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ABSTRACT 17 

The success of Mycobacterium tuberculosis (Mtb) as a human pathogen is due in part to its 18 

ability to survive stress conditions, such as hypoxia or nutrient deprivation, by entering non-19 

growing states. In these low-metabolic states, Mtb can tolerate antibiotics and develop 20 
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genetically encoded antibiotic resistance, making its metabolic adaptation to stress crucial for 21 

survival. Numerous bacteria, including Mtb, have been shown to reduce their rates of mRNA 22 

degradation under growth limitation and stress. While the existence of this response appears to 23 

be conserved across species, the underlying bacterial mRNA stabilization mechanisms remains 24 

unknown. To better understand the biology of non-growing mycobacteria, we sought to identify 25 

the mechanisms by which mRNA stabilization occurs using the non-pathogenic model 26 

Mycobacterium smegmatis. We found that mRNA half-life was responsive to energy stress, with 27 

carbon starvation and hypoxia causing global mRNA stabilization. This global mRNA 28 

stabilization was rapidly reversed when hypoxia-adapted cultures were re-exposed to oxygen, 29 

even in the absence of new transcription. The stringent response and RNase protein levels did not 30 

explain mRNA stabilization, nor did transcript abundance. This led us to hypothesize that 31 

metabolic changes during growth cessation impact the activity of degradation proteins, 32 

increasing mRNA stability. Indeed, bedaquiline and isoniazid, two drugs with opposing effects 33 

on cellular energy status, had opposite effects on mRNA half-lives in growth-arrested cells. 34 

Taken together, our results indicate that mRNA stability in mycobacteria is not directly regulated 35 

by growth status, but rather seems to be dependent on the status of energy metabolism. 36 

IMPORTANCE 37 

The logistics of treating tuberculosis are difficult, requiring multiple drugs for at least six 38 

months. Mtb is able to survive within the human host in part by entering non-growing states in 39 

which it is metabolically less active, thus rendering it less susceptible to antibiotics. Basic 40 

knowledge on how Mtb survives during these low-metabolic states is incomplete, and we 41 

postulate that optimized energy resource management –such as transcriptome stabilization—is 42 

important for survival. Here we report that mRNA stabilization (increased mRNA half-lives) is a 43 
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common feature of mycobacteria under stress (e.g. hypoxia and nutrient deprivation) but is not 44 

dependent on the mechanisms that have been most often postulated in the literature. Finally, we 45 

found that mRNA stability and growth status can be decoupled by a drug that causes growth 46 

arrest but increases metabolic activity, indicating that mRNA stability responds to metabolic 47 

status rather than to growth rate changes per se. Our findings suggest a need to re-orient the 48 

study of global mRNA stabilization to identify novel mechanisms that are presumably 49 

responsible. 50 

 51 

INTRODUCTION 52 

Most bacteria periodically face environmental conditions that are unfavorable for growth. To 53 

overcome such challenges, bacteria must adapt both their gene expression profiles and their 54 

energy usage. Regulation of mRNA turnover can contribute to both of these. However, the 55 

mechanisms by which mRNA turnover is carried out and regulated remain poorly understood, 56 

particularly in mycobacteria. 57 

During infection, the human pathogen Mycobacterium tuberculosis (Mtb) faces not only the 58 

immune response and antibiotics, but also multiple non-optimal microenvironments, such as 59 

hypoxia and nutrient starvation within the granuloma (1, 2). Regulation of mRNA turnover 60 

appears to contribute to adaptation to such conditions. A global study of mRNA decay in Mtb 61 

showed a dramatic increase in transcriptome stability—measured as increased mRNA half-62 

lives— in response to hypoxia, when compared to log phase growth in oxygen-rich conditions 63 

