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Abstract 
In largely non-mitotic tissues such as the brain, cells are prone to a gradual accumulation of 
stochastic genetic and epigenetic errors, which may lead to increased gene expression variation with 
time, both between cells and possibly also between individuals. Evolutionary theory also predicts 
increased genetic variation during aging, associated with the expression of slightly deleterious 
variants. Although increased inter-individual heterogeneity in gene expression during brain aging was 
previously reported, whether this process starts at the beginning of life or it is mainly restricted to the 
aging period has not been studied. The regulation and functional significance of putative age-related 
heterogeneity are also unknown. Here we address these issues by a systematic analysis of 19 
transcriptome datasets from diverse brain regions in human covering the whole postnatal lifespan. 
Among all datasets, we observed a significantly higher increase in inter-individual gene expression 
heterogeneity during aging (20 to 98 years of age) than during postnatal development (0 to 20 years 
of age). Moreover, increased heterogeneity during aging was consistent among different brain regions 
and was associated with many biological processes and pathways that are important for aging and 
neural function, including longevity regulating pathway, autophagy, mTOR signaling pathway, axon 
guidance, and synapses. Overall, our results show that an increase in gene expression heterogeneity 
during aging is a general effect in human brain transcriptomes and, may play a significant role in 
processes of aging-related changes of brain functions. We also provide the necessary functions to 
calculate heterogeneity change with age as an R package, ‘hetAge’.  
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Introduction 
Aging is a complex process characterized by a gradual decline in maintenance and repair 
mechanisms, accompanied by an increase in genetic and epigenetic mutations, and oxidative 
damage to protein and lipids (Gorbunova, Seluanov, Mao, & Hine, 2007; Lu et al., 2004). The human 
brain experiences dramatic structural and functional changes in the course of aging. These include 
decline in gray matter and white matter volumes (Sowell, Thompson, & Toga, 2004), increase in 
axonal bouton dynamics (Grillo et al., 2013) and reduced synaptic plasticity, which may be associated 
with the decline in cognitive functions (Dorszewska, 2013). Changes during brain aging are suggested 
to be a result of stochastic processes, unlike changes associated with postnatal neural development 
which are known to be primarily controlled by regulatory processes (Polleux, Ince-Dunn, & Ghosh, 
2007; Schratt, 2009; Stefani & Slack, 2008). The molecular mechanisms underlying age-related 
alteration of regulatory processes and eventually leading to aging-related phenotypes, however, are 
little understood.  
 

Over the past decade, a number of transcriptome studies focusing on age-related changes in human 
brain gene expression profiles were published (Kang et al., 2011; Lu et al., 2004; Miller et al., 2014; 
Somel et al., 2010; Tebbenkamp, Willsey, State, & Šestan, 2014). These studies report aging-related 
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differential expression patterns in many functions, including synaptic functions, energy metabolism, 
inflammation, stress response, and DNA repair. Analyzing age-related change in gene expression 
profiles in diverse brain regions, we previously showed that gene expression changes occur in the 
opposite direction during postnatal development (pre-20 years of age) and aging (post-20 years of 
age), which may be associated with aging-related phenotypes in healthy brain aging (Dönertaş et al., 
2017). While different brain regions are associated with specific, and often independent, gene 
expression profiles (Kang et al., 2011; Miller et al., 2014; Tebbenkamp et al., 2014), these studies 
also show that age-related alteration of gene expression profiles during aging is a widespread effect 
across different brain regions. 
 
One of the suggested effects of aging on gene expression is increased variability between individuals 
and somatic cells, which has been previously reported by several studies. Some of these studies find 
an increase in age-related heterogeneity in heart, lung and white blood cells of mice (Angelidis et al., 
2019; Bahar et al., 2006; Martinez-Jimenez et al., 2017), C.elegans (Herndon et al., 2002),� and 
human twins (Fraga et al., 2005). However, Viñuela et al. find more decrease than an increase in 
heterogeneity in human twins (Viñuela et al., 2018) and Ximerakis et al. show the direction of the 
heterogeneity change depends on cell-type in aging mice brain (Ximerakis et al., 2018). Using GTEx 
data covering different brain regions (20 to 70 years of age), Brinkmeyer-Langford et al. identify a set 
of differentially variable genes between different age groups, but they do not observe increased 
heterogeneity in the old (Brinkmeyer-Langford, Guan, Ji, & Cai, 2016). A more recent study, 
performing single-cell RNA sequencing of human pancreatic cells, identifies an increase in 
transcriptional heterogeneity and somatic mutations with age (Enge et al., 2017). In an earlier study, 
we re-analysed microarray datasets from different tissues of humans and rats, and found that an 
increase in age-related heterogeneity of expression is a general effect in the transcriptome (Somel, 
Khaitovich, Bahn, Pääbo, & Lachmann, 2006). However, we found no significant consistency across 
datasets, nor any significant enrichment in functional gene groups. In another study, a meta-analysis 
suggested differences across brain regions collected from the same individuals are higher in aging 
than in development, suggesting an increase in inter-individual variability (Dönertaş et al., 2017). 
More recently we conducted a prefrontal cortex transcriptome analysis that revealed a weak increase 
in age-dependent heterogeneity at the gene, transcriptome and pathway level independent of the 
preprocessing methods (Kedlian, Donertas, & Thornton, 2019). 
 

Although the age-related increase in heterogeneity has been suggested in previous studies, whether 
it is a time-dependent process that starts at the beginning of life or it (and its functional 
consequences) are only seen after developmental processes are completed, were not explored. In 
this study, we retrieved transcriptome data from independent microarray-based studies covering the 
whole lifespan from diverse brain regions and conducted a comprehensive analysis to identify the 
prevalence of age-related heterogeneity changes in human brain aging, compared with those 
observed during postnatal development. We confirmed that increased age-related heterogeneity is a 
consistent trend in the human brain transcriptome during aging but not during development, and is 
associated with aging-related biological functions. 
 
Results 
To investigate how heterogeneity in gene expression changes with age, we used 19 published 
microarray datasets from three independent studies. Datasets included 1,010 samples from 17 
different brain regions of 298 individuals, ranging from 0 to 98 years in age (Table S1, Figure S1). In 
order to analyze the age-related change in gene expression heterogeneity during aging compared to 
the change in development, we divided datasets into two groups as development (0 to 20 years of 
age, n = 441) and aging (20 to 98 years of age, n=569). We used the age of 20 to separate pre-
adulthood and adulthood based on commonly used age intervals in earlier studies (see Methods). For 
the analysis, we focused only on the genes for which we have a measurement across all datasets 
(n=11,137). 
 
