Fig. 2F; see Methods). Each point on the inferred 10-dimensional trajectory 
represents all vocalizations produced on a given day and the pairwise distances between points 
faithfully represent the measured similarity structure (Extended Data Fig. 4A). Here we focus on a 16-
day-phase of gradual change occurring midway through development (Fig. 2E). During this phase, the 
behavioral trajectory is structured differently at fast and slow timescales (Extended Data Fig. 4). The 
2d-projection of the trajectory that explains maximal variance emphasizes the slow components of 
behavioral change (Fig. 2F).  

These slow components of change reflect the long-term changes in behavior that are typically equated 
to learning and development. By contrast, fast components may reflect metabolic, neural, or other 
changes within single days that are not congruent with the slow changes resulting from learning or 
development. In the following we abstractly refer to the slow components as the direction of slow 
change (DSC).  

The behavioral trajectory (Fig. 2F) has three notable properties. First, it provides a characterization of 
change that does not require an explicit clustering step to categorize vocalizations into syllables. 
Movement along the behavioral trajectory captures both the progressive differentiation of 
vocalizations into distinct syllables and continuous changes in the structure of individual syllables (Fig. 
1, Fig. 2A, B; Extended Data Fig. 1). Second, movement along the trajectory potentially reflects 
simultaneous change in many spectral features, which need not be identified explicitly. Third, 
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behavioral change is defined by comparing the juvenile song to itself across different developmental 
stages, rather than to a tutor song. Thus the behavioral trajectory also reflects innate song priors that 
can result in crystallized song deviating from the tutor song46, as well as additional change due to other 
developmental processes. 

Repertoire dating reveals repertoire extent and consolidation 
The slow components of change in Fig. 2F do not account for all the dynamics in the behavior. The low-
dimensional t-SNE embedding reveals that renditions produced on a given day are highly variable and 
that behaviors from nearby days overlap considerably (Fig. 2H). This variability suggests that individual 
renditions from a day are widely spread along the behavioral trajectory. Underlying this variability is a 
clear temporal dynamic. Behavior changes systematically over the course of hours (Fig 2H) and these 
within-day changes appear to partly mimic the gradual change across days (Fig. 2G).  

Critically, the direction of slow change (DSC) provides a principled means to parameterize behavior by 
its “maturity”, which in turn can be used to relate changes occurring at different timescales. 
Particularly mature, or anticipatory, behaviors resemble renditions mostly produced in the future. 
Anticipations can be thought of as lying further along the trajectory than regressive behaviors, which 
instead resemble renditions produced in the past. The position along the DSC for a given rendition can 
be determined by means of the neighborhood production times (Fig. 2C, Fig. 3A). Anticipations and 
regressions predominantly have neighbors that were produced in the future or in the past, whereas 
renditions that were typical for a given developmental stage mostly have neighbors produced on the 
same or nearby days (examples in Fig. 3A, all produced on day 70). The median of the neighborhood 
production times defines the “pseudo” production-day (pPD) for each rendition. The pseudo 
production-day can serve to place each rendition along the DSC (Fig. 3C, horizontal axis; Fig. 3D), i.e. 
to date it with respect to the progression of development. For typical renditions, the pseudo 
production day matches the true production time (Fig. 3C,D; pPD=70), whereas for anticipations it is 
larger (pPD>70) and for regressions smaller (pPD<70). We refer to this parameterization of behavior 
as “repertoire dating” (in analogy to methods like radiocarbon-dating).  

The distribution of pseudo production-days across all renditions in a day (Fig. 3C) provides an estimate 
of the extent of motor variability along the DSC. By his measure, variability is large—the most extreme 
regressions are backdated more than 10 days into the past, and the most extreme anticipations are 
postdated more than 10 days into the future. The extent of motor variability along the DSC is also 
reflected in the pooled production times (Fig. 3B), obtained by combining the neighborhood 
production times of all renditions from a given period. For day 70 of the example bird, the histogram 
of pooled production times peaks around day 70, reflecting that most renditions are typical for the 
developmental stage when they were produced (Fig. 3B, 50th percentile at or close to 70). However, 
the tails of the histogram extend far into the future and into the past (Fig. 3B), reflecting the substantial 
fraction of anticipations and regressions in the behavioral repertoire.  

We use the pooled production times to quantify changes in the behavior at the time scale of hours. 
We subdivide each day into 10 consecutive periods and compute pooled production times separately 
for each period. The evolution of behavior within and across days can then be assessed for the entire 
duration of development by tracking the percentiles of the pooled production times over time (Fig. 
3E). The evolution of each percentile is akin to a “learning curve” (e.g. Fig. 1D-F) for a specific part of 
the behavioral repertoire (e.g. typical renditions, 50th percentile; extreme anticipations, 95th 
percentile). The curve for each percentile captures the progress along the DSC (Fig. 3E, horizontal axis) 
as a function of time (Fig. 3E, vertical axis). We validated this characterization of behavioral change on 
simulated behavior mimicking vocal development in zebra finches (Extended Data Fig. 5). 

The percentile curves reveal a strikingly different time-course of change for anticipations, regressions, 
and typical renditions. Typical renditions move gradually along the DSC throughout the day (Fig. 3E, G, 
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red; horizontal axis). Changes acquired during the day are, on average, fully consolidated overnight, 
i.e. typical renditions produced early on day k+1 fall onto a similar location along the DSC as typical 
renditions produced late on day k (Fig. 3G, red; Fig. 3J; compare to Fig. 1D). A similar or smaller degree 
of within-day-change is observed for anticipations (Fig. 3E, G; 75th and 95th percentiles). The dynamic 
of consolidation for regressions is very different (Fig. 3E, G; 5th and 25th percentiles). Within each day, 
regressions move by a large distance, but this change is only weakly consolidated overnight (as in Fig. 
1E; Fig. 3G; 5th and 25th percentiles; Fig. 3I). This implies that the worst renditions improve markedly 
throughout a day, more so than typical renditions or anticipations, but these improvements are mostly 
lost overnight. 

Notably, movement along the DSC also occurs at much faster timescales than hours, namely within 
bouts of singing. We define a bout as a group of vocalizations preceded and followed by extended 
periods of non-singing. We require pauses between adjacent bouts of at least 2.5s, resulting in an 
average bout duration of 3.81±0.83s (see Methods). On average across birds, 99% of all renditions 
from a day occur within bouts. We identify within-bout changes (Fig. 3F,H) in the same way as within-
day changes (Fig. 3E,G)—we subdivide each bout into 10 consecutive periods, compute pooled 
production times for each period (over all bouts in a day), and track change through the corresponding 
percentiles. Within bouts, large, consistent changes along the DSC occur at the regressive tail of the 
behavioral repertoire—vocalizations are most regressive at the onset of a bout, become substantially 
less regressive as the bout progresses, only to become more regressive again before the end of the 
bout (Fig. 3F, H; 5th percentile). Similar, albeit weaker, changes occur for typical renditions (Fig. 3F, H; 
red).  

The same changes in song maturity can be observed when short bouts (duration 2.30±0.54s) or long 
bouts (duration 6.28±1.73s) are considered separately (Extended Data Fig. 6A, B), suggesting that the 
end of a bout predictably follows the observed decrease in song maturity. Importantly, these within-
bout changes reflect systematic changes in the structure of the underlying spectrograms, rather than 
changes in the overall frequency of production of different syllables across bout periods (Extended 
Data Fig. 6C, D). Birds may thus actively monitor their singing behavior51 and stop singing when the 
quality of their vocalizations decreases. 

Stratified neighborhood mixing matrices reveal misaligned behavioral components 
The pseudo production-day, by construction, can only reveal within-day and within-bout changes that 
recapitulate, on a faster timescale, changes that are also apparent at the resolution of days. For 
example, consider a hypothetical syllable that undergoes change with respect to a first feature that 
changes within days, from morning to evening, but not over days (as in Fig. 1E); and a second feature 
that changes over days, but not within days (as in Fig. 1F). The pseudo production-day would, on 
average, be identical for morning and evening renditions, and thus not reflect the existence of within-
day change along the first feature. We refer to components of change that are reflected in the pseudo 
production-day as being aligned with the direction of slow change (DSC) and components that are not 
reflected in it as being misaligned or orthogonal. 

To shed light on the relationship and size of aligned and misaligned components, we construct a 
representation of the data that can resolve both components of change. We define a stratified mixing 
matrix, which combines the concept of a neighborhood mixing-matrix (e.g. Fig. 2D, E) with repertoire 
dating (Fig. 3). Specifically, we use repertoire dating to subdivide each day’s behavioral repertoire into 
5 strata, by assigning each rendition to 1 of 5 quintiles based on its pseudo production-day (Fig. 3C, 
quintiles). Additionally, we also assign each rendition into 1 of 5 consecutive production periods, 
analogous to the 10 periods used in Fig. 3E-H. We then place the renditions into 1 of 25 bins, defined 
by all pairwise combinations of strata and production periods (the binning is nested, Fig. 4). The full 
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stratified mixing matrix measures similarity between the 50 bins obtained by combining data from two 
adjacent days (Fig. 4A, B). We average these stratified mixing matrices across pairs of days and birds.  

