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Abstract 

Classifying patients into clinically and biologically homogenous subgroups will facilitate the understanding of 

disease pathophysiology and development of more targeted prevention and intervention strategies. 

Traditionally, disease subtyping is based on clinical characteristics alone, however disease subtypes identified 

by such an approach may not conform exactly to the underlying biological mechanisms. Very few studies have 

integrated genomic profiles (such as those from GWAS) with clinical symptoms for disease subtyping.  

 

In this study, we proposed a novel analytic framework capable of finding subgroups of complex diseases by 

leveraging both GWAS-predicted gene expression levels and clinical data by a multi-view bicluster analysis. 

This approach connects SNPs to genes via their effects on expression, hence the analysis is more biologically 

relevant and interpretable than a pure SNP-based analysis. Transcriptome of different tissues can also be readily 

modelled. We also proposed various new evaluation or validation metrics, such as a newly modified ‘prediction 

strength’ measure to assess generalization of clustering performance. The proposed framework was applied to 

derive subtypes for schizophrenia, and to stratify subjects into different levels of cardiometabolic risks.  

 

Our framework was able to subtype schizophrenia patients with diverse prognosis and treatment response. 

We also applied the framework to the Northern Finland Cohort (NFBC) 1966 dataset, and identified high- and 

low cardiometabolic risk subgroups in a gender-stratified analysis. Our results suggest a more data-driven and 

biologically-informed approach to defining metabolic syndrome. The prediction strength was over 80%, 
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suggesting that the cluster model generalizes well to new datasets. Moreover, we found that the genes ‘blindly’ 

selected by the cluster algorithm are significantly enriched for known susceptibility genes discovered in GWAS 

of schizophrenia and cardiovascular diseases, providing further support to the validity of our approach. The 

proposed framework may be applied to any complex diseases, and opens up a new approach to patient 

stratification.  

 

Introduction 

  Accurate classification of complex diseases such as psychiatric and cardiometabolic disorders into clinically 

and biologically homogenous subtypes could facilitate the understanding of disease pathophysiology and 

development of more targeted interventions1. Traditionally, disease subtyping are based on clinical 

characteristics alone, however disease subtypes identified by such an approach may not conform exactly to the 

underlying biological mechanisms. For example, the same disease symptom may be caused by different 

mechanisms in different patients. Patients with similar clinical presentations can also have varying response to 

treatment. On the other hand, last decade has witnessed the remarkable success of genome-wide association 

studies (GWAS) in identifying susceptibility loci for complex diseases2. In addition to yielding mechanistic 

insights into various disorders, GWAS data may also be useful in a more directly translational context. For 

example, there has been increasing interest to apply GWAS data for risk prediction3 and drug discovery or 

repurposing4. However, despite >3000 GWAS being performed (https://www.ebi.ac.uk/gwas/), another 

potential translational application has been largely ignored: could genomic information from GWAS help to 

improve patient stratification or disease subtyping? As argued above, subtyping by disease symptoms or 

characteristics alone has its limitations, which may be improved upon by the combination of both clinical and 

genomic information. 

  

   Very few works have studied on how genomic data from GWAS may reveal complex disease subtypes. 

Arnedo et al. investigated genetic architecture of schizophrenia by independently identifying SNP- and 

phenotype ‘sets’ and studying their inter-relationships 5. However, there are other limitations, for example the 

number of subgroups are allowed to vary in a very wide range (up to ~90). Besides, there are potential problems 

with significance testing (For more details, please 

see: http://genomesunzipped.org/2014/09/eight-types-of-schizophrenia-not-so-fast.php). Cleynen et al.6   

performed disease subtyping on Crohn’s disease based on 46 single nucleotide polymorphisms (SNPs) 

extracted from a GWAS and found modest differences in clinical variables among the subgroups.  
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In a more recent work8 , we have presented the first application of whole-genome SNP data and clinical 

variables for subtyping a complex disease. We studied schizophrenia (SCZ), a highly heterogeneous psychiatric 

disorder. We found that the identified subgroups were indeed different with respect to treatment response and 

other outcome variables, providing support to the use of genetic data in disease subtyping. However, there are 

several important limitations regarding this SNP-based approach to subtyping. Firstly, the functional roles of 

many SNPs identified in GWAS remain unknown9. Previous studies reported that the majority (up to ~88%)10 

of GWAS tag SNPs lie in intergenic or intronic regions. While the cluster algorithm could identify a subset of 

SNPs that characterize each cluster, the results could be difficult to interpret, as most SNPs do not have clear 

functional implications, and many are intronic or intergenic. In addition, as some SNPs cannot be easily mapped 

to genes, subsequent gene-based analysis (e.g. on pathway enrichment) may be suboptimal. Secondly, the 

dimension of SNPs is extremely high and could reach >10 million with imputation. While an alternative 

approach is to perform pre-screening for a subset of more promising variants before cluster analysis, the choice 

of the significance threshold for SNP inclusion is often arbitrary. In addition, our previous work also showed 

inferior performance of a pre-screening approach compared to modelling all SNPs 8. Also, it has been argued 

recently that a very large number of genetic variants, or even the majority of the genome, may be associated 

with complex diseases11. Hence restricting analysis to a subset of highly significant SNPs may miss the 

contribution of many true disease variants. Nevertheless, there is a major problem in analysing all SNPs: when 

the dimension of features (e.g. SNPs) is very high, the computational burden of cluster analysis will likely 

become heavy, especially with large sample sizes. The SNP-based analysis may then become impractical due to 

slow computational speed and heavy memory requirements.  

 

In this study, we propose a novel analytic framework capable of finding subgroups of complex diseases. One 

of the key innovations is to leverage GWAS-predicted gene expression levels instead of raw SNP data. 