Age-related change in gene expression levels 
Although the primary focus of this study is to explore how heterogeneity in gene expression changes 
with age, we first characterized the changes in gene expression level. In order to quantify age-related 
changes in gene expression, we used a linear model between gene expression levels and age (see 
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Methods, Figure S2). We transformed the ages to the fourth root scale before fitting the model as it 
provides relatively uniform distribution of ages across the lifespan, but we also confirmed that different 
age scales yield quantitatively similar results (see Figure S3). We measured expression change of 
each gene in aging and development periods separately and considered regression coefficients from 
the linear model (β values) as a measure of age-related expression change (Figure S4, Table S2). 
 

 

Figure 1. Age-related change in gene expression during postnatal development and aging. (a) Spearman 
correlations among age-related expression changes (β values) across datasets. The color of the squares 
indicates if the correlation between the corresponding pair of datasets (across β values of 11,137 common 
genes) is positive (red) or negative (blue), while darker color specifies a stronger correlation. Diagonal values 
were removed in order to enhance visuality. Annotation rows and columns indicate data source, brain region and 
period of each dataset. Hierarchical clustering was performed for each period separately (color of the 
dendrogram indicates periods) to determine the order of datasets. (b) Principal component analysis (PCA) of 
age-related expression changes during aging and development. The analysis was performed on age-related 
expression change values of 11,137 common genes among all 38 datasets. The values of the first principal 
component on the x-axis and second principal component on the y-axis were drawn, where the values in the 
parenthesis indicate the variation explained by the corresponding principal component. Median Euclidean 
pairwise distances among development and aging datasets calculated using PC1 and PC2 were annotated on 
the figure. Different shapes show different data sources and colors show development (dark orange) and aging 
(blue) (c) Number of significant (FDR corrected p < 0.05) gene expression changes in development (left panel) 
and aging (right panel). The x-axis shows the number of genes in the log scale. The color of the bars shows the 
direction of change, decrease (steel gray), and increase (orange). The exact number of genes are also displayed 
on the plot. 
 
We first analyzed similarity in age-related expression changes across datasets by calculating pairwise 
Spearman’s correlation coefficients among the β values (Figure 1a). Both development (Median 
correlation coefficient = 0.56, permutation test p < 0.001, Figure S6a) and aging datasets (Median 
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correlation coefficient = 0.43, permutation test p = 0.003, Figure S6b) showed moderate correlation 
with the datasets within the same period. Although the difference between the correlations within 
development and aging datasets was not significant (Permutation test p = 0.1, Figure S5a), weaker 
consistency during aging may reflect the stochastic nature of aging, causing increased heterogeneity 
between aging datasets. In addition, we observed a mostly negative correlation between aging and 
development (Median correlation coefficient = -0.04), consistent with our previous report of gene 
expression reversal, which involved the same datasets but a different measure of age-related 
expression change (Dönertaş et al., 2017). 
 

The principal component analysis (PCA) of age-related expression changes (β) revealed distinct 
clusters of development and aging datasets (Figure 1b). Moreover, aging datasets were more 
dispersed than development datasets (median pairwise Euclidean distances between PC1 and PC2 
were 77 for aging and 21 for development), which may again reflect stochasticity in gene expression 
change during aging and can indicate more heterogeneity among different brain regions or datasets 
during aging than in development. 
 
We next identified genes showing significant age-related expression change (FDR corrected p < 
0.05), for development and aging datasets separately (Figure 1c). Development datasets showed 
more significant changes compared to aging (Permutation test p = 0.003, Figure S5c), which may 
again indicate higher expression variability among individuals during aging. Moreover, the direction of 
change in development was mostly positive (14 datasets with more positive and 5 with more 
negative), whereas in aging datasets, we observed more genes with a decrease in expression level 
(13 datasets with more  genes decreasing expression and 5 with no significant change, and 1 with an 
equal number of positive and negative changes). 
 

Age-related change in gene expression heterogeneity 
In order to assess age-related change in heterogeneity, we used the unexplained variance (residuals) 
from the linear model we constructed to calculate the change in gene expression level. For each gene 
in each dataset separately, we calculated Spearman’s correlation coefficients (ρ) between the 
absolute value of residuals and age, irrespective of whether the gene shows a significant change in 
expression (see Methods, Figure S2). We considered ρ values as a measure of heterogeneity 
change, where positive values mean an increase in heterogeneity with age (Table S2). Moreover, we 
repeated this approach using loess regression instead of a linear model between expression level and 
age. We confirmed the correlations between the change in heterogeneity based on a linear model and 
loess regression were high (Figure S15) but preferred to continue with the results based on the linear 
model as loess regression was observed to be more sensitive to the changes in sample sizes and 
parameters.  
 
Then, we asked if datasets show similar changes in heterogeneity by calculating pairwise Spearman’s 
correlation across datasets (Figure 2a). Unlike the correlations among expression level changes, age-
related change in expression heterogeneity did not show a higher consistency during development. In 
fact, although the difference is not significant (permutation test p = 0.2, Figure S5b), the median value 
of the correlation coefficients was higher in aging (Median correlation coefficient = 0.21, permutation 
test p = 0.24, Figure S6c), than in development (Median correlation coefficient = 0.11, permutation 
test p = 0.25, Figure S6d).  
 

A principal component analysis (PCA) showed that heterogeneity change is also able to differentiate 
aging datasets from development (Figure 2b). Similar to the pairwise correlations (Figure 2a), aging 
datasets clustered more closely than development datasets (median pairwise Euclidean distances 
between PC1 and PC2 are 41 and 44 for aging and development, respectively). Both observations 
imply more similar changes in heterogeneity during aging. 
 
Using the p-values from Spearman’s correlation between age and the absolute value of residuals for 
each gene, we then investigated the genes showing a significant change in heterogeneity during 
aging and development (FDR corrected p-value < 0.05). We found almost no significant change in 
heterogeneity during development, except for Colantuoni2011 dataset, for which we have high 
statistical power due to the large sample size. Aging datasets, on the other hand, showed more 
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significant changes in heterogeneity (Permutation test p = 0.06, Figure S5d) and the majority of the 
genes with significant changes in heterogeneity tended to increase in heterogeneity (Figure 2c). 
However, the genes showing a significant change did not overlap across aging datasets (Figure S7). 
Since the significance of the changes is highly dependent on the sample size, instead of focusing on 
these changes, we utilized having multiple datasets and focused on shared trends across them, 
capturing weak but reproducible trends across multiple datasets.  
 