We compare the average stratified mixing matrix (Fig. 4B) with simulations that differ with respect to 
how change within a day and change across adjacent days are aligned with the DSC (Fig. 4A, top; 
Extended Data Fig. 7). In simulated model 1, change only occurs along the DSC, meaning that 
development can be thought of as a “1-dimensional” process. In model 2, change within a day involves 
both a component along the DSC, as well as a consistent component that is not aligned to it (Fig. 4A, 
within-day change). Model 3 includes an additional misaligned component of change compared to 
model 2. Adjacent days are separated not only along the DSC, but also along a direction orthogonal to 
it (Fig. 4A, Model 3, across-day change). For simplicity, here we do not simulate distinct consolidation 
patterns across the behavioral repertoire, but rather let all strata undergo full overnight consolidation. 
The prominent “stripes” along every other diagonal in the measured mixing matrix (Fig. 4B) indicate 
larger similarity between renditions from the same day than between renditions from adjacent days. 
This structure appears most consistent with model 3, suggesting that several misaligned components 
contribute to change at fast timescales.  

We visualize these components through multi-dimensional scaling on the stratified mixing matrix by 
concurrently inferring 10-dimensional behavioral trajectories for all strata of the behavior. These 
inferred trajectories span more than two dimensions. To appreciate their structure, we thus consider 
several distinct 2-dimensional-projections of the inferred trajectories (Fig. 4C-E; labels 1-5 mark the 
different strata; Extended Data Fig. 7). The projection capturing most of the variance due to the 5 
strata resembles Fig. 2F and reflects the component of slow change (Fig. 4C, top). Consistent with Fig. 
3E, the change in behavior between adjacent days along the DSC (Fig. 4C, top; blue vs red points for 
the same stratum) is small compared to the spread of one day’s behavior along the same direction 
(e.g. blue points, strata 1-5). For each stratum, however, much of the change occurring within a day is 
misaligned with the DSC (Fig. 4C, middle; early vs. late separated along orthogonal dimension of within-
day change). Yet another misaligned component is necessary to appropriately capture change across 
adjacent days (Fig. 4C, bottom, day k vs. k+1 separated along orthogonal direction of across-day 
change).  

The trajectories also reflect the heterogeneous dynamics of consolidation across the behavioral 
repertoire (Fig. 4E). Because the behavioral trajectory is curved, the consolidation dynamic of each 
stratum is more faithfully assessed through a separate projection onto the “local” DSC (Fig. 4E, inset; 
black arrows). The 2d-projections spanned by this local direction and the direction of within-day 
change confirm the findings of Fig. 3G—for regressions, most of the gain along the DSC experienced 
during a day is lost overnight (Fig. 4E; strata 1&2; weak consolidation, Fig. 1E); for typical renditions 
(stratum 3) and anticipations (strata 4-5) the within-day gain instead is maintained or possibly 
increased upon, corresponding to strong consolidation or even “off-line” learning (Fig. 1D, F). Notably, 
here the distinct consolidation patterns are revealed for each stratum separately, whereas the analysis 
in Fig. 3G is based on an aggregate description of the behavioral repertoire (the pooled neighborhood 
production times, e.g. Fig. 3B). 

The interplay of the identified fast and slow components of change explains the potentially puzzling 
finding that different features of a single syllable can undergo different patterns of change (Fig. 1D-F): 
the time evolution for a given feature is determined by the feature’s relative alignment with the DSC 
and the within-day and across-day change. That alignment in turn can differ from feature to feature. 
Indeed, the properties of aligned and misaligned components of change inferred from nearest-
neighbor statistics can be replicated with a linear analysis52,53 based on spectral features chosen to 
capture change at specific timescales (Extended Data Fig. 8, 9). The pattern of overnight consolidation 
for a given feature, in particular, mainly reflects its degree of alignment with the DSC. Consolidation 
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can be strong (complete alignment), weak (partial alignment), or reveal “offline learning” (partial 
alignment with the DSC but orthogonal to within-day change; Extended Data Fig. 8).  

DISCUSSION 
Our finding that within-day changes are fully consolidated overnight across much of the behavioral 
repertoire is in line with studies of skilled motor learning in humans31,44,45,54 and of motor adaptation 
in humans2,29 and birds6, but appears at odds with past accounts of vocal learning in Zebra finches, 
which reported weak consolidation4,5. The latter results can be reconciled with our findings if one 
assumes that consolidation was assessed on a song feature (“song complexity”, measured as entropy 
variance55) that happens to be more aligned with the component of within-day change than with the 
direction of slow change (DSC) (like the feature in Fig. 1E; Extended Data Fig. 8). Notably, an increase 
in “song complexity” has also been observed during directed singing, as opposed to the undirected 
singing we study here56. This increase need not necessarily imply that juveniles can dramatically 
improve the maturity of singing during phases of exploitation compared to exploration, as previously 
proposed56. The difference in directed vs. undirected song may occur along the direction of within-day 
change, which would result in little gain along the DSC. 

The identified components of behavioral change could reflect both neural and non-neural processes. 
Neural bias signals from area LMAN may contribute to the observed within-day change (as in “pitch-
shifting” experiments6,57) whereas across-day change may reflect synaptic and circuit-level 
modifications occurring overnight6. Non-neural processes like circadian rhythms5,58, fatigue, or varying 
environmental factors could also contribute to the observed components of change. The strength of 
within-day and across-day change is strongest after tutor onset, and declines as the song becomes 
more mature (Extended Data Fig. 10), suggesting that they do play a role in learning. The component 
of slow change may also reflect developmental processes related merely to the growth of juvenile 
birds. A large contribution of growth-related or similar, non-specific, processes to this component 
would have to be reconciled with the observed stark differences in consolidation across the repertoire; 
an overnight reset along the DSC for regressions; and an interruption of change during the night in 
typical renditions (Fig. 3G, Fig. 3I-K, and Fig. 4E). Furthermore, movement along the DSC does not only 
occur on the slow timescales to be expected from developmental processes, but also on the much 
faster timescale of bouts (Fig. 3F, H). Nonetheless, behavioral analyses alone can ultimately not 
distinguish between neural and non-neural contributions to change.  

Lacking a formal understanding of how species-specific priors and tutor song are combined to set the 
goals of learning, any characterization of the progress of learning, whether based on features or 
nearest neighbors, is not immune to contamination by developmental and other processes. Yet, an 
approach based on a few handpicked features is, a priori, necessarily more biased with respect to the 
entirety of behavioral change than our “intrinsic” characterization of learning as the direction towards 
which the song is moving. Hence, the fine-grained structure of behavioral change revealed here 
provides a novel, more precise and more general foundation for both theoretical59–61 and experimental 
studies into the neural processes of learning.  

Our approach, based on nearest-neighbor statistics19–22,47,48 is largely complementary to approaches 
that rely on clustering behavior into distinct categories10,12,15–17,62. Whereas such model based, or 
parametric, methods fare better when an appropriate model is known22 the approach presented here 
is model-free and can be applied when no appropriate models are known. To date, the latter seems to 
be the case for many complex behaviors, including birdsong. Nearest-neighbors respect potential 
clustering structure in the data “per construction”, since they will typically lie within the same cluster 
(Extended Data Fig. 1). Foregoing an explicit clustering of the data can be advantageous since assuming 
the existence of clusters can constitute an unwarranted approximation17,63,64 and impede the 
characterization of behavior that appears not clustered, like juvenile Zebra finch song (Extended Data 
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Fig. 1). Furthermore, determining precise cluster counts and precise cluster boundaries is an ill-defined 
problem even for data that appears well clustered65,66. Importantly, the definition of nearest-neighbors 
requires only a locally meaningful distance metric67, a much weaker requirement than a globally valid 
distance metric or the existence of a low dimensional feature space that globally maps behavioral 
space68–72. Because of these properties, the presented framework is very general, and applicable to 
almost any behavior, as well as other high dimensional data characterized by “labels” other than 
production time. The framework may thus provide an account of learning amenable to comparisons 
between different behaviors and model systems, including different species26,73 and artificial learning 
systems74. 
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METHODS 

Vocalization Recordings 
Vocalizations were recorded from 7 zebra finches housed in acoustic isolation chambers. On average 
birds were recorded from day 39 to 88 and live tutored from day 44 to day 67 post hatch. Audio was 
recorded continuously at a sampling rate of 32kHz and portions without vocalizations were discarded. 
Recorded audio was band-passed between 350Hz-8khz (using a digital filter).  

Segmentation into Syllables 
The resulting band-pass filtered recordings were segmented based on RMS-amplitude of the signal. 
Let !" ∈ 	ℝ denote the band-passed raw audio signal. The RMS-amplitude of the signal at time & is 

defined as '()" = +,
-
∑ !"/0

12
03, 4

5
6 . We chose the rms-buffer-size, 7 , to be 256 samples. Given a 

threshold 8  to separate signal from background noise, segment onsets were detected as upward 
threshold crossings of the RMS signal, i.e. an onset at time & requires that '()" < 8 and '()":, ≥ 8. 
Offsets are downward threshold crossings. Some segmentations were corrected in a semi-automatic 
process. We only corrected cases where both context (i.e. surrounding syllables) and spectral content 
clearly indicate a segmentation error.  