Estimating gene expression from genotype has become an active area of research, thanks to increasing eQTL 

resources such as GTEx and others12,13. In our work, genomic data are combined with clinical phenotypes, and 

both types of data are utilized for disease subtyping via an (unsupervised) machine learning approach known as 

‘multi-view clustering’. The overall aim is to classify patients into meaningful subgroups with clinical and 

biological significance. The new gene-based approach is considerably faster and much less memory-demanding 

than the SNP-based approach; more importantly, the approach connects the functional impact of the SNPs to 

genes via their effect on expression for subsequent cluster analysis. Changes in expression levels may be closer 

to the underlying pathophysiology of diseases, and the results from the analysis are easier to interpret. Another 

important advantage is that we can impute expression levels in different tissues easily, while it is impossible to 

consider tissue relevance if we model the SNPs directly.  
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In oncology, finding molecular subtypes of cancer characterized by different expression and other omics 

profiles has been an active area of research, and showed great promise for translating into more targeted 

intervention and prognostic strategies for patients. One of the reasons for more active subtyping studies in 

oncology might be due to the availability of relevant tissues from surgical specimens; omics profiles can then be 

measured, often in samples without prior drug treatment (e.g. TCGA samples are free from neoadjuvant 

treatment). For other complex diseases, such as psychiatric disorders, access to relevant tissues is usually 

invasive and costly (or requires post-mortem samples), and expression data are often confounded by 

medications taken. Our proposed approach using GWAS-imputed transcriptome data avoids these issues as 

imputation can be based on external reference data, hence expression levels in different tissues can be easily 

imputed without invasive procedures. Also the results are not affected by drug use, non-pharmacological 

interventions or other environmental confounders, as our imputation is based on (germline) genetic variants.  

  

 We evaluated the feasibility and validity of our proposed approach on two different categories of complex 

diseases, namely psychiatric and cardiometabolic disorders/traits. We presented an analytic framework for 

disease subtyping, and also proposed several new validation strategies to check the validity of the clustering 

algorithm and derived disease subtypes. Our presented analytic framework is general and may be applied to any 

complex diseases. Our results indicated that the proposed approach has the capability to stratify patients into 

meaningful subgroups with clinical and biological relevance.  

 

 

Method 

   The main purpose of this study is to present a novel analytic framework to discover disease subtypes through 

incorporating GWAS-predicted expression levels and clinical traits. We employed a multi-view clustering 

method, which is capable of uncovering disease heterogeneity across different data views of patients (clinical 

and genetic). A schematic diagram of our proposed approach is shown in Fig.1. Our method includes three steps, 

i.e., data ‘imputation’, disease subtypes discovery and validation of discovered subtypes (through internal and 

external validation approaches). We shall describe each of the steps in greater detail below.  
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Fig. 1 Outline of proposed method for disease subtypes discovery 

In brief, our method includes three steps, i.e., data ‘imputation’, disease subtypes discovery and validation of

discovered subtypes. 1) data ‘imputation’: For clinical traits, we apply R package ‘missForest’ which employs a

random forest approach for data imputation; Then, we employed ‘PrediXcan’ to map our SNPs to genes with

estimated gene expression levels. 2) disease subtypes discovery: we make use of a multi-view sparse clustering

method to uncover the underlying subtypes of complex disease by utilizing both GWAS-imputed gene

expression levels and clinical data. 3) Validation of discovered subtypes: both internal and external validation

were conducted.  
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Data imputation and estimation of expression levels from GWAS 

As missing data are not allowed for clustering analysis, imputation was firstly performed. For clinical traits, we 

apply the R package ‘missForest’ for data imputation which employs a random forest algorithm for imputation 

14. For the GWAS dataset, we need to impute expression levels, which is best conducted on a full set of genetic 

variants instead of SNPs on the genotyping panel only. We therefore performed variant-level imputation by the 

program ‘Minimac’ using the University of Michigan Imputation Server and 1000 Genomes Phase 3 v5 as the 

reference panel15 . SNPs with INFO score> 0.3 were kept. We then employed ‘PrediXcan’ to impute expression 

levels from the imputed genotype data. For details of the algorithm, please refer to original paper 16. Briefly, the 

algorithm first produces prediction models for expression levels from an external reference dataset (such as 

GTEx) which contains both genotype and expression data. An elastic net regression model is used by default. 

Then, the prediction model can be applied to new genotype data to ‘impute’ expression. Expression in different 

tissues can be estimated as long as the reference dataset includes such data.  

 

Disease subtype discovery 

Multi-view sparse biclustering 

  Supposing ��  is a � � ��  data matrix from clinical or genetic view of patients, where n is the sample size, 

d denotes the index of ‘view’ to be modelled and md is the number of features in the dth view. For example, if one 

models clinical and GWAS-predicted expression in one tissue, there will be two views. It is possible to extend 

the approach to more than 2 views, for example based on expression in different tissues or using other 

(preferably gene-based) ‘omics’ profiles . Subgroup of patients can be simultaneously derived by performing a 

sparse rank one approximation on the original matrices ��  (� � 1,2, . . � , indicating data matrices from 

different views that characterize the same set of patients), i.e.,  

�� � ����������� (1) 

where � is a binary vector of size �, serving as a common factor that force different views of data to agree on 

the same grouping of patients. ������ is a diagonal matrix of size � � � with diagonal entries equal to �. 
��  of size �  and ��  of size ��  are the rank-one approximations of ��  respectively. Rows in ��  

corresponding to the non-zero entries of ������ form the row subgroups, and columns in ��  form the 

column subgroups (a.k.a., sub-feature groups) in different views. Subgroups of patients based on different views 

of data can be derived by solving the following optimization problem:  

���
�,����,��	,
,..�

���� � ��� �!�"�#��
�



�

��	
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      subject to $!$� % &�, $#�$�  % &��, � ' (), *+, ! ' ,� (2) 

 

 

where &� and &��’s are hyper-parameters that need to be predetermined to enforce sparsity of � and ��’s, i.e., 

the number of patients ��� and number of selected features ����  in each subgroup of the corresponding data 

view. � is the number of data views incorporated for clustering and -� is the set that contains all possible 

binary vectors of length �. To obtain subsequent subgroups, we need to firstly update the data matrices by 

excluding previously identified patients, then solve Eq. (2). For details of optimization of the objective function, 

please refer to the original paper 17 . 