Nevertheless, these analyses indicated relatively more consistent heterogeneity change among 
datasets in aging, compared to development, which may imply that heterogeneity change is one of 
the characteristics of aging (see Discussion). 
 

 

Figure 2. Age-related change in gene expression heterogeneity during development and aging. The procedures 
are similar to those in Figure 1, except, age-related heterogeneity changes (ρ values) were used instead of 
expression changes (β values). (a) Spearman correlations among age-related heterogeneity changes (ρ values) 
across datasets. (b) Principal component analysis (PCA) of heterogeneity change with age. (c) The number of 
genes showing significant heterogeneity change in aging and development. 
 
Consistent increase in heterogeneity during aging 
As our previous analyses suggested age-related changes in heterogeneity can differentiate 
development and aging and show more similarity in aging, we sought to characterize these changes. 
The method that we used in this study uses the consistent changes in heterogeneity across datasets, 
instead of considering significant ones within individual datasets.  
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Figure 3. (a) Boxplots, showing distributions of age-related heterogeneity changes (ρ values) of 11,1137 
common genes for each dataset and period separately. The dotted red line (vertical line at x=0) reflects no 
change in heterogeneity. The difference between median heterogeneity change in aging and development is 
given as a bar plot on the right panel. Datasets are ordered by the differences in median heterogeneity changes 
in aging and development. (b) The relationship between expression and heterogeneity change with age. 
Spearman correlation analysis was performed between age-related expression changes (β values) and age-
related heterogeneity changes (ρ values) of 11,137 common genes, separately for each dataset. The dotted gray 
line at y = 0 reflects no correlation between expression and heterogeneity. (c) Expected and observed 
consistency in the heterogeneity change across datasets in development and aging. There is a significant shift 
toward heterogeneity increase in aging (one-sided permutation test p<10-7) (lower panel), while there is no 
significant consistency in either direction in development (upper panel). The expected distribution is constructed 
using a permutation scheme that accounts for the dependence among datasets and is more stringent than 
random permutations (see Figure S20 for details).  
 
We first examined profiles of age-related heterogeneity change in aging and development. 18/19 
aging datasets showed more increase than decrease in heterogeneity with age (Median ρ > 0), while 
the median heterogeneity change in one dataset was zero (i.e. there is an equal number of genes 
with increase and decrease in heterogeneity). In development, on the other hand, only 5/19 datasets 
showed more increase in heterogeneity, while heterogeneity of remaining 14/19 datasets showed 
more decrease with age (Median ρ < 0) (Figure 3a). The age-related change in heterogeneity during 
aging was significantly higher than development (permutation test p<0.001, Figure 5e). We also 
checked if there is a relationship between the changes in heterogeneity during development and 
aging (e.g. if those genes that decrease in heterogeneity tend to increase in heterogeneity during 
aging) but did not find any significant trend (Figure S16). 
 

A potential explanation why we see different patterns of heterogeneity change with age in 
development and aging could be the accompanying changes in the expression levels, as it is 
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challenging to remove dependence between the mean and variance. To address this possibility, we 
first examined calculated Spearman’s correlation between the changes in heterogeneity (ρ values) 
and expression (β values), for each dataset. Overall, all datasets had values close to zero, suggesting 
the association is not strong. Surprisingly, we saw an opposing profile for development and aging; 
while the change in heterogeneity and expression were positively correlated in development, they 
showed a negative correlation in aging (Figure 3b).  
 
Having observed both a tendency to increase and a higher consistency in heterogeneity change 
during aging, we next asked if particular genes become more heterogeneous consistently across 
datasets and how the numbers compare with development. We first calculated, for each gene, the 
number of datasets with an increase in heterogeneity, for development and aging separately (Figure 
3c). To calculate significance and expected consistency, while controlling for dataset dependence, we 
performed 1,000 random permutations of individuals’ ages and re-calculated the heterogeneity 
changes (see Methods). Importantly, we only created random permutations for the heterogeneity 
change but not the gene expression changes. In development, there was no significant consistency in 
heterogeneity change in either increase or decrease. During aging, however, there was a significant 
shift toward heterogeneity increase, i.e. genes showed more than expected consistency toward 
heterogeneity increase across aging datasets (Figure 3c, lower panel). We identified 147 common 
genes with a significant increase in heterogeneity across all aging datasets (one-sided permutation 
test p < 0.001, Table S3). Based on our permutations, we estimated that 84/147 genes could be 
expected to have consistent increase just by chance, suggesting almost 60% false positives. In 
development, however, there was no significant consistency in heterogeneity change in either 
direction (increase or decrease). Nevertheless, comparing the consistency in aging and development, 
there was an apparent shift towards a consistent increase in aging – even if we cannot confidently 
report the genes that become significantly more heterogeneous with age across multiple datasets. 
Low statistical power due to the small number of independent datasets (i.e. three independent data 
sources) is likely to contribute to the high false positive rate.  
 
Heterogeneity Trajectories   
We next asked if there are specific patterns of heterogeneity change, e.g. increase only after a certain 
age. We used the genes with a consistent increase in heterogeneity with age, during aging (n = 147) 
to explore the trajectories of heterogeneity change (Figure 4). Genes grouped with k-means clustering 
showed multiple patterns in heterogeneity increase (Table S3). Three patterns are observed: i) genes 
in clusters 3 and 7 show noisy but a steady increase throughout aging, ii) genes in clusters 4, 5 and 8 
show increase in early aging but slightly decrease after a certain age, revealing a reversal (up-down) 
pattern, and iii) the other genes increase in heterogeneity dramatically after the age of 60 (clusters 1, 
2 and 6). Next, we asked if these genes have any consistent pattern in development (Figure S22). 
However, most of the clusters showed almost no age-related change. We also analyzed the 
accompanying changes in mean expression levels for these clusters. Except for cluster 1, which 
shows a decrease in expression level at around the age of 60 and then shows a dramatic increase, all 
clusters show a steady scaled mean expression level at around zero, i.e. different genes in a cluster 
show different patterns (Figure S17).  
 