Spectrograms 
Spectrograms of the detected segments were generated from the band passed raw audio signals. 
Spectrograms were computed using < = 512  samples (16ms) for each Fourier transform. A 
spectrogram column, @& ∈ 	ℝ

<, is given by the discrete short time Fourier transform of a smoothed 
short section of the band-passed raw audio signal B"

C = (!"/C:,, … ,!"). Smoothing is done by 
multiplying pointwise with a hamming smoothing window 	7(G) = 0.54 − 0.46 cos +

1PQ

C
4 , 0 ≤ G ≤

< − 1.   @"  is computed at all timepoints & = S)  and we refer to )  as the step-width of the 
spectrogram and < as the buffer size. For the analysis we used a step width of 64 samples.  

We compute the absolute values of the Fourier coefficients of @" and keep only those coefficients 
corresponding to frequencies within the bandpass region. To provide increased amplitude invariance, 
we use log spectrograms and add an offset of 1: 

@"
TUV = log	(1 + Z[\(@

&
)) 

(all operations are pointwise). Several subsequent spectrogram columns (@"
TUV, @":]

TUV , @":1]
TUV ,…) form 

one spectrogram snippet. For almost all analysis, snippets were 68ms long (2176 samples) and aligned 
to the onsets of vocalizations.  For the large-scale t-SNE embeddings (e.g. Fig. 2A), 200ms (6400 
samples) snippets were used. In those 200ms snippets, the subsequent syllable was masked if it 
overlapped with the snippet. For the example features in Fig. 1D-F, snippets of length 200ms (covering 
the entire syllable) were used. 

We validated the stability of our recording conditions by studying RMS amplitude and embeddings of 
spectrogram snippets of background noise (i.e. when the bird is not singing).  

The above described process yielded between 325,466 and 1,260,715 segments per bird of median 
length between 87 and 130ms. Totaled over all birds, this yields 6,227,626 data points, each with 3294 
dimensions (121 frequency bins x 27 spectrogram columns) in the case of a 68ms window and 5734 
dimensions in the case of a 200ms window.  
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Bird ID   # Pts.   Rec.  Rec.  Tut.  Tut.   Median 
     Start End Onset Offset Segment Length 

1 b14r16  1,193,684 37  90  47  69  87 ms 

2 g18r15   652,933 37  71  39  64 113 ms 

3 k6r16   748,725 42  95  47  69 113 ms 

4 r15y5   604,798 35 69  41  67 120 ms 

5 b3g20  1,260,715 35 122  46  59 117 ms 

6 b4g20   563,124 35 122  46  59  97 ms 

7 g20y3   1,203,647 36 123  46  59 130 ms 

Sum/Mean  6,227,626 36.8 98.9  46  64 113 ms 

 

Data used in individual figures  
Figure 1: bird 6 (example) 
Figure 2A-D: bird 6 (example) 
Figure 2E, F: birds 1, 3, 5, 6 and 7 
Figure 2G, H: bird 6  
Figure 3A-D: bird 6 
Figure 3E-K: birds 1, 3, 5, 6 and 7 
Figure 4B-E: birds 1, 3, 5, 6 and 7 
Ext. Data Fig. 1: bird 6 
Ext. Data Fig. 3: birds 3, 5, 7 
Ext. Data Fig. 4: birds 1, 3, 5, 6 and 7 
Ext. Data Fig. 6: birds 1, 3, 5, 6, 7 
Ext. Data Fig. 8: birds 1, 3, 5, 6, 7 
Ext. Data Fig. 9: bird 1 
Ext. Data Fig. 10A: birds 1-7 
Ext. Data Fig. 10B, C: birds 5,6,7 
 
This selection is based only on the length of continuous recordings available for each bird. For every 
analysis, we included all birds for which continuous recordings were available over the entire time 
period of interest.  

Large Scale Embedding and Sorting 
To isolate song vocalizations, we first embedded all data up to and including day 80 post hatch using 
Barnes Hut t-SNE (described below).  

Briefly, t-SNE 1 places data points in a 2 or 3 dimensional space, such that high dimensional local 
distances are approximately preserved. The algorithm computes a pairwise measure of data point 
similarity _`0. The measure is normalized and interpreted as a probability distribution. This distribution 
can be computed in the original high dimensional space as well as in the reduced low dimensional 
visualization space. By minimizing the KL-divergence between the distributions ascertained in these 
two spaces, a low dimensional visualization is generated that preserves structure determined by high 
dimensional local distances. 

Large scale embeddings were computed on a high performance cluster using a custom version of 
Barnes-Hut-t-SNE 2. We used varying perplexities between 30 and 400. The embedding in Fig. 2 is 
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computed using a perplexity of 200, with 5,000 iterations. The algorithm is iterative, and the solution 
depends on starting conditions. For embeddings with random starting conditions, we selected the best 
in terms of final KL-divergence after 5,000 iterations. 

We used the embeddings to isolate calls, noise and song. Then we used nearest neighbor classification 
(10 nearest neighbors, majority vote, initial PCA to project data down to 150 dimensions) to classify 
data recorded after day 80. In a final step, we embed the combined song data for all days. We 
additionally separately embedded putative calls and noise post day 80 as identified by the nearest 
neighbor classifier to identify incorrect classifications. 

Noise and isolated calls (i.e. calls not incorporated into song) were excluded from the analysis. All data 
recorded while several birds were in the isolation chamber (live tutoring) was excluded as well. 

Based on the large scale embeddings and embeddings of all data generated on a single day, we 
separated the renditions into separate syllable types in a semiautomatic process. We use this 
clustering for visualization purposes (e.g. Extended Data Fig. 9), to perform a control based on local 
linear analysis (Extended Data Fig. 8) and to control for effects of syllable types in bout-based analyses 
(Fig. 3F, H, Extended Data Fig. 6).  

Bout Definition 
Bouts are defined as sequences of consecutive vocalizations that are separated by pauses no longer 
than Δb seconds. Δb	should reflect the “natural” temporal patterning of vocalizations. Values in the 
literature range from 160ms3, over 300ms4 to 2s5 or 30s6. A good Δb should lead to small gaps between 
segments within a bout and large gaps between bouts. Our approach is to look at the problem as a 
clustering problem in	ℝ,, where the data points are given by the segment midpoints in time. We assess 
the quality of the clustering by the Dunn index7 which measures how compact clusters are, compared 
to the distance between clusters: 

c =
min
`0
c`0

max
i
c0
, 

where	c`0 refers to the distance between centroids of clusters j and k (here the centroid is the average 
of all syllable mid points in the bout) and c0  refers to the maximal distance between points in cluster 
k (here the separation between first and last syllable in a bout). A large Dunn index indicates dense 
well separated clusters. The Dunn index indicates that on average the best clustering is obtained 
with	Δb~2,500@\ (not shown).  

Computing Nearest Neighbors  
We use different methods to find nearest neighbors depending on dimensionality and data amount. 
For low dimensional data up to 10 dimensions, we use KD-Trees8. If the dimensionality of the data is 
higher, we use vantage point trees 9 or exhaustive search. All nearest neighbor computations are exact. 
For high dimensional data, nearest neighbors are computed after projecting the data onto its first 100-
300 principal components (250 principal components explained between 91% and 95% of the total 
variance) but results are reproducible for different numbers of principal components. Generally, we 
try to keep the number of nearest neighbors small to avoid contamination across clusters (compare 
Extended Data Fig. 1). However, we found our results to be robust over different numbers of nearest 
neighbors. Distance measure for identifying nearest neighbors is the standard Euclidean distance.  

Notation for Nearest Neighbor Statistics 
 

m0 ∈ 	ℝn     Datapoint 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595512doi: bioRxiv preprint 

https://doi.org/10.1101/595512
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kollmorgen, Hahnloser, Mante, 2019, Supplement 
 

o    Set of all datapoints 

p    Neighborhood size - number of nearest neighbors for analysis 

&(k) Production time (or any other label) of kth datapoint 

qr #{k|&(k) = v} – number of datapoints with label v 

&xx(k, v) Number of datapoints m`  in the p-neighborhood of a datapoint m0  
that have label &(j) = v. 

ybz0  The vector [&xx(k, v,), &xx(k, v1),…,	&xx(k, v{)] for all possible 
production-times labels v,,…v{. We refer to ybz0  as the 
production-time histogram for data point k. As a notational 
shorthand we use ybz0(v,) = &xx(k, v,). 

Nearest Neighbor Histograms 
Our approach for characterizing the structure of a dataset (for any sort of data and labels) is based on 
quantifying the composition of the neighborhood of each data point, whereby a neighborhood is 
defined as the set of p nearest-neighbors of a given data point. Specifically, we ask which labels are 
“locally close” to which other labels by computing statistics over the nearest neighbors of data points. 

Consider a graph with data points as nodes and directed edges given by nearest neighbor connections 
(Extended Data Fig. 2B). Nodes k	 in this graph have labels given by &(k) . The labels of a node’s 
neighbors can be counted. If labels are production times, we refer to those counts for a given datapoint 
as its production time histogram  

ybz0 =	 [&xx(k, v,), &xx(k, v1),… , &xx(k, v{)].   

In the case of Fig. 2C, data points m0  are spectrogram snippets and &(k) is the production time specified 
as day post hatch. For a datapoint m0 , the value of the production time histogram &xx(k, v)  for 
production time v is the number of neighbors of m0  that have production time &(j) = v.  