   The presented approach is capable of selecting features during the clustering process, however we need to 

predetermine the number of selected features in each data view. For data matrix from clinical view of patients, 

all features were preserved for disease subgroup discovery. As for data matrices from genetic views of patients, 

based on suggestions from the original paper we employed principal component analysis (PCA) to determine 

the number of selected features (���� ) in each view. As recommended by the authors, we set ����  to be the 

number where the accumulated variance in PCA of �� (genetic view) was over 90%. 

   As for the number of possible disease subgroups, we considered a range of 2 to 6 subgroups. We need to 

determine the number of patients in each disease subgroup in each clustering trial. Here we set the smallest 

number of patients [�������] in each subgroup to 20. For a given number of subgroups ., we firstly set ��� 

to a value roughly equals to �/., then we experimented with all the combinations by adding or subtracting 

������� in each subgroup. For example, suppose we have 400 patients and . = 2, then ���  and ��� would 

be firstly set to 200, subsequently we would experiment with ���= 200 + 20*t & ���= 200 - 20*t (t =1,2,..9). 

 

Finding optimal biclusters by comparing between- and within-bicluster distances  

   In order to find the optimal solution for disease subgroups, we proposed a new algorithm to evaluate the 

identified biclusters in given datasets. One of the most commonly employed index for bicluster performance is 

the mean squared residue (MSR)18, which assesses the homogeneity within each bicluster. However, the index 

does not maximize the heterogeneity between different biclusters. For well-separated biclusters, patients within 

the same subgroup should be highly homogeneous while patients belong to different subgroups should be 

highly heterogeneous. In this regard, finding well-separated biclusters (subgroups of patients) is equivalent to 

finding multi-view clustering results that maximize the sum of ratios of between bicluster distance and within 

bicluster distance (
���

���
) over all data views and all biclusters. Hence we came up with the following index 
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where  and 1 are the index of patients and features in the derived subgroup 2�, n 
  is the number of patients 

in the given datasets that not belong to subgroup 2� while ��� is the number of patients in subgroup 2�. 

  We note that if a bicluster is of smaller sample size, the 
���

���
 of this bicluster tends to be larger, as it is easier 

to achieve a smaller within-bicluster variance. To remedy this potential bias, we weighted the 
���

���
 of each 

bicluster based on their sample size proportionally, i.e.,  

���
� ���

�  (4) 

hence imposing a penalty for smaller biclusters. We identify the best solution by finding the bicluster 

configuration that maximizes the following objective function: 

                 ∑ ∑ ���
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��
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�
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∑ �
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����	���	�

�
���

�
���  (5) 

 

Evaluation of discovered subgroups 

  We employed two approaches to validate the discovered patient subgroups. When external data on disease 

outcome (that are not involved in the clustering process) is available, one may validate the derived patient 

subgroups by finding differences in prognosis across subgroups. On the other hand, if such data is not available, 

one may employ other internal validation methods. In this study, we presented an approach that involved 

splitting the sample into ‘training’ and ‘testing’ sets, and evaluated whether the patient subtyping model derived 

from the training set ‘predicts’ the actual subgroups derived from the testing set alone. The methods are detailed 

below. 

 

External validation 

  To assess the validity of the discovered disease subgroups, we compared the identified disease subgroups to a 

number of outcome-related variables that were not used for clustering. We performed regression analysis to 

evaluate the differences among discovered disease subgroups. Ordinal regression was applied for ordered 

responses of >= 3 groups. We employed the Benjamini-Hochberg false discovery rate approach (FDR) to 

control for multiple testing. FDR controls the expected proportion of false positive results among those declared 

significant.  

 

Internal validation 
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Fig. 2 Illustration of distance calculation for prediction strength   

  In case there are no available outcomes for external validation, internal validation approach is required to

assess the quality of the discovered disease subgroups. Here we proposed using a modified version of

“prediction strength” (PS) for validation. PS is a widely used validation metric proposed by Tibshirani and

Walther to measure the quality of (single-view) k-means clustering results. Here we developed a new modified

version of this metric for use in biclustering analysis, which has not been reported before. Details on the original

PS algorithm can be found in the original paper19. Briefly, PS can be conceptualized as an extension of

cross-validation used in supervised learning problems. The data is randomly split into a train-set and a test-set,

and clustering is performed on each set separately. The clustering model from the train-set is then applied onto

the test-set; this is usually done by assigning each observation in the test-set to the nearest cluster centroid

derived from the train-set. One can then compute how well the co-memberships based on the ‘predicted’

clusters matches with the co-memberships derived from actually performing another cluster analysis in the

test-set. The prediction strength therefore enables one to assess how well the cluster model can be generalized to

new datasets, analogous to examining the predictive performance of a supervised classification model in a new

dataset.  

 

   As single-view k-means clustering is different from the multi-view sparse biclustering that we employed, we

proposed a new metric to compute PS. As described above, the algorithm involves assigning cluster labels to

test-set observations according to the clustering model derived from the train-set. To perform this step, we

calculate the distance between each test-set observation and derived train-set cluster centres. However, unlike

in ordinary clustering where all the features are employed, here only a subset of the features are selected in each

bicluster, and the selected features could vary in different biclusters. If we just compute the distances between
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each observation and bicluster centers, the comparison is not fair as the features used for distance calculation are 

different for the k biclusters.  

 

We therefore propose a new approach for distance computation, enabling the comparison to be done on the 

same set of features. Say for an example, three biclusters have been derived, and the selected features sets were 

A, B and C respectively. For a new observation xnew, we first compute the distance of xnew to the center of 

bicluster 1, considering feature-set A only; then again based on feature-set A, we compute the distance of xnew to 

the center of a ‘combined’ bicluster formed by subjects belonging to biclusters 2 and 3. We take the ratio of 

these two distances as the new measure of proximity to bicluster 1. The procedure is repeated for bicluster 1, 

2…k, and each test observation is assigned to the bicluster with the lowest ratio of distances as derived above. In 

equation form, the new proximity measure of each test observation (xi) to a bicluster (bk) can be expressed as  

 

                   �45���,��� �  ∑
∑ �!��

��
�

���

∑ !
�
�
�

�
���
������

∑ �!��
��

�

�
��


∑ !