We further tested the genes showing dramatic heterogeneity increase after the age of 60 (clusters 1, 
2 and 6) for association with Alzheimer’s Disease, as the disease incidence increases after 60 as 
well, however, found no evidence for such an association (see Figure S8). 
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Figure 4. Clusters of genes showing a consistent heterogeneity increase in aging (n = 147). Clustering was 
performed based on patterns of the change in heterogeneity, using k-means clustering method (see Methods). 
The x- and y-axes show age and heterogeneity levels, respectively. Mean heterogeneity change for the genes in 
each cluster was drawn by spline curves. The colors and line-types of curves specify different brain regions and 
data sources, respectively. 
 
Functional analysis 
To examine the functional associations of heterogeneity changes with age, we performed gene set 
enrichment analysis using KEGG pathways (Kanehisa, Sato, Furumichi, Morishima, & Tanabe, 2019), 
Gene Ontology (GO) categories (Ashburner et al., 2000; The Gene Ontology Consortium, 2019), 
Disease Ontology (DO) (Kibbe et al., 2015), Reactome pathways (Fabregat et al., 2018), 
Transcription Factor (TF) Targets (TRANSFAC) (Matys et al., 2003), and miRNA targets 
(MiRTarBase) (Chou et al., 2016). In particular, we rank-ordered genes based on the number of 
datasets that show a consistent increase in heterogeneity and asked if the extremes of this 
distribution are associated with the gene sets that we analyzed. There was no significant enrichment 
for any of the functional categories and pathways for the consistent changes in development. The 
significantly enriched KEGG pathways for the genes that become consistently heterogeneous during 
aging included longevity regulating pathway, autophagy, mTOR signaling pathway and other 
pathways that are previously suggested to be important for aging (Figure 5a). Among the pathways 
listed in Figure 5a, only protein digestion and absorption, primary immunodeficiency, linoleic acid 
metabolism, and fat digestion and absorption pathways had negative enrichment score, meaning 
these pathways were significantly associated with the genes having the least number of datasets 
showing an increase. However, it is important to note that this does not mean these pathways have a 
decrease in heterogeneity as the distribution of consistent heterogeneity is skewed (Figure 3c, lower 
panel). We also calculated if the KEGG pathways that we identified are particularly enriched in any of 
the heterogeneity trajectories we identified. Although we lack the necessary power to test the 
associations statistically, we saw that i) group 1, which showed a stable increase in heterogeneity, is 
associated more with the metabolic pathways and mRNA surveillance pathway, ii) group 2, which 
showed first an increase and a slight decrease at later ages, is associated with axon guidance, mTOR 
signaling, and phospholipase D signaling pathways, and iii) group 3, which showed a dramatic 
increase after age of 60, is associated with autophagy, longevity regulating pathway and FoxO 
signaling pathways. The full list is available as Figure S9. 
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Figure 5. Functional analysis of the consistent heterogeneity changes. (a) Distribution of consistent 
heterogeneity increase for the significantly enriched KEGG pathways, in development and aging. x and y-axes 
show the number of datasets with a consistent increase and the density for each significant pathway, 
respectively. The dashed red line shows x=9.5, which is the middle point for 19 datasets, representing no 
tendency to increase or decrease. Values higher than 9.5, shown with red color, indicate an increase in 
heterogeneity while values lower than 9.5, shown with blue color, indicate a decrease in heterogeneity and the 
darkness shows the consistency in change across datasets. b) The longevity regulating pathway (KEGG 
Pathway ID: hsa04211), exemplifying the distribution of the genes (circles), their heterogeneity across datasets 
(color – the same color scheme as panel (a)), and their relationship in the pathway (edges). More detailed 
schemes for all significant pathways with the gene names are given as SI.   
 
The distribution of consistent heterogeneity in development and aging also showed a clear difference. 
The pathway scheme for the longevity regulating pathway (Figure 5b), colored based on the number 
of datasets with a consistent increase, shows how particular genes compare between development 
and aging. The visualizations for all significant pathways, including the gene names are given in the 
Supplementary Information. Although we focused on KEGG pathways here, other significantly 
enriched gene sets, including GO, Reactome, TF and miRNA sets are included in as Tables S4-11. In 
general, while the consistent changes in development did not show any enrichment (except for 
miRNAs, see Table S11), we detected a significant enrichment for the genes that become more 
heterogeneous with age during aging, with the exception that disease ontology terms were not 
significantly associated with the consistent changes in either development or aging. The gene sets 
included specific categories such as autophagy and synaptic functions as well as broad functional 
categories such as regulation of transcription and translation processes, cytoskeleton or histone 
modifications. We also did GSEA for each dataset separately and confirmed that these pathways 
show consistent patterns in aging (Figure S24-S28). There were 30 significantly enriched 
Transcription Factors, including EGR and FOXO, and 99 miRNAs (see Table S9-10 for the full list). 
We also asked if the genes that become more heterogenous consistently across datasets are known 
aging-related genes, using GenAge Human gene set (Tacutu et al., 2018), but did not find a 
significant association (Figure S10). 
 
Apart from having specific regulators that affect the heterogeneity, we also asked if the total number 
of transcription factors or miRNAs regulating a gene might be related to the heterogeneity (Figure 6). 
We calculated the correlations between the total number of regulators and the heterogeneity changes 
while controlling for the expression changes in development and aging. Genes that show a decrease 
in expression first and increase during aging (down-up) did not show any significant association 
between the change in heterogeneity and the number of regulators. Genes that show a decrease in 
expression during aging, irrespective of their expression during development (down-down and up-
down), showed a higher correlation between the change in heterogeneity and the number of 
regulators in aging, and was mostly positive in aging datasets, meaning genes with a higher number 
of regulators become more heterogeneous with age. Genes that showed an increase in expression 
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throughout the lifespan (up-up) also had a higher correlation between the heterogeneity and the 
number of miRNAs in aging, but this trend is not observed for transcription factors. 
 

 

Figure 6. Correlation between the change in heterogeneity and number of transcriptional regulators, i.e. miRNA 
and transcription factors. Each point represents a dataset, and the color shows the data source. p-values are 
calculated using a permutation test. The dashed line at y=0 shows zero correlation. Genes are divided into four 
sets based on the change in their expression level in development and aging, e.g. “down-down” includes genes 
with decreased expression in both development and aging, whereas “down-up” includes genes with decreasing 
expression level in development and then increase in aging.  
 