The production-time histogram is a special case of what we call a nearest-neighbor histogram, which 
can be computed in an analogous fashion for any arbitrary label &(j). For example, in Fig. 4 each data 
point is characterized by a label &(j) ∈ {1,… ,50} indicating the bin to which the point belongs. Each of 
the 50 bins in turn is specified by a unique combination of stratum (1-5, regressions to anticipations), 
production period (1-5, morning to evening), and day (k or k+1). This binning is nested. First, we bin 
into days, then into production periods, and finally we bin into strata within each production period. 

Repertoire Dating 
For a datapoint m0  with index k. The pseudo production day is defined as the median of the set of all 
production times of the K nearest neighbors of datapoint m0 . 

For a set of c  datapoints ~ = {m`5, m`6, … , m`�} ⊂ o  with indices ÅqcÇ = {j,, … , jn}  We define the 
pooled neighborhood production time histogram as the (pointwise) sum of all production time 
histograms of the datapoints in the set: 

ybzÉxnÑ = Ö ybz0
0	∈	ÉxnÑ

 

As before we refer to the summed count for label v as ybzÉxnÑ(v). The yth percentile (i.e. y = 50 
for the median) of this pooled production time histogram is then defined through.  
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ÜáàybzÉxnÑâ = Z7ä@jãr3r5,…,rå ÖybzÉxnÑ(ç)
éèr

	≥ 	
y
100

Ö ybzÉxnÑ(ç)
é3r5,…,rå

. 

Mixing Matrices  
To summarize the neighborhood relations among all pairs of labels, nearest neighbor histograms can 
be added for all data points that carry a certain label. The resulting added counts summarize which 
labels are locally close to which other labels. A mixing matrix displays this information for all labels.  

For a pair of labels ç and v we define  

êér = Ö &xx(k, v)
0:	"(0)3é

 

Since the number of data points can vary across production periods, we correct the raw counts êér  by 
dividing by the counts that would be expected if all neighborhoods were mixed. We define a null 
hypothesis for the mixing counts through:  

qzér =
zér

∑ zírí3,..ì
∗ p ∗ qr, 

where zér = qéqr  and labels are assumed to come from the set {1. . Ü}, p is the neighborhood size 
and qr and qé denote the number of datapoints with label v or ç (or ï) respectively. We define the 
mixing matrix as the base-2-logarithm of the ratio of expected and observed counts: 

(ér = log1(êér/qzér). 

Each entry (ér  of the mixing matrix assesses the similarity between data points with label &(k) = ç 
and data points with labels &(k) = v. In particular, for the mixing matrix in Fig. 2D depicts on which 
days the bird produced similar syllables. Stationary behavior then results in blocks around the diagonal 
and non-stationarity is characterized by a concentration of large values onto the diagonal (Fig. 2). Note 
that all shown mixing matrices are computed in high-dimensional spaces based on spectrograms and 
Euclidean distances. Low-dimensional t-SNE embeddings (as in Fig. 2A) are only used for visualization 
purposes.  

One notable property of mixing matrices is that they can be easily averaged across data sets (e.g. across 
birds, Extended Data Fig. 2E; or across pairs of days and birds; Extended Data Fig. 10). We average 
mixing matrices pointwise, irrespective of the number of data points entering the computation of each 
individual mixing matrix.  

Multi-Dimensional Scaling  
To obtain a visual representation of the information represented in a mixing matrix, we use multi-
dimensional scaling10 . Each possible label ç ∈ 1. . Ü, constitutes one data point to be placed in a low 
dimensional space and the mixing matrix defines the similarity structure among data points. Multi-
dimensional scaling places these data points in a low dimensional space such that bins with high 
overlap (high value in the mixing matrix) are close-by. We perform non-classical multi-dimensional 
scaling, which matches only the order of dissimilarities but not their exact values. 

In a first step we generate a dissimilarity matrix c	from the mixing matrix (	with elements (ér  by 
setting 

có = 	−(( +({)/2 

cóéé = 0 

c = có − min	(cóér) 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595512doi: bioRxiv preprint 

https://doi.org/10.1101/595512
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kollmorgen, Hahnloser, Mante, 2019, Supplement 
 

Second, we perform non-classical multi-dimensional scaling using the elements of c  as input 
dissimilarities. Non-classical multidimensional scaling optimizes a low-dimensional representation that 
preserves the order of dissimilarities specified by c. Unlike t-SNE, multi-dimensional scaling does not 
focus on local distances. The algorithm is iterative, and solutions depend on starting conditions.  

Non-classical multi-dimensional scaling computes a mapping between high and low dimensional 
dissimilarities that can be used to ascertain how well dissimilarity matrices are captured by the low-
dimensional arrangement of data points (i.e. by the behavioral trajectory). The quality of the fit is 
assessed by a measure called ‘stress’ based on a residual sum of squares. As a rule of thumb, a stress 
value below 0.025 indicates an excellent fit and value below 0.05 a good fit; values around or larger 
than 0.2 indicate a poor fit10. 

For visualization, the low-dimensional arrangement of points obtained with MDS is rotated such that 
axes are aligned with meaningful directions of change. In Fig. 2F and Extended Data Fig. 4, the axes 
correspond to the principle components of the inferred 10-dimensional behavioral trajectory. The axes 
of slow change in Fig. 2F correspond to the first two principle components. In Fig. 4C&D, we show 
projections along two axes of slow change, an axis of within-day change, and an axis of across-day 
change. To compute the axes of slow change, we averaged points over production periods and days, 
and computed the first two principle components of the resulting averages. To compute the axis of 
within-day change, we averaged points across strata and days, computed the direction spanning the 
first and last production time, and orthogonalized it with respect to the axes of slow change. To 
compute the axis of across-day change, we averaged points across strata and production periods, 
computed the direction spanning days k and k+1, and orthogonalized it with respect to the axes of 
slow change and within-day change. In Fig. 4E, the local direction of slow change is defined as the 
direction spanning two appropriate strata (see insets), after averaging points over production periods 
and days; the direction of within-day change is defined as in Fig. 4C, but orthogonalized with respect 
to the local direction of slow change.  

Local Linear Analysis 
The linear example feature depicted in Fig. 1D-F, were computed as described below but without 
orthogonalization and on snippets of length 200ms. 

The results in Extended Data Fig. 8, are obtained from a linear analysis performed separately for each 
syllable type. Data from the period 60-69 dph were considered as 68ms long, onset-aligned 
spectrograms. The analysis is performed for each window of 4 consecutive days contained within 60-
69 dph (i.e. 60-63, 61-64, 62-65,…).  

Let oò  denote the set of all renditions for day k and oò,… , oò:ô the 4 days in an analysis window 
starting at day S. First, we subtract the mean across elements in oò ∪ …∪ oò:ô from each element in 
oò ∪ …∪ oò:ô. Second, we fit a linear function, õ(m) = úm, where ú denotes a linear kernel of the 
same dimension as a 60ms spectrogram snippet, to the regression problem 

úm = õ(m) = ù
−1	jõ	m ∈ oò
1	jõ	m ∈ oò:ô

		õû7	m ∈ oò ∪ oò:ô	. 

õ(m) locally approximates the direction of slow change (Extended Data Fig. 8) as a 1d linear subspace 
spanned by ú. Third, we fit a linear function ä(m) = <m to the regression problem 

<m = ä(m) = &(m)	õû7	m ∈ oò:, ∪ oò:1 

Where &(m) denotes the production period of m within the day (i.e. whether x was produced early or 
late). ä(m) approximates within-day change by a one-dimensional subspace spanned by <. 

Fourth, we fit a linear function ℎ(m) = êm to the regression problem  
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êm = ℎ(m) = ù
−1	jõ	m ∈ oò:,
1	jõ	m ∈ oò:1

		õû7	m ∈ oò:, ∪ oò:1	 

ℎ(m) approximates across-day change by a one-dimensional subspace spanned by ê. 

õ, ä	and ℎ were estimated using ridge regression with the regularization constant † chosen through 
leave-one-out cross validation on the training set (Extended Data Fig. 8B). No data from days oò:, 
and oò:1 was used to estimate õ. No data from days oò and oò:ô was used to estimate ä.  

In a fifth step, we normalize ú, < and C to norm 1 and orthogonalize < w.r.t. ú through 

< ← 		<	−	< ú, < > ú 

< ← 		</|<| 

where < ú,< > denotes the scalar product of ú and < and |<| the norm of <. Finally, we 
orthogonalize ê w.r.t. ú and <. 

Data from the inner days oò:, and oò:1 is projected onto ú, <, and ê, and then averaged within 
each syllable of each bird. All syllables are then averaged again to obtain Extended Data Fig. 8D, E, F. 
Error bars depict 95% confidence intervals. 

Simulated Behavioral Development 
We simulate individual behavioral renditions as points 7̀  in a 100-dimensional state space (those 
correspond to m`  above). Differences between renditions reflect (1) variability along a (time varying) 
piece-wise linear direction of slow change (DSC); (2) variability orthogonal to the DSC; and (3) high 
dimensional “shot noise”. The first two components of variability undergo distinct trends within a day 
and across days. Rendition 7̀ ∈ ℝ,££ is given by  

7̀ = Z` + ã` + §`  

where Z` ∈ ℝ,££ determines the location along the DSC, ã` ∈ ℝ,££ a component orthogonal to the 
DSC, and §`  is normally distributed noise with identity covariance and a standard deviation of 0.001 
along each dimension of ℝ,££. Each rendition 7̀  is associated with a production time &`, given by &` =
•` + ℎ`, where •` = õ¶ûû7(&`) gives the day of production and 0 ≤ 	 ℎ` = &` − •` ≤ 1 gives the time 
within a day from early to late.  