�
�
�

�
���
������

�
���  (6) 

where  is the index of patients in test set, 1 is the index of features, 2� is the derived bicluster in training set, 

��� is the number of patients in the bicluster bk while ���
  is the number of patients who do not belong to 

bicluster 2�. The process of distance computation is illustrated in Figure 2. Each patient is assigned to its 

nearest bicluster, i.e., min .8��"�,���|. � 1,2, … , ;<. The prediction strength of a clustering process can be 

calculated by 

          =4�.� �  >�#�$  8 ���%&%� �

����������
∑ �(?��"' , .�, �"$+((
()(
*+��

< (7) 

Where ?��"' , .� denote the clustering operation on training set, �(?��"' , .�, �"$+((
  is the co-membership 

matrix with �(?��"' , .�, �"$+((
 � 1  if patients   and ,  fall into the same bicluster and 

�(?��"' , .�, �"$+((
 � 0 otherwise. cvave refers to taking the average across all cross-validation folds. In this 

study, following the original study, we randomly split the sample into 2 halves and performed 2-fold CV 3 times. 

According to Tibshirani and Walther =4�.� A 0.8 suggests well-separated biclusters.  

 

To confirm the presence of cluster structure in our data 

  To verify that the discovered clusters are “really there” instead of the results of natural sampling variation, we 

employed the R package “sigClust” to test for the presence of cluster structure in our data. We used the settings 

suggested by the authors. Details on this algorithm are described elsewhere 20 .  
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Selected genes and pathway analysis 

  We extracted the genes selected in the clustering process to figure out which genes contribute to the subtyping 

of patients. We also conducted pathway analysis to further explore the pathophysiology in each When the 

number of selected genes is relatively small, one may employ an over-representation analysis based on 

hypergeometric tests. Alternatively, the vector vk can also be considered as a measure of the weight of different 

features, and such information can be incorporated into certain pathway analysis algorithms such as GSEA 

(Gene-set Enrichment Analysis)21 . We employed the latter approach for pathway analysis in the Northern 

Finland Birth Cohort sample (see below), as the number of selected genes was relatively large. 

Over-representation analysis was conducted in “ConsensusPathDB” while GSEA was conducted using 

WebGastalt 22,23. We also performed a “tissue specificity” analysis in FUMA by examining whether selected 

genes were differentially expressed genes in a particular tissue 24 .  

 

Application to real data  

Subtyping schizophrenia  

  We applied the proposed framework to 387 schizophrenia (SCZ) patients with clinical, neurocognitive and 

genetic profiles collected in Hong Kong. Schizophrenia is a psychiatric disorder in which patients are highly 

heterogeneous with respect to many aspects such as clinical symptoms, prognosis, treatment outcome and 

probably in the underlying pathogenesis. Same as other psychiatric disorders, the current diagnostic criteria for 

SCZ relies on clinical symptoms only. Characterization of SCZ patients into more biologically and clinically 

homogenous subtypes will be an important step towards precision psychiatry. Details of subject recruitment and 

profile assessment can be found elsewhere. 25 Briefly, all subjects met the DSM-IV diagnostic criteria for SCZ. 

They were all recruited from Hong Kong and were Han Chinese. Clinical characteristics such as course of 

illness, positive and negative symptom scores, treatment response, history of self-harm and aggression were 

recorded by trained psychiatrists. Several neurocognitive tests were also performed such as verbal fluency, 

Stroop test, soft neurological signs and intelligence. All subjects were genotyped by the Illumina 

Human610-Quad BeadChip and imputation was performed. Standard quality control procedures were 

conducted following Wong et al26.  

 

Application to the Northern Finland Birth Cohort (NFBC) 

   We also applied our proposed approach to the Northern Finland Birth Cohort 1966 (dbGaP Study Accession 

number phs000276.v2.p1) with a sample size of 4982 (male: 2452, female: 2530). The original study was 

described in27. We performed standard quality control procedures as described earlier3. Subjects were 
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genotyped by the Illumina Infinium 370cnvDuo array, and imputation was performed by the Michigan 

Imputation Server as described above.  

   In addition to de-identified genome-wide SNP data, a selected list of 13 phenotypes related to cardiovascular 

disease (CVD) risks including, gender, C-reactive protein, waist-hip ratio (WHR), body mass index (BMI), 

high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), total cholesterol (TC), 

triglyceride (TG), fasting glucose, fasting insulin, homeostatic model assessment for insulin resistance 

(HOMA-IR), systolic and diastolic blood pressure (SBP/DBP) were also modeled in our biclustering analysis. 

Details about phenotype assessment were described elsewhere25. All subjects were 31 years of age at the time of 

assessment. In a recent work, Ongen et al have shown that coronary artery and liver are the top causal tissues for 

CVD 28 . In this regard, we selected the imputed gene expression levels of coronary artery and liver along with 

the clinical profiles of subjects as inputs to our model. 

   The motivation is to provide a more data-driven and biologically-informed way to stratify subjects into 

different levels of cardiometabolic risks. At present, individuals are classified as having the ‘metabolic 

syndrome’ (MetS) if they have several inter-related risk factors (e.g. obesity/central obesity, dyslipidemia, 

hypertension, hyperglycemia) which leads to increased risk of cardiometabolic diseases. However, the criteria 

of MetS controversial and different groups29,30,31  have proposed different definitions. Also, it is unclear 

whether MetS truly reflect a subgroup with homogenous pathophysiology32. The proposed framework includes 

genetic factors, which may help identify patient subgroups with more homogenous pathogenic mechanisms; our 

data-driven approach also reduces the subjectivity in defining cut-offs of metabolic parameters.   