We further tested if genes with a consistent heterogeneity increase in aging are more central in the 
protein interaction network using STRING database (von Mering, 2004). Using multiple cutoffs and 
repeating the analysis, we observed a higher degree for the genes with increasing heterogeneity 
(Figure S20).  
 
Johnson & Dong et al. previously compiled a list of traits that are age-related and have been 
sufficiently tested for genome-wide associations (Johnson, Dong, Vijg, & Suh, 2015). Using the 
genetic associations for those traits in GWAS Catalog, we tested if there are significantly enriched 
traits for the consistent changes in heterogeneity during aging (Table S12). Although there was no 
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significant enrichment, all these age-related terms had positive enrichment scores, i.e. they all tended 
to include genes that consistently become more heterogeneous with age during aging. 
 
Using cell-type specific transcriptome data generated from FACS-sorted cells in mouse brain (Cahoy 
et al., 2008), we also analyzed if there is an association between genes that become heterogeneous 
with age and cell-type specific genes. Although there was an overlap with oligodendrocytes and 
myelinated oligodendrocytes, there was no significant enrichment (which could be attributed to low 
power due to small overlap between aging and cell-type specific expression datasets) (Figure S23).  
 
Discussion  
Aging is characterized by a gradual decrease in the ability to maintain homeostatic processes which 
leads to functional decline, age-related diseases, and eventually to death. This age-related 
deterioration, however, is thought as not a result of expression changes in a few individual genes, but 
rather as a consequence of an age-related alteration of the whole genome, which could be a result of 
an accumulation of both epigenetic and genetic errors in a stochastic manner (Enge et al., 2017; Vijg, 
2004). This stochastic nature of aging hinders the identification of the age-related change patterns in 
gene expression from a single dataset with a limited number of samples. 
 
In this study, we examined 19 gene expression datasets compiled from three independent studies to 
identify the changes in gene expression heterogeneity with age. While all datasets have samples 
representing the whole lifespan, we used age of 20 years to separate postnatal development (0 to 20 
years of age) and aging (20 to 98 years of age), as 20 years of age is considered to be a turning-point 
in gene expression trajectories. We implemented a regression-based method and identified genes 
showing a consistent change in heterogeneity with age, during development and aging separately. As 
we did not observe a substantial significant age-related heterogeneity change in most of the datasets, 
which could be due to lack of power due to the small sample sizes, we took advantage of a meta-
analysis approach and focused on consistent signals among datasets, irrespective of their effect sizes 
and significance. Although this approach will fail to capture patterns that are specific to individual 
brain regions, it includes genes that fail to pass the significance threshold due to insufficient power. 
Furthermore, we expected our method to be robust to noise and confounding effects within individual 
datasets.   
 
Increase in gene expression heterogeneity during aging 
Analyzing age-related gene expression changes, we first observed that there are more significant and 
more similar changes during development than in aging. Additionally, genes showing significant 
change during aging tended to decrease in expression (Figure 1). These results can be explained by 
the accumulation of stochastic detrimental effects during aging, leading to a decrease in expression 
levels  (Lu et al., 2004). Our initial analysis of gene expression changes suggested a higher 
heterogeneity between aging datasets. 
 

We next focused on age-related heterogeneity change between individuals and found a significant 
increase in age-related heterogeneity during aging, compared to development. Notably, increased 
heterogeneity is not limited to individual brain regions, but a consistent pattern across different 
regions during aging.  We found that age-related heterogeneity change is more consistent among 
aging datasets which may reflect an underlying systemic mechanism. Further, more genes showed 
more significant heterogeneity changes during aging than in development, and the majority of these 
genes tended to have more heterogeneous expression.  
 
It was previously proposed that somatic mutation accumulations (Lodato et al., 2018; Lombard et al., 
2005; Lu et al., 2004; Vijg, 2004) and epigenetic regulations (Cheung et al., 2018) might be 
associated with transcriptome instability. While Enge et al. and Lodato et al. suggested that genome-
wide substitutions in single cells are not so common as to influence genome stability and cause 
transcriptional heterogeneity at the cellular level (Enge et al., 2017; Lodato et al., 2015), epigenetic 
mechanisms may be relevant. Although we cannot test age-related somatic mutation accumulation 
and epigenetic regulation in this study, an alternative mechanism might be related to transcriptional 
regulation, which is considered to be inherently stochastic  (Maheshri & O’Shea, 2007). Several 
studies demonstrated that variation in gene expression is positively correlated with the number of TFs 
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controlling gene’s regulation (Gustavo Valadares Barroso, Natasa Puzovic, 2018). We also found that 
genes with a higher number of regulators and a decrease in expression during aging become more 
heterogeneous, and the association is higher in aging. Further, significantly enriched TFs includes 
early growth response (EGF), which is known to be regulating the expression of many genes involved 
in synaptic homeostasis and plasticity; and FOXO TFs, which regulate stress resistance, metabolism, 
cell cycle arrest and apoptosis. Together with these studies, our results support that transcriptional 
regulation may be associated with age-related heterogeneity increase during aging and may have 
important functional consequences in brain aging. 
 
Increased heterogeneity is not a result of technical or statistical artifacts 
We next confirmed that observed increase in heterogeneity was not a result of low statistical power 
(Figure S1) or a technical artifact (Figure 3b, S11, S18). Specifically, we tested whether increased 
heterogeneity during aging can be a result of the mean-variance relationship, but we found no 
significant effect that can confound our results. In fact, the mean-variance relationship in development 
and aging showed opposing profiles. We further analyzed this by grouping genes based on their 
expression in development and aging (Figure S11). The genes that decrease in expression both in 
development and aging showed the most opposing profiles in terms of the mean-variance 
relationship, which could suggest that the decrease in development are more coordinated and well-
regulated whereas the decrease in aging occurs due to stochastic errors. Another potential 
confounder is the post-mortem interval (PMI), which is the time between death and sample collection. 
Since we do not have this data for all datasets we analyzed, we could not account for this in our 
model. However, using the list of genes previously suggested as associated with PMI (Zhu, Wang, 
Yin, & Yang, 2017), we checked if the consistency among aging datasets could be driven by PMI. 
Only 2 PMI-associated genes were among the 147 that become consistently heterogeneous, and the 
distribution also suggested there is no significant relationship (Figure S18). We also confirmed that 
the increase in heterogeneity is not caused by outliers in datasets (Figure S19). 
 