For each rendition, 7̀ , the component Z` is generated based on a “reference-time”  

&`
∗ = •`

∗ + ℎ`
∗ 

which corresponds to the time when renditions similar to rendition 7̀  were typical in the behavioral 
repertoire. Note that in general &`∗ ≠ &`  with •`∗ > •`  for visions and •`∗ < •`  for regressions. By 
construction, the reference time closely matches the pseudo production-time for that rendition.  

The reference time &`∗  for a rendition 7̀  produced at time &`	 is drawn from a time dependent 
probability distribution ℱ"©: 

&`
∗~ℱ"© 

To account for differences in the time-course of visions and regressions, the distribution ℱ` can be 
asymmetric. We refer to the part of ℱ"© describing values larger than its median as the “positive” lobe, 
ℱ"©
:, and to the part describing values smaller than its median as the “negative” lobe, ℱ"©

/. We define 
ℱ"©
:	as the positive lobe of a (normalized) sum of two normal distributions with time dependent median 

™(&`) and standard deviations ,́
:(&`) and 1́

:(&`). Likewise, ℱ"©
/	is defined as the negative lobe of a 

(normalized) sum of two normal distributions with the same median ™(&`) and standard deviations 
,́
/(&`) and 1́

/(&`). The, common, time-dependent median is given as 
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™(&`) = •` + ¨≠ℎ`, 

where ¨≠ determines the extent of within-day change along the DSC.  

Similarly, the time-dependent standard deviations are given by  

,́
:(&`) = ÆØ

: + ∞Ø
:ℎ`, 

1́
:(&`) = Æ±

: + ∞±
:ℎ`, 

,́
/(&`) = ÆØ

/ + ∞Ø
/ℎ`, 

1́
/(&`) = Æ±

/ + ∞±
/ℎ`. 

Where ÆØ:,… , Æ±/ are scalar constants. 

For each day we generate simulated behavior by first sampling 5000 production times ℎ` uniformly 
from the unit interval [0,1]. To avoid edge effects, we simulated renditions for 240 subsequent days, 
and then analyzed only days 101 to 140 (Extended Data Fig. 5). Based the generated &`, •` and ℎ` we 
sample reference times &`∗ from ℱ"© as described. 

Having generated &`∗ for rendition 7̀ , we define the component along the DSC as: 

Z` = @(&`
∗) 

where @(&) ∈ ℝ,££ is the DSC indexed by time &. The DSC is piece-wise linear, i.e. consists of a set of 
vertices and linear edges between subsequent vertices. The vertices occur at ℎ = 0, meaning that 
vertex @(•) corresponds to song typical at the beginning of day • and the edge between @(•) and 
@(• + 1) describes the progression of song from morning to evening on day •. We define the local 
direction v≤  of the DSC as v≤ = @(• + 1) −@(•) . We initialize @(1) and v,  randomly and then 
define the position of each subsequent vertex iteratively as: 

@(• + 1) = @(•) + v≤ 

We impose |@(•)| = 1 . The local direction of the manifold v≤  is chosen randomly under the 
constraints |v≤| = 0.05 and Zãä¶≥(v,, v1) = 10°. For an arbitrary time & = • + ℎ the DSC is defined 
as: 

@(&) = @(•) + ℎv≤ 

Notably, for all • , @(•) and v≤  are chosen from within a fixed, random, 90-d subspace of ℝ,££ , 
whereas the component ã`  orthogonal to the DSC is chosen within the 10-d subspace orthogonal to 
this 90-d subspace. Specifically, ã`  is drawn from a 10-d normal distribution µ"©: 

ã`~µ"© 

The distribution has isotropic standard deviation of 2 and a time depended mean ï"©given by: 

ï"© = [∂∑v≤©∑∏≤© + ä∂∑v≤©∑(ℎ` − 0.5)_ 

∏≤ is a unitary vector specifying the direction of across-day change orthogonal to the DSC and is chosen 
randomly for each day •  within the 10-d subspace; _  is a random unitary vector specifying the 
direction of within-day change orthogonal to the DSC and is fixed across days; the parameters [∂ and 
ä∂  determine the size of across-day and within-day components of change orthogonal to the DSC. 

We simulated data based on two set of parameters that correspond to different relative alignments 
between the DSC and the direction of within-day and across-day change (Extended Data Fig. 5). The 
parameters were chosen by hand to qualitatively match the range of within-day and across-day 
variability observed in the data. The observed match between the outcome of repertoire dating 
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(Extended Data Fig. 5C, D) and the ground truth (Extended Data Fig. 5A, B) is robust to changes in the 
simulation parameters. 

Model 1 – weak consolidation 

 (1) [∂ = 1 , i.e. the component of across-day change orthogonal to the DSC is as large as the 
component along it; 

(2) ä∂ = 0, i.e within-day change has no component orthogonal to the DSC; 

(3) Sπ = 5, i.e. the component of within-day change along the DSC corresponds to 5 times the amount 
of across-day change along the manifold, implying weak consolidation; 

(4) ,́
: = ,́

/ = 1 and  1́
: = 1́

/ = 5; 

(5) ∫,: = ∫,
/ = ∫1

/ = 0 and ∫1: = −3.65, i.e. visionary renditions move less far along the DSC within a 
day compared to typical renditions and regressions. 

Model 2 – strong consolidation 

 (1) [∂ = 0, i.e. across-day change has no component orthogonal to the DSC;  

(2) Sπ = 1.25; i.e. the component of within-day change along the DSC is only slightly larger than the 
component of the across-day change along it, implying strong consolidation; 

(3) ä∂ = 2; i.e. the largest component of within-day change is orthogonal to the DSC; 

(4) ,́
: = ,́

/ = 1.5 and  1́
: = 1́

/ = 10; 

(5) ∫,: = ∫1
: = 0, ∫,/ = −1.22, and ∫1/ = −6.08, i.e. regressive renditions move farther along the DSC 

within a day compared to typical renditions and visions. 

Ascertaining Clustering Structure 
In Extended Data Figure 1 we show daily t-SNE embeddings of 60 ms vocalization snippets as well as 
estimates of the number of clusters in the data based on k-means clustering. The emergence of clusters 
is apparent in the t-SNE visualizations. We reproduced this finding directly on the high dimensional 
data by performing k-means on the data of each day and varying cluster numbers. We compare 
different k-means clustering solutions using silhouette coefficients11,12. These cluster validity indices 
are computed as follows.   

For each datapoint m`  and each found cluster êò ⊂ o we define  

•(j, êò) = Ö |m` − G|1
Q∈Ωæ

 

to be the average distance of m`  to each element in êò . Let m`  be in cluster êò . We define the average 
distance of m`  to points in its own cluster êò : 

Z(j) = •(j, êò) 

and the minimum average distance of m`  to points from another cluster: 

[(j) = min
ΩøΩ¿

•(j, ê). 

The silhouette coefficient is then defined as 

\(j) = [[(j) − Z(j)]	/	max	[Z(j), [(j)]. 
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This definition requires at least 2 clusters and at least 2 datapoints per cluster. \(m`) ranges from −1 
to 1. A silhouette coefficient of −1 indicates that a datapoint is not well ‘embedded’ with its own 
cluster whereas +1 indicates that it is. As a measure for the overall quality of a clustering we use the 
average of \(j) over all datapoints12. 
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Figure 1. Vocal learning and motor variability in Zebra finches. 

(A) Vocal development in male Zebra finches. Tutoring by an 
adult male started between 39 and 47 days post hatch (dph) 
and lasted 10 to 20 days. (B) Example vocalizations of a single 
bird at three developmental stages (rows) represented as 
song spectrograms. Large changes in vocalizations are trig-
gered by the exposure to tutor song. Song gradually transi-
tions from largely unstructured subsong (top) to highly struc-
tured crystalized song (bottom). The onset of each individual 
syllable rendition was identified by segmenting vocalizations 
based on RMS-power threshold crossings (dotted lines mark 
segment onsets). As song becomes more structured, individ-
ual renditions fall into increasingly well-defined categories 
(syllables i, a, b, c; Extended Data Fig. 1) and are grouped into 
a stereotyped sequence of 3-8 syllables, called a motif, which 
is repeated up to several thousand times a day and resembles 
the tutor song (middle and bottom). Red dotted lines mark 
the onsets of example renditions of syllable b from the three 
developmental stages. (C) The four nearest-neighbors for the 

example rendition of syllable b in the corresponding row in 
(B). Nearest-neighbors were defined within the complete re-
cordings for this bird based on Euclidian distance between 
spectrogram segments. Numbers indicate the production 
time (dph) of each nearest neighbor. Nearest-neighbors need 
not be produced on the same day as the corresponding ex-
ample rendition in (B). (D-F) Time evolution of three spectral 
features of syllable b during days 57 and 58 dph. Each feature 
(left) corresponds to a linear kernel capturing change on a 
specific time-scale; the black curves (right) show the average 
projection of renditions of syllable b onto the corresponding 
feature (see Methods & Extended Data Fig. 8). These three 
features of the same syllable simultaneously undergo differ-
ent patterns of overnight consolidation. (D) A feature reflect-
ing the long-term developmental trend. (E) A feature reflect-
ing within-day change. (F) A feature reflecting across-day 
change.  