 

Results 

Application to SCZ patients 

We firstly applied our framework to SCZ. We selected imputed gene expression profiles of 10 brain tissues as 

well as clinical and neurocognitive profile as inputs (d=11). Note that we have selected 9 variables which were 

assessed at baseline or believed to be more stable across the course of illness (e.g. neuro-cognitive measures) as 

input to the algorithm. The idea is that we wish to subtype the patient at an early stage of illness. On the other 

hand, another 9 clinical variables related to disease outcome, including history of violence and self-harm, 

PANSS (The Positive and Negative Syndrome Scale) scores and course of disease, were reserved for validating 

the differences between derived patient subgroups. These variables were not used in the clustering process. Best 

performance was achieved when patients were categorized into 3 subgroups. Fig.3, Table 1 and Table S1 

demonstrate the distributions of clinical and neurocognitive features of patients among the 3 discovered 

subgroups.  
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Fig. 3 Comparison across input clinical and neurocognitive features by subgroups for SCZ patients 

 

Table 1 Comparison across input variables for clustering of SCZ patients’ subgroups 

 

Features 
Cluster1 VS 2 Cluster 1 VS 3 Cluster 2 VS 3 Overall 

Estimate P values Estimate P values Estimate P values P values 

FHxMI -0.4018 1.49E-01 -0.7297 2.65E-02 -5.50E-14 1.00E+00 6.39E-02 

Dx_type 0.7234 2.23E-02 0.734 3.05E-02 0.0106 9.73E-01 3.29E-02 

INFO -0.3882 5.71E-01 0.7716 2.28E-01 1.1598 1.21E-01 3.06E-01 

r_MC 1.0219 1.53E-04 0.1784 5.42E-01 -0.8436 6.38E-03 3.68E-04 

VFscore -1.8571 5.28E-03 -0.7921 9.13E-01 1.7779 2.02E-02 9.11E-03 
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SWscore -0.8845 4.63E-01 0.2053 8.76E-01 1.0898 4.03E-01 6.60E-01 

SCscore -8.052 2.99E-03 -6.575 2.64E-02 1.477 6.06E-01 7.46E-03 

AgeOnset -0.9388 3.19E-01 -0.7088 4.91E-01 0.23 8.22E-01 5.86E-01 

DUP 0.8312 1.22E-03 0.6131 2.87E-02 -0.2181 4.76E-01 3.82E-03 

 

As demonstrated in Fig.3, derived patient subgroups showed differences in gender proportions. While 26% of 

patients were males in subgroup 1, all patients were males in the remaining two subgroups. It is worth noting 

that gender differences in schizophrenia is well-established33,34,35, so imbalance in the male/female proportion 

across the subgroups are not entirely surprising. Compared with the remaining two subgroups, the first derived 

subgroup showed a trend towards high proportion of positive family history of mental illness and paranoid 

schizophrenia. In addition, they had a significant shorter period of untreated psychosis. As for patients in 

subgroup 2, they had poorer performance on motor coordination and verbal fluency compared to the 1st and 3rd 

subgroup. Patients in subgroup 3 had intermediate clinical and neurocognitive manifestations. 

  We then compared the identified subgroups across 9 outcome-related variables. As demonstrated in Fig. 4, 

Table 2 and Table S2, there existed significant differences among derived subgroups in almost all outcome 

variables, except for self-harm and aggression subscale of PANSS. In summary, we revealed 3 SCZ subgroups 

with good, intermediate and poor prognosis. To be more specific, patients in the first subgroup had the lowest 

tendency for violent behaviours. Besides, they tended to have better treatment response and a more favorable 

course of disease. For symptom scores, they showed the lowest severity with respect to PANn (negative 

symptoms), PANg (general psychopathology) and PANtotal (total score). Compared to the first subgroup, the 

second subgroup exhibited a tendency for poorer treatment response and a continuous course of SCZ. 

Furthermore, they had the most severe symptoms across almost all subscales of PANSS. Subgroup 3 was 

intermediate. 
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Fig. 4 Comparison across outcome-related variables by subgroups for SCZ patients 

 

 

Table 2 Comparison across outcome-related variables for clustering of SCZ patients’ subgroups 

Features 
Cluster1 VS 2 Cluster 1 VS 3 Cluster 2 VS 3 Overall 

Estimate P values Estimate P values Estimate P values P values 

Violence 0.8576 1.70E-04 1.03601 1.88E-05 -0.1731 4.68E-01 9.44E-07 

Self-harm -0.3438 1.71E-01 -0.4058 1.45E-01 -0.0621 8.29E-01 1.18E-01 

Treatment 

response 
1.2489 1.27E-07 1.0106 6.94E-05 -0.2616 3.10E-01 2.38E-06 

PANp 0.5941 4.61E-01 -1.5808 7.34E-02 -2.175 1.18E-02 1.55E-02 

PANn 6.4249 2.72E-11 1.8623 6.98E-02 -4.5625 1.52E-05 1.82E-10 

PANg 3.3873 8.30E-04 -2.2114 4.51E-02 -5.5987 2.59E-08 1.47E-06 

PANs -0.2023 4.07E-01 -0.4986 6.23E-02 -0.2964 2.10E-01 2.47E-01 

PANtotal 10.204 2.58E-05 -2.429 3.55E-01 -12.633 2.69E-07 1.93E-07 

Course 1.3135 2.96E-07 0.608 2.63E-02 -0.7545 5.75E-03 4.47E-06 
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  Notably, our approach significantly outperformed clustering based on random assignment (p<0.001, 1000 

Monte-Carlo simulations). To further assess clusters are genuinely present in the dataset, we also applied 

“sigclust” to our SCZ data which is also statistically significant (p= 0 as reported by sigclust).   

 

Gender stratified analysis 

 We observed significant difference on gender ratio in the 3 identified subgroups (Fig. 3). In this regard, we 

conducted further analysis to examine whether the observed associations with clinical outcomes were purely 

driven by gender differences.  

  Firstly, we excluded all females in cluster 1, and repeated the association analyses on input and outcome 

variables considering male subjects only. As expected, we still observed significant differences across most 

outcome features, except for violence, self-harm and PANSS aggression subscale score (Table S3, 

Supplementary Fig. 1 and Fig. 2). 

  Subsequently, we repeated our multi-view clustering analysis method on female patients only. The best 

solution consisted of 3 subgroups. Similar with male-only analysis, we again observed significant differences 

across most clinical outcomes including treatment response, 3 PANSS subscale scores (negative, general and 

total score) as well as disease course (Table S4, Supplementary Fig. 3, and Fig. 4). 