Microarrays do not bias against identifying age-related heterogeneity change 
One important limitation of our study is that we analyze microarray-based data. Since gene 
expression levels measured by microarray do not reflect an absolute abundance of mRNAs, but 
rather are relative expression levels, we were only able to examine relative changes in gene 
expression. A recent study, analyzing single-cell RNA Sequencing data from aging Drosophila brain, 
identified an age-related decline in total mRNA abundance (Davie et al., 2018). It is also suggested 
that, in microarray studies, genes with lower expression levels tend to have higher variance (Aris et 
al., 2004). In this context, whether the change in heterogeneity is a result of the total mRNA decay is 
an important question. As an attempt to see if the age-related increase in heterogeneity is dependent 
on the technology used to generate data, we repeated the initial analysis using RNA-seq data for the 
human brain, generated by GTEx Consortium (“The Genotype-Tissue Expression (GTEx) pilot 
analysis: Multitissue gene regulation in humans,” 2015) (Figure S12-14). Nine out of thirteen datasets 
confirmed that there is more increase in heterogeneity at the transcriptome level, while the remaining 
four datasets were from BA24, cerebellar hemisphere, cerebellum and substantia nigra regions. The 
change in expression and heterogeneity, on the other hand, were positively correlated and the 
correlation was much higher in the magnitude. Unfortunately, expression level and variation in RNA-
seq is challenging to disentangle. Thus, the biological relevance of the relationship between the age-
related change in expression and heterogeneity still awaits to be understood through comprehensive 
experimental and computational approaches. Nevertheless, RNA-seq analysis also suggests an 
overall increase in age-related heterogeneity increase.  
 
Another limitation is related to use of bulk RNA expression datasets, where each value is an average 
for the tissue. While it is important to note that our results indicate increased heterogeneity between 
individuals rather than cells, the fact that the brain is composed of different cell types raises the 
question if increased heterogeneity may be a result of changes in brain cell-type proportions. To 
explore the association between heterogeneity and cell-type specific genes, we used FACS-sorted 
cell type specific transcriptome dataset from mouse brain (Cahoy et al., 2008). We only had nine 
genes that have consistent heterogeneity increase and are specific to one cell-type. Eight out of nine 
were highly expressed in oligodendrocytes, which is consistent with the results reported in Kedlian et 
al. 2019. However, we did not observe any significant association between cell-type specific genes 
and heterogeneity (Figure S23).  
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Biological processes are associated with increased heterogeneity 
Gene set enrichment analysis of the genes with increased heterogeneity with age revealed a set of 
significantly enriched pathways that are known to modulate aging, including longevity regulating 
pathway, autophagy, mTOR signaling pathway (Figure 5a). Furthermore, GO terms shared among 
these genes include some previously identified common pathways in aging and age-related diseases 
(Figure S25-27). We have also tested if these genes are associated with age-related diseases 
through GWAS, and although not significant, we found a positive association with all age-related traits 
defined in Johnson & Dong et al. 2015. Overall, these results indicate the effect of heterogeneity on 
pathways that modulate aging and may reflect the significance of increased heterogeneity in aging. 
Importantly, we identified genes that are enriched in terms related to neural and synaptic functions, 
such as axon guidance, neuron to neuron synapse, postsynaptic specialization, which may reflect the 
role of increased heterogeneity in synaptic dysfunction observed in the mammalian brain, which is 
considered to be a major factor in age-related cognitive decline (Morrison & Baxter, 2012). We also 
observed genes that become more heterogeneous with age consistently across datasets are more 
central (i.e. have a higher number of interactions) in a protein-protein interaction network (Figure 
S20). Although this could mean the effect of heterogeneity could be even more critical because it 
affects hub genes, another explanation is again research bias that these genes are studied more than 
others. 
 
In summary, performing a meta-analysis of transcriptome data from diverse brain regions we found a 
significant increase in gene expression heterogeneity during aging, compared to development. 
Increased heterogeneity was a consistent pattern among diverse brain regions in aging, while no 
significant consistency was observed across development datasets. Our results support the view of 
aging as a result of stochastic dynamics, whilst development is regulated. We also reported that 
genes showing a consistent increase in heterogeneity during aging are involved pathways that are 
important for aging and neural function. Therefore, our results suggest that the increase in 
heterogeneity is one of the characteristics of brain aging and is unlikely to be only driven by the 
passage of time as we observe different trends during development. 
  
Methods 
 
Dataset collection 
Microarray datasets: Raw data used in this study were retrieved from the NCBI Gene Expression 
Omnibus (GEO) from three different sources (Table S1). All three datasets consist of human brain 
gene expression data generated through microarray experiment. In total, we obtained 1017 samples 
from 298 individuals, spanning the whole lifespan with age ranging from 0 to 98 year (Figure S1).  
RNA-seq dataset: We used the transcriptome data generated by GTEx consortium (v6p) (“The 
Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans,” 2015). 
We only used the samples with a death circumstance of 1 (violent and fast deaths due to an accident) 
and 2 (fast death of natural causes) on the Hardy Scale so that we do not include any samples with 
illnesses. As we focus only on the brain, we used all 13 brain tissues. As a result, we analyzed 623 
samples, samples from 99 individuals.  
Separating datasets as aging and development datasets: To differentiate changes in gene expression 
heterogeneity during aging from those during development, we used the age of 20 to separate pre-
adulthood from adulthood. It was shown that the age of 20 corresponds to the first age of reproduction 
in human societies (Walker et al., 2006). Structural changes after the age of 20 in the human brain 
were previously linked to age-related phenotypes, specifically neuronal shrinkage and a decline in 
total length of myelinated fibers (Sowell et al., 2004). Earlier studies examining age-related gene 
expression changes in different brain regions also showed a global change in gene expression 
patterns after the age of 20 (Colantuoni et al., 2011; Dönertaş et al., 2017; Somel et al., 2010). Thus, 
consistent with these studies, we separated datasets using the age of 20 into development (0 to 20 
years of age, n = 441) and aging (20 to 98 years of age, n=569). 
 