  

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595512doi: bioRxiv preprint 

https://doi.org/10.1101/595512
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kollmorgen, Hahnloser, Mante, 2019, Figures 

 

2 
 

 

Figure 2. Change in vocalizations on multiple time-scales 

(A) t-SNE embedding of the continuous behavioral recording 
for the example bird in Fig. 1. Each data point corresponds to 
a syllable rendition. Late in development, data points fall into 
separate clusters (syllables i, a, b, and c; labels). The three 
example renditions of syllable b from Fig. 1B are indicated 
with arrows. Crosses mark the 600 nearest-neighbors of the 
example rendition from day 58. (B) Average spectrograms for 
different locations in the t-SNE embedding, obtained by av-
eraging all spectrograms associated with data points at the 
corresponding grid location in (A). Points at nearby locations 
in (A) have similar spectrograms. (C) Histogram of production 
times over the 600 nearest-neighbors of the example syllable 
in (A) (black crosses). (D) Mixing-matrix based on all data 
points in (A). Data points are subdivided into days. Each col-
umn of the matrix represents a histogram of production 
times (as in C), averaged over all neighborhoods of points 
with a day (horizontal axis) and normalized with respect to a 

shuffling null-hypothesis (LMR: logarithm of mixing ratio, in 
base 2). Here production time is given relative to tutor onset. 
(E) Average mixing-matrix over 5 birds for days 60-75 dph. (F) 
Reconstructed behavioral trajectory based on (E), inferred 
with 10-d multi-dimensional scaling. Each point corresponds 
to a day. Only the 2 dimensions capturing most variance in 
the trajectory are shown (Extended Data Fig. 4). (G) Across-
day change in vocalizations. Magnified cutout from (A) (bot-
tom-left region of the dashed square). Coloring differs from 
(A); only points from days 50-56 are shown. (H) Within-day 
change in vocalizations. Points from (G) are shown separately 
for three individual days (top labels) and colored based on 
production time within the day (early to late; color bar). Vo-
calizations change within each day—early vocalizations (dark 
green) are more similar to vocalizations from previous days 
(dark green points in A); late vocalizations (light blue) are 
more similar to vocalization from future days (light blue in A).  
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Figure 3. Variability of individual renditions within a dynamic behavioral repertoire.  

(A) Neighborhood production-time histograms (over 600 
nearest-neighbors) for three renditions from day 70 (analo-
gous to Fig. 2C). Rendition 2 is typical for day 70 (most neigh-
bors lie in the same or adjoining days); renditions 1 and 3 are 
a “regression” and an “anticipation” (typical of days in the 
past or future, respectively). Data in A-D from the same bird 
as in Fig. 2. (B) Pooled neighborhood productions times for 
day 70 (sum of all histograms as in (A) for day 70). Percentiles 
(vertical lines) quantify the extent of the behavioral reper-
toire of day 70 along the direction of slow change (compare 
Fig. 2F). (C) Percentiles (5th, 50th, 95th) of neighborhood pro-
duction-time histograms (as in A) for day 70. Each row is a 
rendition. Rows are sorted by the 50th percentile, i.e. the 
pseudo-production day (pPD). The left, middle (red), and 
right dots mark the corresponding percentiles. A small ran-
dom horizontal shift was added to each dot for visualization. 
(D) All renditions of day 70 (subset of points from Fig. 2A). 
Color corresponds to the pPD (50th percentile in C). Anticipa-
tions (pPD>70) and regressions (pPD<70) occur at locations 
corresponding to vocalizations typical of later and earlier de-
velopmental stages (compare to Fig. 2A). (E) Within and 
across-day changes in behavioral repertoire along the direc-
tion of slow change. The behavioral repertoire is computed 

separately for 10 consecutive periods in any day (arrow in in-
set). Each row shows percentiles of the pooled neighborhood 
production times (B) for a given “query” day and period. Av-
erage over 5 birds. (F) Within-bout changes in behavioral rep-
ertoire. Analogous to (E), but renditions from any query day 
are binned into 10 periods depending on time of occurrence 
within the corresponding singing bout (arrow in inset). (G) 
Average within and across-day changes (average over days 
60-70 in E). Production time is expressed relative to the query 
day. (H) Average within-bout changes (average over days 60-
70 in F). Analogous to (G). (I) For each day we define a within-
day span (first to last period of day k) and an overnight shift 
(first period of day k+1 to last period of day k; blue arrow in 
G) for the 5th percentile (regressions) for given day (dph 50-
80) and bird; data from 5 birds. Gray crosses and the red 
cross indicate median and bootstrap confidence intervals for 
each bird and across all birds, respectively. Span is large and 
positive, shift is large and negative, indicating week consoli-
dation. (J) Analogous to (I), but for the median (typical rendi-
tions). Shift is close to zero, and span close to 1, indicating 
strong consolidation. (K) Analogous to (I), but for the 95th 
percentile (visions). 
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Figure 4. Multiple components of behavioral change during sensory-motor learning.  

Stratified mixing matrices and corresponding behavioral tra-
jectories. Renditions are assigned to 1 of 5 strata based on 
pseudo-production day (quintiles 1-5, as in Fig. 3C) and into 
5 periods based on their production time in a day (early to 
late). (A) Simulated stratified mixing matrices for three mod-
els corresponding to different alignments of within-day and 
across-day change with the direction of slow change (DSC) 
(schematic behavioral trajectories on top). (B) Measured 
stratified mixing matrix, averaged over day-pairs within the 
range 60-70 dph and across birds. (C) Stratified behavioral 
trajectories obtained with 10-dimensional multi-dimensional 
scaling based on the mixing matrix in (B). Three orthogonal 
2-d projections of the trajectories reveal the DSC (top), as 
well as the components of within-day change (middle) and 
across-day change (bottom) that are not aligned with the DSC 
(along directions of within-day change and across-day 
change, respectively; arrows). Labels 1-5 mark the five strata 
(1,2 = regressions; 3 = typical; 4,5 = anticipations). The full 10-

d trajectories faithfully reproduce the similarity structure in 
the mixing matrix (MDS stress = 0.016). The 4-d subspace 
spanned by these three orthogonal 2-d projections captures 
81% of the variance of the full trajectory. (D) Two additional 
3-d projections of the trajectories in (C), showing combina-
tions of both dimensions of slow change (C, top) with the di-
rection of within-day change (left) or the direction of across-
day change (right). (E) Overnight consolidation of within-day 
change across the DSC. Because the DSC varies across the be-
havioral repertoire and different strata lay at different loca-
tions (C, top; labels 1-5), the exact alignment of within-day 
change and the DSC is assessed best when computing sepa-
rate projections for each stratum onto the local DSC. This lo-
cal direction is defined as the vector spanning the average 
location of points from two appropriate strata (inset on top, 
black arrows; each point in the inset represents one stratum, 
same projection as in C). Consolidation along the local DSC is 
weakest for regressions and strongest for anticipations.  
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EXTENDED DATA FIGURES 
 

 

Extended Data Figure 1. Clustering of juvenile and adult Zebra finch song.  

(A) t-SNE embeddings of vocalizations produced on the spec-
ified days (labels; dph) for the example bird depicted in Fig. 1 
and 2A-D. Here vocalizations were represented as 60ms on-
set-aligned spectrogram snippets and a separate embedding 
was computed for each day. Note the gradual emergence of 
clusters, each corresponding to a distinct syllable type (e.g. 
syllables i, a, b, c in Fig. 2A). (B) Normalized mean silhouette 
values (see Methods) for 2-10 clusters computed on vocali-
zations from the 7 days in (A). A high value in a cell of this 
matrix indicates that there is evidence for the respective clus-
ter count in the vocalizations from the corresponding day. 
Mean normalized silhouette coefficients were computed 
based on 20 repetitions of k-means clustering of 60ms onset-
aligned spectrogram snippets from a single day (same as in 
A) projected onto the first 50 principal components. (C) 

Average fraction of neighbors from a different cluster, as a 
function of neighborhood size. Analogous data to (A) and (B) 
but for vocalizations from dph 90 (12,854 data points), when 
clusters are fully developed. For a wide range of neighbor-
hood sizes, the neighbors of a data point mostly belong to 
the same cluster or syllable type. For a neighborhood size of 
100, the average fraction of out-of-cluster neighbors from 
the same day is 0.0089. This implies that, for an appropriately 
chosen neighborhood size, nearest-neighbor methods re-
spect clustering structure in the data by construction. Near-
est-neighbor statistics thus sidestep having to explicitly iden-
tify clusters in the data. Note that in most analyses we com-
puted nearest-neighbors on data from all days, meaning that 
clustering structure is respected even for neighborhood sizes 
somewhat larger than those implied in (C). 
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Extended Data Figure 2. Characterizing behavioral change using neighborhood graphs 