 

Selected genes and pathway analysis 

Among selected genes by clustering analysis, numerous were involved in schizophrenia or related 

pathophysiological processes, such as ZNF804A36,37, SNX1938, LRP139, CACNB240,41,42. ZNF804A has been 

identified as a top risk gene in schizophrenia which is implicated in neurodevelopmental processes43 . In 

addition, we examined whether the genes selected by the cluster algorithm were ‘enriched’ for GWAS hits. We 

tested whether the selected genes as a whole had lower p-values from GWAS (of SCZ, bipolar disorder and 

depression) than those not selected. As expected, the strongest enrichment was observed for SCZ, and 

significant enrichment was also observed for bipolar disorder (cluster 2). Note that the biclustering algorithm 

selected these genes ‘blindly’, as no pre-screening for association with SCZ was performed. We also note that 

the genes that characterized SCZ prognosis and clinical features may not be the same as those that affect 

susceptibility to the disease, but we expect a partial overlap.        

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2019. ; https://doi.org/10.1101/595488doi: bioRxiv preprint 

https://doi.org/10.1101/595488
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

Table 3 Enrichment of gene-set (which identified by cluster analysis) for psychiatric GWAS results 

Clusters SCZ Bipolar Depression 

Cluster One 0.087 0.496 0.399 

Cluster Two 0.100 0.013 0.207 

Cluster 

Three 

0.017 0.174 0.405 

   

  As we employed a gene-based approach in our analysis, we may characterize each subgroup by involved 

genes and pathways readily. The top enriched biological pathways and gene ontology are demonstrated in Table 

S7; we highlight a few pathways here. For cluster 1, antigen processing and presentation44 , generation of 

second messenger molecules45,46 , autoimmune thyroid disease47 , pyrimidine metabolism48 were among the top 

pathways. For the second cluster, some of the involved pathways included arachidonic acid metabolism49,50 , 

glutathione conjugation51,52, glutathione-mediated detoxification53 and others. As for the third cluster, some 

significant pathways included DNA damage reversal54,55, Vitamin D3 (cholecalciferol) metabolism56 , 

metabotropic glutamate/pheromone receptors57,58 . Some enriched pathways were shared among different 

clusters while some were not. Notably, numerous enriched pathways were associated with psychiatric disorders 

or brain functioning. Please refer to the attached references for potential relationships of the named pathways 

with SCZ or other psychiatric disorders. For example, immune and inflammatory processes are postulated to 

play an important role in SCZ pathogenesis59 and ‘antigen processing and presentation’ was the second most 

significantly enriched pathway (p=1.08E-10) in a SCZ GWAS44; increased breakdown of arachidonic acid was 

revealed to be responsible for neuronal deficits in SCZ49; DNA damage and dysfunctional DNA repair60 has 

been reported to contribute to the pathophysiology of psychiatric disorders54;  glutamatergic dysfunction has 

been implicated in SCZ and proposed as targets for new drugs61. For the tissue specificity analysis, we observed 

all sets of selected genes in all tissues were significantly enriched in DEGs in the brain (Supplementary Fig. 5).  

 

Application to Northern Finland Birth Cohort 

  Next we applied the proposed framework to the NFBC cohort to stratify patients into different levels of 

cardiometabolic risks. There exists significant gender differences in terms of risk factors, prevalence, age at 

onset and clinical presentation of CVD62,63 . The Framingham scoring system and criteria for metabolic 

syndrome are also set separately for males and females 64 . In view of the well-established differences between 

genders, we performed the analysis separately in males and females.  

 

Gender stratified analysis 
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Fig. 5 Comparison across input clinical features by male subgroups from multi-view clustering 

 

Firstly, we applied our framework to male subjects only. The best solution consisted of two subgroups, with

146 and 2306 subjects in each subgroup. We observed highly significant differences among all 12 input clinical

variables (Fig.5, Table 4) between two subgroups. The best solution comprised two clusters (‘high CV risk’ and

‘low CV risk’) with marked differences in cardiometabolic risk factors. More specifically, subjects in the first

subgroup had higher levels of LDL, TG, TC, BP, CRP, fasting glucose/insulin and were more obese (average

BMI of 31.03). Subjects in the second subgroup showed a more favourable profile of cardiovascular risks.  

 

We also computed prediction strength (ps) for our male-only clustering results, and obtained a ps of 0.759 for

our selected solution, signifying relatively good ability for the clustering results to be generalized to a new

dataset. To further verify the reliability of our solution, we compared the ps with that obtained from a random

clustering approach. The solution is significantly better than by chance (p<0.001, 1000 random cluster

assignments). “sigclust” also returned p-value of 0, indicating existence of genuine cluster structure in the data

instead of random sampling variations. 

 

Table 4   Differences in input clinical variables among subgroups derived from cluster analysis of only males

Measures Estimate P value 

WHR -0.136587 1.32E-199 

CRP -1.2323 7.34E-06 

FG -0.19770 1.27E-04 

INS -5.5978 1.72E-51 

TC -0.51332 1.92E-09 

HDL 0.17767 1.43E-10 

LDL -0.39540 2.13E-07 

TG -0.8068 2.97E-31 

HOMA-IR -0.72122 1.27E-52 

ith 

cal 

nd 

irst 
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for 

ew 

m 

ter 

ata 
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BMI -6.1981 1.77E-100 

SBP -7.762 3.52E-13 

DBP -8.2871 6.93E-18 

WHR, waist-hip ratio; CRP, C-reactive protein; FG, fasting glucose; INS, fasting insulin; TC, total cholesterol;

HDL, high-density cholesterol; LDL, low-density cholesterol; TG, triglyceride; HOMA-IR, Homeostatic

Model Assessment for Insulin Resistance; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic

blood pressure.  

   

  We repeated our approach on female subjects of NFBC. The best solution was composed of 2 subgroups with

65 and 2465 subjects respectively. Again, we observed significant differences among all 12 input clinical

variables (Fig. 6, Table 5). Compared with subjects in the 2nd subgroup, those in the 1st subgroup manifested

significantly higher levels of cardiometabolic risk factors in all input clinical variables except HDL.  

  We also employed prediction strength to evaluate the validity of our approach. For our selected solution, we

got a ps of 0.826, indicating good clustering performance. Our approach significantly outperformed randomly

assigned clustering method (p<0.001, 1000 random cluster assignments). Also, we applied “sigclust” to our

female-only dataset, which confirmed the presence of cluster structure in our data (p=0). 