(3). This suggests that mRNA stabilization is important for energy conservation in the energy-64 

limited environments that Mtb encounters during infection. Similar responses have been shown 65 
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for other bacteria under stress conditions that slow or halt growth, including carbon deprivation, 66 

stationary phase, and temperature shock (4-13). However, the mechanisms responsible for global 67 

regulation of mRNA stability in prokaryotes have yet to be elucidated. 68 

In better studied bacteria such as E. coli and B. subtilis, the major ribonucleases (RNases) 69 

involved in mRNA processing and decay are RNase E and RNase Y, respectively. A 70 

conventional model for RNA decay in E. coli start with an endonucleolytic cleavage event 71 

usually carried by RNase E in AU-rich regions, particularly in mRNA substrates that possess a 5’ 72 

monophosphate (14-16). The resulting 5’ monophosphorylated fragments are rapidly cleaved by 73 

RNase E, resulting in shorter fragments that can be fully degraded by exonucleases such as 74 

PNPase, RNase II, and RNase R (17, 18). mRNA degradation seems to be coordinated by 75 

formation of a complex known as the degradosome. In E. coli, RNase E serves as the scaffold for 76 

this multiprotein complex that comprises RNA helicases, the glycolytic enzyme enolase, and 77 

PNPase (19-23). Other organisms that encode RNase E form similar degradosomes (24, 25). In 78 

organisms where RNase E is not present, RNase Y and/or RNase J seem to assume the scaffold 79 

function (26-28). Mycobacteria encode RNase E, but efforts to define the mycobacterial 80 

degradosome have produced inconsistent results (29, 30). It is unclear if degradosome 81 

reorganization or dissolution contribute to the global regulation of mRNA degradation under 82 

stress conditions in any bacteria. Interestingly, the importance of degradosome formation in E. 83 

coli varies depending on the carbon sources provided, suggesting specific links between RNase E 84 

degradosomes and metabolic capabilities (31). Furthermore, the chaperones DnaK and CsdA can 85 

become degradosome components in E. coli under certain stresses (20, 32, 33). 86 

Global transcript stabilization in stressed bacteria could plausibly result from reduced RNase 87 

abundance, reduced RNase activity, and/or reduced accessibility of transcripts to degradation 88 
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proteins. In E. coli it has been shown that multiple stressors can upregulate RNase R, possibly as 89 

a way to overcome ribosome misassembly (34, 35), and that RNase III levels decrease under 90 

cold-shock and stationary phase (36). Surprisingly, protein levels for most putative RNA 91 

degradation proteins in M. tuberculosis remain unaltered under hypoxic conditions (37), which 92 

suggests that mRNA degradation is not necessarily regulated at the level of RNase abundance in 93 

mycobacteria. However, there is evidence that RNase activity may be regulated. For example, 94 

proteins such as RraA and RraB can alter the function of the RNase E-based degradosome in E. 95 

coli (38). Translating ribosomes can mask mRNA cleavage sites, and, indeed, transcription-96 

translation dissociation experiments showed that ribosome-free mRNAs were highly unstable 97 

(39). Furthermore, in some actinomycetes PNPase might be regulated by the stringent response 98 

alarmone guanosine tetraphosphate (ppGpp) (40, 41). In Gram-negative bacteria ppGpp is 99 

usually synthesized by RelA, which is activated in the presence of uncharged tRNAs, or by the 100 

ppGpp synthase/hydrolase SpoT during fatty acid starvation (42). In Gram-positive bacteria, 101 

ppGpp is commonly synthesized by a dual RelA/SpoT homolog (43-45). Diverse bacteria adapt 102 

to stress using ppGpp in different pathways, which generally result in halting the synthesis of 103 

stable RNA (tRNAs and rRNAs), while upregulating stress-associated genes and downregulating 104 

those associated with cell growth (45-50). Recent reports in two actinomycetes –Streptomyces 105 

coelicolor and Nonomuraea—showed that, at physiological levels, ppGpp inhibited the 106 

enzymatic activity of PNPase (40, 41), suggesting that the stringent response could directly 107 

stabilize mRNA as part of a broader response to energy starvation. 108 

Another explanation for stress-induced transcript stabilization could be that reduced transcript 109 

abundance directly leads to increased transcript stability. mRNA abundance and half-life were 110 

reported to be inversely correlated in multiple bacteria including Mtb (3, 8, 51, 52), and mRNA 111 
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abundance is lower on a per-cell basis for most transcripts in non-growing bacteria. In 112 