Illustration of a fictitious behavior undergoing distinct phases 
of gradual change, no change, and abrupt change, and the 
identification of these phases based on nearest-neighbor 
graphs. (A) A low-dimensional representation of the behav-
ior. Each point corresponds to a behavioral rendition (e.g. a 
syllable rendition in the bird data) and is colored based on its 
production time. Similar renditions (e.g. that have similar 
spectrograms) appear near each other in this representation. 
The dotted ellipses mark three subsets of points correspond-
ing to (1) a phase of abrupt change; (2) a stationary phase; 
and (3) a phase of gradual change. (B) Nearest neighbor 
graphs for the three subsets of points in (A). Points are 
replotted from (A) with different symbols, indicating whether 
their production times fall within the first (squares) or second 
half (crosses) of the corresponding subset. Edges connect 
each point to its 5 nearest neighbors. Edge color marks neigh-
boring pairs of points falling into the same (black) or different 
(red) halves. Relative counts of within- and across-half edges 
differ based on the nature of the underlying behavioral 
change (histograms of edge counts). If an abrupt change in 

behavior occurs between the first and second half, nearest 
neighbors of points in one half will all be points from the 
same half, and none from the other half (discontinuity). 
When behavior is stationary, the neighborhoods are maxi-
mally mixed, i.e. every point has about an equal number of 
neighbors from the two halves (stationary). Phases of gradual 
change result in intermediate levels of mixing (gradual 
change). (C) Nearest-neighbor mixing-matrix for the simu-
lated data in (A). Each location in the matrix corresponds to 
a pair of production times. Strong mixing (white) indicates a 
large number of nearest-neighbor edges across the two cor-
responding production times (as in B, stationary) and thus 
similar behavior at the two times. Weak mixing (black) indi-
cates a small number of such edges (as in B, discontinuity), 
and thus dissimilar behavior. Note that such statistics on the 
composition of local neighborhoods can be computed for any 
kind of behavior and are invariant with respect to transfor-
mations of the data that preserve nearest neighbors, like 
scaling, translation, or rotation. These properties make near-
est-neighbor approaches very general.  
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Extended Data Figure 3. t-SNE embeddings and mixing matrices for 3 additional birds. 

(A) t-SNE embeddings for the continuous recordings from 3 
example birds (rows). Analogous to Fig. 2A. (B) Lifetime mix-
ing-matrices for the data in (A). Analogous to Fig. 2D. Black 
arrows indicate tutoring onset. The bird in the middle row 
produced only very few vocalizations (mostly calls) before tu-
toring onset. The mixing-matrices consistently show a period 
of gradual change starting after tutor onset and lasting sev-
eral weeks. Gradual change typically slows down (resulting in 
larger mixing values far from the diagonal, e.g. bottom bird) 
but is still ongoing at the end of the developmental period 
considered here (dph 90). Gray values correspond to the 
base-2 logarithm of the mixing ratio, i.e. counts in the pooled 

neighborhood production-time histograms (Fig. 2C) normal-
ized by a null-hypothesis obtained from a random distribu-
tion of production times (see Methods). For example, an LMR 
value of 5 implies that renditions from the corresponding pair 
of production-times are 25 = 32 times more mixed at the level 
of local neighborhoods than expected by chance (i.e. a ran-
dom distribution of production times across renditions). (C) 
Like (B), top, but after shuffling production times among all 
data points. Effects under this Null-hypothesis are small (the 
maximal observed mixing ratio is 	2#.#%~1.042) . Similar, 
small effects under the Null-hypothesis are obtained for the 
other mixing matrices discussed throughout the text.  
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Extended Data Figure 4. Structure of change along the inferred behavioral trajectory.  

Properties of the behavioral trajectory inferred from the mix-
ing-matrix in Fig. 2E. (A) Pairwise distances between points 
along the inferred behavioral trajectory (horizontal axis) 
compared to the measured disparities (vertical axis). Dispar-
ities are obtained by rescaling and inverting the similarities in 
Fig. 2E (see Methods). The points on the trajectory are in-
ferred with 10-dimensional non-metric multidimensional 
scaling (MDS) on the measured disparities. Crucially, the pair-
wise distances between inferred points faithfully represent 
the corresponding, measured disparities (all points lie close 
to the diagonal; MDS stress = 0.0002). (B-C) Structure of low-
dimensional projections of the behavioral trajectory. We ap-
plied principle component analysis to the 10-d arrangement 
of points inferred with MDS and retained an increasing num-
ber of dimensions (number of dimensions indicated by gray-
scale) to compute low-dimensional projections of the full 10-
d behavioral trajectory. For example, the projection onto the 
first two principle components is shown in Fig. 2F (MDS di-
mensions 2 in (B) and (C)). The first two principle components 
explain 75% of the variance in the full 10-d trajectory. (B) 
Measured disparity (thick gray curve) and distances along the 
trajectories (points and thin curves) as a function of the day-
gap d between points. For any choice of projection 

dimensionality and d, we computed the Euclidian distances 
between any two points separated by d and averaged across 
pairs of points. The measured disparities increase rapidly be-
tween subsequent and nearby days, but only slowly between 
far apart days (thick gray curve). Low dimensional projections 
of the trajectory (e.g. MDS dimensions 2) underestimate the 
initial increase in disparities. (C) Angle between the recon-
structed direction of across-day change for inferred behav-
ioral trajectories, as a function of the day-gap between 
points. Same conventions and legend as in (B). For the 1-d 
and 2-d trajectories, the direction of across-day change var-
ies little or not at all from day to day (see inset, arrow indi-
cates angle of across-day change). On the other hand, the di-
rection of across-day change along the full, 10-d behavioral 
trajectory is almost orthogonal for subsequent days. Both (B) 
and (C) imply that the full behavioral trajectory is more “rug-
ged” than suggested by the 2d-projection in Fig. 2F. This 
structure is consistent with the finding that across-day 
change includes a large component that is orthogonal to the 
directions of slow change and of within-day change (Fig. 4C, 
bottom).  
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Extended Data Figure 5. Models of behavioral change 

We simulated individual behavioral renditions as points in a 
high-dimensional space, drawn from a time-dependent prob-
ability distribution changing both within and across days (see 
Methods) and verified that repertoire dating (Fig. 3) can suc-
cessfully recover the underlying structure of the models. The 
main parameters determining the relative alignment of the 
direction of slow change (DSC) with the directions of within-
day and across-day change are +,, the amount of within-day 
change along the DSC; -., the amount of within-day change 
orthogonal to the DSC; and /. , the amount of across-day 
change orthogonal to the DSC. These parameters are ex-
pressed relative to the amount of across-day change along 
the DSC (thick black arrow in (A) and (B)). The two models 
shown (see Methods) imply different amounts of overnight 
consolidation of within-day changes along the DSC. (A) Sche-
matic illustration of model 1. Within-day change is aligned 
with the DSC (01 = 0) and large, i.e. corresponding to the 
overall distance traveled along the DSC over 5 days (34 = 5). 
The component of across-day change orthogonal to the DSC 
is as large as the component of across-day change along it. In 
this scenario, overnight consolidation of within-day changes 

along the DSC is weak (20% of change is consolidated) for 
typical renditions. (B) Schematic illustration of model 2. 
Within-day change has a large component orthogonal to the 
DSC, whereas across-day change is aligned with the DSC. In 
this scenario, overnight consolidation of within-day changes 
along the DSC is strong (80% of the change is consolidated) 
for typical renditions. (C) Repertoire dating results for model 
1, analogous to Fig. 3G. Lines from left to right denote 5th, 
25th, 50th (red line), 75th and 95th percentile of the pooled 
neighborhood production times. Dating of the typical rendi-
tions (red) closely reproduces dynamics of change along the 
DSC implied by (A)—within-day change along the DSC is large 
(red line extends over about 5 days) and consolidation is 
weak (starting point on day k+1 relative to day k moves by 
about 20% of overall within-day range). Differences between 
visions (95th percentile) and regressions (5th percentile) cor-
rectly reflect the underlying model parameters (see Meth-
ods). (D) Repertoire dating results for model 2, analogous to 
(C). Dating of the typical renditions (red), visions and regres-
sions closely reproduces dynamics of change along the DSC 
implied by (B). 
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Extended Data Figure 6. Repertoire dating control analyses.  

(A) Analogous to Fig. 3F, but computed only from renditions 
falling into short bouts (bout length < median). (B) Analogous 
to Fig. 3F, but computed only from renditions falling into long 
bouts (bout length > median). (C) Analogous to Fig. 3E, but 
computed for individual syllables, and then averaged across 
syllables and animals. Syllable clustering is described in the 
Methods. (D) Analogous to Fig. 3F, but computed over the 
entire data set without prior clustering into syllables. (E) 
Analogous to Fig. 3H, but based on (A). (F) Analogous to Fig. 
3H, but based on (B). The changes in the behavioral reper-
toire observed within a bout are qualitatively similar for short 
and long bouts (compare E and F). In particular, the song be-
comes more regressive shortly before the end of a bout (5th 
percentile, left-most curves). The analogous effect in Fig. 4H 
thus occurs at the end of a bout and not at a particular time 
after the beginning of a bout. (G) Analogous to Fig. 3G, but 
based on (C). The changes in behavioral repertoire are quali-
tatively similar to those in Fig. 3G, which are computed with-
out prior clustering of syllables. This similarity implies that 

the dynamics along the direction of slow change in Fig. 3 can-
not be explained by changes in the frequency of syllables 
sung during the day. (H) Analogous to Fig. 3H, but based on 
(D). The changes in behavioral repertoire are mostly similar 
to those in Fig. 3H, which are computed on individual sylla-
bles and then averaged across syllables. One difference with 
Fig. 3H are pronounced within-bout changes for anticipations 
early during development. These changes occur when neigh-
borhoods are computed on the un-clustered data, and thus 
appear to be explained by changes in the frequency of sylla-
bles (e.g. introductory notes) sung throughout a bout. (I) 
Analogous to Fig. 3E, but computed after shuffling produc-
tion times among all data points. Within-day changes of the 
percentile curves are small under this null hypothesis. (J) 
Analogous to Fig. 3G, but computed from (I). The maximal 
span of within-day fluctuations is 0.2 days, compared to 3.71 
for the unshuffled data in Fig. 3G. The total repertoire spread 
(5th – 95th percentile) is around ~40 days compared to ~23 
days for unshuffled data.   
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Extended Data Figure 7. Alignment between the direction of slow change and change on short time-scales. 