Preprocessing 
Microarray datasets: RMA correction (using ‘oligo’ library in R) and log2 transformation were applied 
to Somel2011 and Kang2011 datasets. For Colantuoni2011 dataset, we used the preprocessed data 
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deposited in GEO, which was loess normalized, as there was no public R package to analyze the raw 
data. We quantile normalized all datasets using ‘preprocessCore’ library in R.  Since our analysis 
focused on consistent patterns across datasets, we minimized the effects of confounding factors 
through quantile normalization, and we considered consistent results as potentially a biological signal. 
We also applied an additional correction procedure for Somel2011 datasets, in which there was a 
batch effect influencing the expression levels, as follows: for each probeset (1) calculate mean 
expression (M), (2) scale each batch separately, (3) add M to each value. We excluded outliers given 
in Table S1, through a visual inspection of the first two principal components for the probeset 
expression levels. We mapped probeset ids to Ensembl gene IDs 1) using the Ensembl database, 
through the ‘biomaRt’ library in R for Somel2011 dataset, 2) using the GPL file deposited in GEO for 
Kang2011 as probeset IDs were not complete in Ensembl, and 3) using the Entrez gene ids in the 
GPL file deposited in GEO for Colantuoni2011 dataset and converting them the Ensembl gene ids 
using ensemble database, through the “biomaRt” library in R. Lastly, we scaled expression levels for 
genes by ‘scale’ function in R. Age values of each dataset were converted to fourth root of age (in 
days) to ensure the relationship between age and expression is linear. 
RNA-Seq dataset: The genes with median RPKM value of 0 are excluded from data. The RPKM 
values provided in the GTEx data are log2 transformed and quantile‐normalized. Similar to the 
microarray data, we excluded the outliers based on the visual inspection of the first and second 
principal components (Table S1). As ages are given as an interval in GTEx, we used the mean of 
values in our analysis. 
 
Age-related expression change 
We used linear regression to assess the relationship between age and gene expression. The model 
used in the analysis is: 
 

(1) Yi = βi0 + βi1*Age1/4 + εi                                                                                                                                 

 
where Yi is the scaled log2 expression level for the ith gene, βi0 is the intercept, βi1 is the slope, and εi 
is the residual. We performed the analysis for each dataset and considered β1 value as a measure of 
change in expression. P-values obtained from the model were corrected for multiple testing according 
to Benjamini & Hochberg procedure by using ‘p.adjust’ function in R. 
 
Age-related heterogeneity change 
In order to quantify the age-related change in gene expression heterogeneity, we calculated 
Spearman’s correlation coefficient (ρ). The correlations were calculated between the absolute values 
of residuals obtained from equation (1) and the fourth root of age. We regarded the absolute values of 
residuals as a measure of heterogeneity. Therefore, high positive correlation coefficients suggest that 
heterogeneity increases with age, whereas strong negative correlation implies heterogeneity 
decreases with age. P-values were calculated from the correlation analysis and corrected for multiple 
testing with Benjamini & Hochberg by ‘p.adjust’ function in R. To compare heterogeneity changes in 
aging and development, we employed paired Wilcoxon test in which we compared median 
heterogeneity changes in aging and development dataset pairs.   
 
Principal Component Analysis 
We conducted principal component analysis on both age-related changes in expression (β) and 
heterogeneity (ρ). We followed a similar procedure for both analyses, in which we used ‘prcomp’ 
function in R.  Analysis was performed on a matrix containing β values (for the change in expression 
level) and ρ values (for the change in heterogeneity), for 11,137 commonly expressed genes for all 38 
development and aging datasets. The change in expression (β) or heterogeneity (ρ) values were 
scaled for each dataset before calculating principal components. The first two principal components 
that explain the variance between variables the most are used to examine the patterns of aging and 
development datasets. 
 
Permutation test 
We performed a permutation test, taking non-independence of Somel2011 and Kang2011 datasets 
into account. These datasets include multiple samples from the same individuals for different brain 
regions. We first randomly permuted ages among individuals, not samples, for 1,000 times in each 
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data source, using ‘sample’ function in R. Next, we assigned ages of individuals to corresponding 
samples and calculated age-related expression and heterogeneity change for each dataset, 
corresponding to brain regions. For the tests related to the changes in gene expression with age, we 
used a linear model between gene expression levels and the randomized ages. However, for the tests 
related to the changes in heterogeneity with age, we measured the correlation between the 
randomized ages and the absolute value of residuals from the linear model that is between 
expression levels and non-randomized ages for each gene. In this way, we preserved the relationship 
between age and expression, and we were able to ensure that our regression model was viable for 
calculating age-related heterogeneity change. Using expression and heterogeneity change values 
calculated using permuted ages, we tested (a) if the correlation of expression (and heterogeneity) 
change in aging and development datasets differ significantly; (b) if the correlation of expression (and 
heterogeneity) change in development and aging datasets is significant; (c) if the number of genes 
showing significant change in expression (and heterogeneity) differ significantly between development 
and aging datasets; (d) if the overall increase in age-related heterogeneity during aging is significantly 
higher than development; (e) if the observed consistency in heterogeneity increase is significantly 
different from expected. We also demonstrate that our permutation strategy is more stringent in 
Figure S21, giving the distributions calculated using both dependent permutations and random 
permutations.  
 
To test the overall correlation within development or aging datasets for the changes in expression (β) 
and heterogeneity (ρ), we calculated median correlations among independent three subsets of 
datasets (one Kang2011, one Somel2011 and the Colantuoni2011 dataset), taking the median value 
calculated for each possible combination of independent subsets (16 x 2 x 1 = 32 combinations). 
Using 1,000 permutations of individuals’ ages, we generated an expected distribution for the median 
correlation coefficient for triples and compared with the observed value. When testing the 
concordance in correlations, we used this approach because the number of independent pairwise 
comparisons are outnumbered by the number of dependent pairwise comparisons, causing low 
statistical power.  
 
To further test the significance of the difference between correlations among development and aging 
datasets, we calculated the median difference in correlations between aging and development 
datasets for each permutation. We next constructed the distribution for 1,000 median differences and 
calculated p-value using the observed difference. Next, to test the significance of the difference in the 
number of significantly changing genes between development and aging, we calculated the difference 
in the number of genes showing significant change between development and aging datasets for 
each permutation. Empirical p-values were computed according to observed differences. Likewise, to 
test if the overall increase in age-related heterogeneity during aging is significant compared to 
development, we computed median differences between median heterogeneity change values of 
each aging and development dataset, for each permutation, following an empirical p-value calculation.  
 
Expected heterogeneity consistency 

Expected consistency in heterogeneity change was calculated from heterogeneity change values 
(ρ) measured using permuted ages. For each permutation, we first calculated the total number of 
genes showing consistent heterogeneity increase for N number of datasets (N=0,.,19). To test if 
observed consistency significantly differed from the expected, we compare observed consistency 
values to the distribution of expected numbers, by performing a one-sided test for the consistency in 
N number of datasets, N=1,.,19. 
 