Caulobacter crescentus, subcellular localization of mRNA degradation proteins may play a role 113 

in global mRNA stability (53, 54). Nevertheless, the causal relationships between translation, 114 

mRNA abundance, RNase expression, and mRNA stability in non-growing bacteria remain 115 

largely untested.  116 

Given the importance of adaptation to energy starvation for mycobacteria, we sought to 117 

investigate the mechanisms by which mRNA stability is globally regulated. Here we show that 118 

the global mRNA stabilization response occurs also in Mycobacterium smegmatis—a non-119 

pathogenic model commonly used to study the basic biology of mycobacteria —under hypoxia 120 

and carbon starvation. We found that hypoxia-induced mRNA stability is rapidly reversible, with 121 

re-aeration causing immediate mRNA destabilization even in the absence of protein synthesis. 122 

As expected, we found that transcript levels from hypoxic cells are lower on a per-cell basis 123 

compared to those from aerated cultures. However, our data are inconsistent with a model in 124 

which mRNA abundance dictates degradation rate as has been shown for log-phase E. coli (51) 125 

and Lactococcus lactis (52). Instead, our findings support the idea that mRNA stability is rapidly 126 

tuned in response to alterations in energy metabolism. This effect does not require the stringent 127 

response or changes in abundance of RNA degradation proteins, and it can be decoupled from 128 

growth status. 129 

 130 

  131 
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RESULTS 132 

mRNA is stabilized as a response to carbon starvation and hypoxic stress in Mycobacterium 133 

smegmatis 134 

The mRNA pools of E. coli and other well-studied bacteria were reported to be globally 135 

stabilized during conditions of stress, resulting in increased mRNA half-lives (3-13). In 2013, 136 

Rustad et al. reported a similar phenomenon in Mtb under hypoxia and during cold shock (3). 137 

We sought to establish M. smegmatis as a model for study of the mechanistic basis of mRNA 138 

stabilization in mycobacteria under stress conditions. We therefore subjected M. smegmatis to 139 

hypoxic and carbon starvation stresses, and measured mRNA half-lives for a subset of genes by 140 

blocking transcription with rifampicin (RIF) and measuring mRNA abundance at multiple time 141 

points using quantitative PCR (qPCR). Indeed, we observed that all of the analyzed transcripts 142 

had increased half-lives under hypoxia when compared to log phase normoxic cultures and, 143 

similarly, transcripts were more stable in carbon starvation than in rich media (Fig. 1A and 1B). 144 

Thus, M. smegmatis appears to be a suitable model organism for investigating the mechanisms of 145 

stress-induced mRNA stabilization in mycobacteria. We used a variation of the Wayne model 146 

(55) to produce a gradual transition from aerated growth to hypoxia-induced growth arrest by 147 

sealing cultures in vials with defined headspace ratios and allowing them to slowly deplete the 148 

available oxygen (Fig. 1C). We noted that transcripts became progressively more stable as 149 

oxygen levels dropped and growth ceased; 40 hours after sealing the vials, mRNA half-lives 150 

were too long to reliably measure by our methodology. We sought to focus our studies on the 151 

mechanisms that underlie the initial mRNA stabilization process during the transition into 152 

hypoxia-induced growth arrest. We therefore conducted subsequent experiments 18 hours after 153 
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sealing the vials, when growth had nearly ceased and transcripts were 9-fold to 25-fold more 154 

stable than during log phase growth. We hereafter refer to this condition as 18 h hypoxia. 155 

 ppGpp does not contribute to mRNA stabilization in hypoxia or carbon starvation 156 

Given recent reports that ppGpp could directly inhibit the enzymatic activity of PNPase (40, 41), 157 

we wondered whether mRNA stabilization as observed in carbon starvation and hypoxia is 158 

regulated by ppGpp in mycobacteria. We obtained a double mutant strain of M. smegmatis (56) 159 

that lacks both genes implicated in the production of ppGpp (∆rel ∆sas2), and compared the 160 

mRNA half-lives of a subset of genes to those of wild type mc2155 under hypoxia, log phase 161 

normoxia, and carbon starvation conditions. The ∆rel ∆sas2 strain had a modest growth defect 162 

during adaptation to hypoxia and carbon starvation (Fig. 2A and 2C), as predicted (57). 163 