We generated 3 sets of stratified behavioral trajectories (see 
also Fig. 4) that differ with respect to the alignment of within-
day and across-day change with direction of slow change 
(DSC). We build each set of trajectories by arranging 50 
points (5 strata per day, 5 production-time periods per day, 
on 2 consecutive days; same conventions as Fig. 4C) within a 
4-dimensional space. We then generate simulated stratified 
mixing matrices (A-C, replotted from Fig. 4A) by computing 
pairwise distances between all points, and transforming dis-
tances into similarities. We visualize the behavioral trajecto-
ries (D-F) with the same 2-d projections as in Fig. 4C, with the 
same scale along all dimensions. In all models, overnight con-
solidation along the DSC is perfect for all strata. (A) Model 1: 
within-day change and across-day change occur only along 
the DSC. For each stratum (i.e. each of the five 10-by-10 
squares along the diagonal) similarity decreases smoothly 
with time, reflecting the gradual progression of the trajectory 
along the DSC within and across days. (B) Model 2: within-
day change has a large component that is not aligned with 

the DSC. For each stratum, song early on day k+1 is more sim-
ilar to song early on day k, rather than to song late on day k 
as in model 1 (A). (C) Model 3: both within-day and across-
day change have large components that are not aligned with 
the DSC. The misaligned component of across-day change re-
duces the similarity between day k and day k+1 compared to 
model 2, resulting in smaller values in the 5-by-5 squares 
comparing points from day k and day k+1. (D) Behavioral tra-
jectories for model 1: the 2-d projection containing the DSC 
(top) explains all the variance in the trajectories. (E) Behav-
ioral trajectories for model 2: similar to (D), but points from 
different periods during the day are displaced also along an 
orthogonal direction of within-day change (middle). (F) Be-
havioral trajectories for model 3: similar to (E), but points 
from adjacent days are displaced also along an orthogonal 
direction of across-day change (bottom). Note that models 1 
and 2 in (A) and (B) are distinct from models 1 and 2 in Ex-
tended Data Fig. 5 (see Methods).  
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Extended Data Figure 8. Local linear analysis. 

We validated the structure of change inferred with nearest-
neighbor statistics (Fig. 4) with a more conventional ap-
proach based on linear regression in the high-dimensional 
spectrogram space (see Methods). Unlike for the case of 
nearest-neighbor based statics, here each rendition must 
first be assigned to a cluster (i.e. a syllable, compare Fig. 2A) 
and each cluster is analyzed separately. (A) Illustration of the 
linearization scheme. We infer the (local) direction of slow 
change (DSC) on day k (gray arrow) as the vector of linear-
regression coefficients relating production day to variability 
in the renditions from days k-1 and k+2. Likewise, to infer the 
direction of within-day change (green arrow) we find linear-
regression coefficients relating the period within a day to var-
iability of renditions from days k and k+1 and then orthogo-
nalize the coefficients with respect to the DSC. Both sets of 
coefficients, and the corresponding directions in spectro-
gram space, typically vary across days and syllables. The pro-
gression of song along the DSC and along the (orthogo-
nalized) direction of within-day change is obtained by pro-
jecting renditions on day k and k+1 onto the corresponding 
(normalized) directions (see Methods). (B) Example rendition 
(top; encapsulated by red lines) and the dependency of cross-
validated regression quality (fraction of variance explained) 
on the regularization constant for the estimation of the DSC. 
One regularization constant was chosen for each syllable and 
direction based on maximizing the leave-one-out cross vali-
dation error on the training set. (C) Regression coefficients 

corresponding to the DSC for the example syllable in (B), es-
timated for day k = 65. Warm and cold colors mark spectro-
gram bins for which power increases or decreases, respec-
tively, between days k-1 and k+2 (i.e. days 64 and 67). (D) 
Progression of song along the DSC as a function of time. Ren-
ditions from each day are binned into 10 consecutive periods 
based on production time within the day (analogous to the 
10 periods in Fig. 3E). Projections onto the DSC for each pe-
riod of days k and k+1 are then averaged across all 4-day win-
dows during dph 60-69 and averaged again over all syllables 
and birds (same 5 birds as in Figs. 3, 4). The resulting averages 
include contributions from regressions, typical renditions, 
and visions. The position along the DSC for the morning of 
day k+1 is close to that for the evening of day k, indicating 
overall strong consolidation (Fig. 1D). Note that for simplicity 
of visualization, the time elapsed (horizontal axis) during the 
night between days k and k+1 is not shown. (E) Progression 
along the direction of within-day change as a function of 
time, analogous to (D). The position along the direction of 
within-change is reset overnight, implying that the underly-
ing changes are not consolidated (Fig. 1E). By considering a 
feature that is a mixture of within-day change (E) and change 
along the DSC (D) a wide range of apparent consolidation sce-
narios could be “uncovered”.  (F) Progression along the direc-
tion of across-day change as a function of time, analogous to 
(D). The position along the direction of across-day change 
jumps overnight. (Fig. 1F). (G) Progression along the DSC and 
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the direction of within-day change, combining data from (D) 
and (E). This representation is analogous, and in qualitative 
agreement, with the behavioral trajectories in Fig. 4E (typi-
cal). (H) Progression along the DSC and the direction of 

across-day change, combining data from (D) and (F). This rep-
resentation is analogous, and in qualitative agreement, with 
the behavioral trajectories in Fig. 4C (typical). 
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Extended Data Figure 9. Behavioral variability and stratification in an example syllable. 

(A) Example songs of an example bird for 3 days during de-
velopment. Vocalizations in the window of interest (red dot-
ted lines, 60 ms) are analyzed in the following panels. (B) De-
velopmental changes over the course of weeks. Vocalizations 
are binned by production day, and averaged. The most ap-
parent changes occurring during learning are an increase in 
pitch and the later, successive appearance of additional spec-
tral lines at low frequencies. (C) Within-day and across-day 
changes for the period 60-69 dph. Vocalizations are binned 
into 5 period spanning a day and averaged. On many days, 
the changes within a day do not appear to recapitulate the 
changes occurring across days (e.g. days 60 and 65, compare 
to subsequent days in (B). The averages also reveal occa-
sional overnight “jumps” in the properties of the vocaliza-
tions (e.g. black arrows). (D) Comparison of within-day and 
changes on longer times-scales. Renditions within each pe-
riod within a day were split into strata according to their 
pseudo-production day (quintiles in Fig. 3C) resulting in 25 
averages, one for each combination of stratum and period 
within the day. Only the upper part of the spectrogram is 

shown (red rectangle in C). The progression along strata (x-
axis) emphasizes the large extent of motor variability along 
the DSC existing within a single day (day 62). (E) Same aver-
ages as in D, but with x and y axes swapped. In particular for 
regressive renditions (quintile 1), change within day 62 (x-
axis) does not recapitulate developmental changes occurring 
over months (x-axis in D). (F) Repertoire dating based on the 
pseudo-production day (as in Fig. 3C). Each point corre-
sponds to a production-time period and is the mean of all 
pseudo-production days of renditions in that period. Error-
bars show bootstrapped 95% confidence intervals. The 
change in pseudo-production day, which is computed with-
out using any explicit spectrogram features, captures the 
movement along the DSC. Some of the effects seen in the raw 
spectrograms (B-E), including jumps and a pattern of within-
day change that does not recapitulate the slow developmen-
tal changes (e.g. days 60 and 65), are also apparent here, i.e. 
when considering only the component of change along the 
DSC. 
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Extended Data Figure 10. Two-day mixing matrices without stratification for 8 developmental phases. 

(A) Day-to-day mixing matrices for 8 phases during develop-
ment. We binned renditions of each day into 10 consecutive 
periods based on production time (as in Fig. 3E), computed 
neighborhood mixing between all bins from two adjacent 
days, and averaged across day-pairs within a given develop-
mental phase and birds. Numbers above each matrix indicate 
the range of days in each developmental period (start to end 
day post hatch, dph). Numbers below each matrix (separated 
by vertical bars) correspond to the number of mixing matri-
ces that were averaged, the number of birds, and the total 
number of renditions across birds. Each 20-by-20 mixing 

matrix is analogous to one of the 10-by-10 squares along the 
diagonal of the stratified mixing matrices in Fig. 4A (e.g. 
model 1), but here is computed with finer time bins (10 peri-
ods vs. 5) and without separating renditions into strata. (B) 
Time-course of across-day change. Across-day change is ob-
tained by multiplying a mask (inset) with measured day-to-
day mixing-matrices (A) for a single pair of days and adding 
the entries of the resulting matrix (see Methods). Data from 
3 animals with recordings up to dph 120 (symbols). (C) Time-
course of within-day change analogous to (B) but computed 
with a different mask (inset).  
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