Clustering 
We used k-means algorithm (‘kmeans’ function in R) to cluster genes according to their heterogeneity 
profiles. We first subset the heterogeneity levels (absolute value of the residuals from equation (1)) to 
include only the genes that show a consistent increase with age and then scaled the heterogeneity 
levels, so that each gene has a mean heterogeneity level of zero and standard deviation of 1. Since 
the number of samples in each dataset is different, just running k-means on the combined dataset 
would not equally represent all datasets. Thus, we first calculated the spline curves for scaled 
heterogeneity levels for each gene in each dataset (using ‘smooth.spline’ function in R, with three 
degrees of freedom). We interpolate at 11 (the smallest sample size) equally distant age points within 
each dataset. Then we use the combined interpolated values to run k-means algorithm with k=8.   
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To test association of the clusters with Alzheimer’s Disease, we retrieved overall AD association 
scores of the 147 consistent genes (n = 40) from the Open Targets Platform (Carvalho-Silva et al., 
2019). 
 
Functional Analysis 
We used "clusterProfiler" package in R to run Gene Set Enrichment Analysis, using Gene Ontology 
(GO) Biological Process (BP), GO Molecular Function (MF), GO Cellular Compartment (CC), 
Reactome, Disease Ontology (DO), and KEGG Pathways. We performed GSEA on all gene sets with 
a size between 5 and 500, and we corrected the resulting p values with Benjamini Hochberg 
correction method. We used the number of datasets with a consistent increase to run GSEA so that 
we can test if the genes with a consistent increase or decrease in their expression are associated with 
specific functions. Since we are running GSEA using number of datasets showing consistency, our 
data includes many ties, potentially making the ranking process difficult and non-robust. In order to 
assess how robust our results are, we run GSEA 1,000 times on the same data and counted how 
many times we observe the same set of KEGG pathways as significant (Table S4). The lowest 
number among the pathways with a significant positive enrichment score was 962 out of 1,000 
(Phospholipase D signaling pathway). Moreover, we repeated the same analysis using the 
heterogeneity change levels (Spearman’s ρ between the absolute value of residuals and age) for 
each dataset to confirm the gene sets are indeed associated with the increase/decrease in 
heterogeneity (Figure S24-S28). We visualized the KEGG pathways using ‘KEGGgraph’ library in R 
and colored the genes by the number of datasets that show an increase. 
 
We also performed an enrichment analysis of the transcription factors and miRNA to test if specific 
TFs or miRNAs regulate the genes that become more heterogeneous consistently. We collected 
gene-regulator association information using Harmonizome database (Rouillard et al., 2016), 
“MiRTarBase microRNA Targets” (12086 genes, 596 miRNAs) and “TRANSFAC Curated 
Transcription Factor Targets” (13216 genes, 201 TFs) sets. We used ‘fgsea’ package in R, which 
allows GSEA on a custom gene set. We tested the association for each regulator with at least 10 and 
at most 500 targets. Moreover, we tested if the number of regulators is associated with the change in 
heterogeneity. We first calculated the correlation between the heterogeneity change with age (or the 
number of datasets with an increase in heterogeneity) and the number of TFs or miRNAs regulating 
that gene, for aging and development separately and accounting for the direction of expression 
changes in these periods (i.e. separating genes into down-down, down-up, up-down, and up-up 
categories based on their expression in development and aging). To test the difference in the 
correlations between aging and development, we used 1,000 random permutations of the number of 
TFs. For each permutation, we randomized the number of TFs and calculated the correlation between 
heterogeneity change (or the number of datasets with an increase in heterogeneity) and the 
randomized numbers. We then calculate the percentage of datasets where aging has a higher 
correlation than development. Using the distribution of percentages, we test if the observed value is 
expected by chance. 
 
Protein-protein interaction network analysis 
We downloaded all human protein interaction data from STRING database (v11) (von Mering, 2004). 
Ensembl Peptide IDs are mapped to Ensembl Gene IDs using “biomaRt” package in R. We calculated 
the degree distributions for the genes that become consistently more heterogeneous with age and all 
remaining genes using different cutoffs for interaction confidence scores. In order to calculate the 
significance of difference, we i) calculated the number of interactors (degree) for each gene, ii) for 
10,000 times, randomly sampled k genes from all interactome data (k = number of genes that become 
heterogeneous with age across all datasets and have interaction information in STRING database, 
after filtering for cutoff), iii) calculated the median of degree for each sample. We then calculated an 
empirical p-value by asking how many of these 10,000 samples we see a median degree that is 
equivalent to or higher than our original value. The number of genes and interactions after each cutoff 
are given in Figure S20. 
 
Cell-type specificity analysis 
Using FACS-sorted cell-type specific transcriptome data from mouse brain (Cahoy et al., 2008), we 
checked if there is any overlap between genes that become heterogeneous with age and cell-type 
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specific genes. We downloaded data from the GEO database (GSE9566) and preprocessed as 
follows: i) RMA correction using ‘affy’ package in R (Gautier, Cope, Bolstad, & Irizarry, 2004), ii) log2 
transformation, iii) quantile normalization using ‘preprocessCore’ package in R (Bolstad, 2016), iv) 
mapping probeset IDs to first mouse genes, and then human genes. We only included genes that 
have one to one orthologs in humans, after filtering out probesets that map to multiple genes. We 
defined cell-type specific genes by calculating the effect size (Cohen’s D) for each gene and cell type 
and identifying genes that have ES higher than or equal to two as specific to that cell type. At this 
cutoff, there was no overlap between cell-type specific gene lists. To test for association between 
heterogeneity and cell-type specificity, we used Fisher’s exact test.  
 
Software 

All analysis is done using R and the code to calculate heterogeneity changes with age is available as 
an R package ‘hetAge’, which is documented in https://mdonertas.github.io/hetAge/. “ggplot2” 
(Wickham, 2017) and “ggpubr” (Kassambara, 2018) R libraries are used for the visualization. 
 
Data availability 
Raw data used in this study is downloaded from the GEO database using GSE numbers specified in 
Table S1. All data generated in this study, i.e. changes in expression and heterogeneity with age for 
each dataset and functional enrichment results are available as Supplementary Tables.  
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