Fig. 6 Comparison across input clinical features by female subgroups from multi-view clustering 

 

 

 

 

Table 5  Differences in input clinical variables among subgroups derived from cluster analysis of only females

Measures Estimate P value 

WHR -0.284545 3.87E-224 

CRP -2.4734 1.45E-06 

FG -0.19036 1.80E-03 
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INS -5.7274 4.17E-34 

TC -0.3737 9.20E-04 

HDL 0.26044 1.60E-08 

LDL -0.41459 2.91E-05 

TG -0.43240 1.26E-11 

HOMA-IR -0.72882 2.87E-33 

BMI -9.3350 5.28E-59 

SBP -10.482 8.05E-12 

DBP -8.076 9.36E-10 

 

Selected genes and pathway analysis 

  We separately analysed the selected genes from male-only and female-only clustering analysis. Numerous 

selected genes were implicated in CVD or related pathophysiological processes, including CEP6865 , SREBF66 , 

FMO67 , ITGB68 etc. For example, CEP68 has been identified as a top risk gene for elevated blood pressure. We 

also examined whether these selected genes are enriched for GWAS ‘hits’ of cardiometabolic disorders. In brief, 

we first performed gene-based test on CAD and DM GWAS data, then examined whether the selected genes 

from cluster analysis have lower p-values than the non-selected genes. We observed this is indeed true for both 

female-only and male-only clustering analysis (Table 6). The results provide support for the validity of our 

approach, as the cluster algorithm is ‘blind’ to which genes being associated with CAD or DM beforehand. 

Also, we analysed the top enriched biological pathways for males and females respectively (as demonstrated 

in Table S8 and Table S9). To highlight a few potentially interesting pathways, for female-only subjects, the 

involved pathways of cluster 1 included NRF2 pathway69 , Pathways in Pathogenesis of Cardiovascular Disease 

and Proteasome Degradation70 ; for cluster 2, Arrhythmogenic Right Ventricular Cardiomyopathy71 , NRF2 

pathway and Adipogenesis72 were among the top enriched pathways. As for male-only subjects, the top 

enriched pathways for cluster 1 included Tamoxifen metabolism73 , Complement Activation74  and 

BDNF-TrkB Signaling75 ; the involved pathways for the second cluster included Apoptosis Modulation and 

Signaling76 , Cardiac Hypertrophic Response77 and NRF2 pathway. As expected, some of the top involved 

pathways were shared among female-only and male-only clusters while others were not. Notably, some of the 

top enriched pathways were associated with increased risk of cardiovascular disorders, for example, NRF2 

pathway plays a significant role in the development and progression of CVD69 . Apoptosis is shown to be 

involved in the development of both acute and chronic heart failure76 . For details about the top enriched 

pathways and gene ontology, please refer to Table S8 and S9. Finally, for the tissue specificity analysis, 
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significant enrichment in heart, liver and artery were observed in both females and males (Supplementary Fig. 6 

and Fig. 7). 

 

Table 6   Enrichment of genes identified by the cluster analysis for CAD (coronary artery disease) and DM 

(diabetes mellitus) GWAS results 

Reference 

Diseases 

Female-only Male-only 

Cluster One Cluster 

Two 

Cluster One Cluster 

Two 

CAD 5.36E-03 0.186 2.75E-05 8.91E-03 

DM 5.68E-06 1.25E-05 1.49E-05 4.19E-05 

 

Discussion 

  In this study, we have presented a novel framework capable of discovering latent subgroups of complex 

disease by leveraging patients’ clinical and GWAS-predicted expression profiles. We verified the feasibility 

and validity of our proposed approach by applying it to two different datasets. For example, in the SCZ dataset, 

the derived subgroups showed significant differences in disease outcomes such as treatment response, course of 

illness and symptom scores. In addition, we observed satisfactory prediction strength (the ability of the 

clustering model to ‘predict’ clusters in a new dataset) for both applications in SCZ and cardiometabolic 

disorders. Moreover, we found that the genes ‘blindly’ selected by the cluster algorithm are significantly 

enriched for those discovered in genetic association studies of SCZ and cardiovascular diseases, supporting the 

biological relevance of the clustering approach.  

 

To our knowledge, this is the first study to leverage GWAS-predicted expression profiles and clinical 

variables to discover complex disease subgroups. Through imputation to expression levels, GWAS data might 

be readily analysed using other forms of clustering techniques, such as those developed for subtyping oncology 

patients. Therefore, our proposed analytic framework is highly extensible to current or even future unsupervised 

learning or clustering methodologies. In addition, our proposed approach can be applied to any existing GWAS 

datasets, which are often of much larger sample sizes compared to expression studies. As we have mentioned in 

the introduction, there are numerous other advantages of the presented framework. Since genetic variations 

have been mapped to expression levels, the discovered subgroups are likely more biologically relevant and 

interpretable than a pure SNP-based analysis. Another important advantage is that we can easily extend to 

multiple tissues, especially those that are difficult to access (e.g. brain). The analysis results are also unlikely to 

be confounded by other factors such as medication use. As such, differences among derived subgroups will not 
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be merely due to differences in the drugs prescribed or intervention given. Imputation of SNP data to gene-level 

data also reduces the dimension substantially, increasing the computational speed and ease of analysis. For 

example, for the SCZ data, the computation efficiency is dramatically improved by employing a gene-based 

compared to a SNP-based approach to clustering, while the gene-based approach still being able to divide the 

patients into diverse subgroups with significantly different prognosis (Table 7). 

 

Table 7 Comparison on computational cost across different methods 

Clusters 

GWAS SNP-based cluster 

analysis 

GWAS-predicted expression based 

cluster analysis 

Time consumed Memory 

occupied 

Time consumed Memory 

occupied 

2 5323s 12.1G 141s 1202M 

3 4503s 12.1G 124s 1272M 

4 6300s 12.1G 102s 1358M 

5 6348s 12.1G 119s 1389M 

6 3467s 12.1G 154s 1438M 

 

  The purpose of our study is to find clinically and biologically homogenous subgroups of patients. However 

this similarity may extend beyond the outcome variables collected in our dataset, for example predisposition to 

comorbidities or complications, response or side-effects to current or even new medications etc. The clinical 

implications of the derived clusters may therefore be beyond the variables recorded. In this regard, one 

limitation of the current study is that some of the outcome variables are not available. For instance, for the 

NFBC 1966 dataset, we do not have longitudinal data on the cardiovascular outcomes (e.g. CAD, stroke, CVD 

deaths); such information will be valuable in testing whether derived subgroups of subjects differed in 

cardiovascular outcomes in the long run. In a similar vein, the clinical data used as input for clustering are also 

not complete. For example, the neurocognitive profiles collected for SCZ patients are not thorough and apart 

from CRP the NFBC dataset do not have other measurement of serum biomarkers. Another limitation is that 

expression imputation is based on the GTEx dataset, which is of modest sample size. The imputation is subject 

to error and some genes may not be predicted as accurately as others. The imputation may be less than optimal 

for non-Caucasian populations, due to nature of the GTEx dataset in which ~85% are Caucasians. Nevertheless, 

empirically we observed reasonable performance of our clustering framework, and we believe the situation 

might improve when larger genotype-transcriptome studies are released in the future. A related open question is 

how to accommodate imputed expression from different tissues. One solution, as we employed here, is to 
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extract the most relevant tissues and model these tissues only. Methods for prioritizing the most important 

tissues for a disease are emerging28 . However, it remains unknown whether this is the most optimal approach. 

For example, it may be possible to model more tissues but to assign a weighting according to the relevance of 

each tissue to the disorder.  

 

One concern of cluster analysis using genomic data is the effect of population stratification. Population 

stratification is a confounder in genetic association studies, for which the aim is to uncover susceptibility 

variants for a trait. However, in a cluster analysis context, we argue that population stratification is usually not a 

major problem, particularly from a clinical point of view. We have discussed this issue in detail in our previous 

work8 . Briefly, from a clinical perspective, the clustering is satisfactory if patients can be divided into groups of 

clinical differences, for example different prognosis, survival or drug responses. If patients are clustered into 

different groups due to or partially due to (possibly subtle) ancestry differences, as long as the subgroups are 

clinically diverse, this clustering is still useful and valid from a clinical viewpoint. There are two possibilities 

for diverse clinical profiles in different ethnic groups. The ethnic difference may be associated with other 

environmental factors (e.g .socioeconomic background, dietary/lifestyle patterns) that are also linked to the 

disease profiles or prognosis. In this case, population stratification can be “beneficial” as the clustering 

framework can consider extra information captured by the ethnic differences. The model can be considered 

‘valid’ as long as it is applied to a similar population. However, if we only wish to reveal the genes contributing 

to the disease subgroups, the genetic variants identified may not have direct biological relevance to the studied 

disease under this condition. In this study, the SCZ dataset is exclusively collected in Hong Kong while the 

NFBC sample is from Finland only. We observed significant enrichment of the selected genes for susceptibility 

genes of SCZ/CAD/DM in other GWAS, and also revealed pathways of functional importance, indicating the 

selected genes may indeed be biologically relevant, although further functional studies are required to confirm 

the findings.  

 

  Another possibility (which could co-exist with the first), is that some variants that are different among the 

ethnic groups are also biologically related with the disease. For example, an ethnic subgroup may have a 

higher/lower frequency of certain variant(s) affecting drug metabolism leading to better/worse response. The 

clustering is clearly valid in this scenario.  

   For the NFBC example, we observed imbalance in the derived subgroups in which the ‘high-risk’ subgroup 

contains a small number of subjects only. This is probably reasonable as all subjects are relatively young (aged 

31) and the proportion of subjects having high CV risks is likely to be low. Interestingly, we computed that the 

proportion of NFBC participants with clinically defined metabolic syndrome (according to the latest 
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Harmonized criteria31 ) is 5.5% in males and 2.5% in females. These numbers are close to the proportion of 

subjects in the ‘high risk’ cluster using our proposed clustering framework. This suggests the ‘imbalance’ in the 

derived clusters makes clinical sense, despite we do not give the algorithm a priori guidance on the distribution 

of the clusters. One concern may be that whether the subgroups derived from the present clustering framework 

will be very similar to those derived by existing criteria of MetS, given the similar proportion of subjects 

subtyped as ‘high risk’. If this is the case, there is not much added value of including genomic data. We checked 

that the derived cluster from our approach have only partial overlap (21.1% for males, 16.9% for females) with 

the existing criteria for MetS, suggesting that genomic data adds to existing clinical information and provides an 

alternative, biologically-driven approach to characterize patient subgroups with high cardiometabolic risks. 

Intuitively, genetic data reflects the predisposition to develop certain traits or diseases, and may help predict the 

future risk of MetS or CVD, as opposed to existing approaches which only rely on cardiometabolic parameters 

measured at present. For instance, a young subject may not have MetS yet but maybe genetically predisposed to 

developing MetS and CVD; these subjects may be picked up by the proposed subtyping approach via 

integrating genomic and clinical data.  

  

In oncology, studies on cancer subtyping have greatly benefited from resources of genomic data such as 

TCGA. Some approaches to cancer subtyping have also observed clinical applications 78 . It is worth noting that 

many of these studies and methodologies developed on cancer subtyping utilized expression data. From a 

broader perspective, our presented approach which leverages transcriptome data are linked to these works, as 

clustering methodologies developed in cancer research (that utilize expression profiles) could be ‘translated’ to 

other complex diseases under our presented framework.  

 

  To summarize, we proposed a novel analytic framework to uncover subtypes of complex diseases by 

leveraging both clinical and GWAS-imputed expression profiles. The derived subgroups exhibited significant 

differences across numerous outcome variables and/or showed good prediction strength, indicating the 

feasibility and validity of our proposed method. Enrichment of genes selected by the cluster algorithm for 

GWAS hits provided further support to our approach. From a clinical point of view, stratification of patients is 

crucial in provided more targeted prevention as well as intervention strategies; from a more basic science 

perspective, our approach may help identify subtype-specific biological pathways and processes, and the 

development of more personalized drug therapies for patients.  
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