However, we found no significant decrease in mRNA stabilization in the mutant strain (Fig. 2B 164 

and 2D), indicating that the mRNA stabilization we observed under hypoxia and carbon 165 

starvation is independent from the stringent response. Interestingly, the mutant strain displayed 166 

increased mRNA stabilization for a few transcripts under carbon starvation conditions, which 167 

could be an indirect consequence of altered transcription rates (see discussion). 168 

Hypoxia-induced mRNA stability is reversible and independent of mRNA abundance 169 

We wondered if the observed stress-induced transcript stabilization could be easily reversed by 170 

restoration of a favorable growth environment. To test this, we prepared 18 h hypoxia cultures, 171 

then opened the vials and agitated them for 2 min to re-expose the bacteria to oxygen before 172 

blocking transcription with RIF and sampling thereafter (Fig. 3A, top panel). We found that, for 173 

all transcripts tested, half-lives were significantly decreased compared to those observed under 174 

hypoxia and similar to those observed in log phase normoxia (Fig. 3B). While the mechanisms of 175 
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stress-induced mRNA stabilization are largely unknown, multiple studies have reported inverse 176 

correlations between mRNA abundance and half-life in bacteria (3, 8, 51, 52). mRNA abundance 177 

is decreased for most transcripts tested in hypoxia-adapted M. smegmatis. We therefore 178 

considered the possibility that the dramatic increase in mRNA degradation upon re-exposure to 179 

oxygen was triggered by a rapid burst of transcription. Indeed, we found increased expression 180 

levels for three of five genes tested after two minutes of re-aeration, showing that transcription is 181 

rapidly induced upon return to a favorable environment (Fig. 3C). To test the idea that mRNA is 182 

destabilized by re-aeration as a consequence of a transcriptional burst and/or increased mRNA 183 

abundance, we modified our re-aeration experiment by blocking transcription with RIF one 184 

minute prior to re-exposure to oxygen (Fig. 3A, bottom panel). Surprisingly, every transcript 185 

tested was destabilized by the presence of oxygen despite the absence of new transcription. For 186 

most transcripts, the re-aeration half-lives were indistinguishable regardless of whether RIF was 187 

added prior to opening the vials or two minutes after (Fig. 3B). Our results therefore do not 188 

support the idea that changes in mRNA abundance alone can explain the mRNA stabilization and 189 

destabilization observed in response to changes in energy status.  190 

We wanted to further explore if mRNA abundance alone could influence transcript degradation. 191 

Hence, we obtained a M. smegmatis strain encoding dCas9 and a non-specific sgRNA under 192 

control of an ATc-inducible promoter (58) and compared the dCas9 transcript stability under 193 

hypoxia and log phase normoxic conditions after ATc induction or at basal levels of expression. 194 

Our results showed that despite a 34-fold transcript upregulation following ATc induction, the 195 

half-life of dCas9 mRNA was not significantly different from the no-drug control under log 196 

phase normoxia. Under hypoxia, its 28-fold upregulation was associated with a modest increase 197 

in dCas9 mRNA half-life when compared to the no-drug control (Fig. 3D and 3E). Taken 198 
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together, our results show that increased mRNA abundance does not necessarily result in a faster 199 

decay rate. 200 

mRNA stability is modulated independently of RNase protein levels  201 

Another potential explanation for increased mRNA degradation after re-aeration is the up-202 

regulation of mRNA degradation proteins such as RNase E. To assess the role of a sudden burst 203 

in protein levels we used two approaches. First, we constructed M. smegmatis strains encoding 204 

FLAG-tagged RNase E, cMyc-tagged PNPase, or cMyc-tagged predicted RNA helicase 205 

msmeg_1930. PNPase is an essential exoribonuclease. We determined protein levels by western 206 

blotting during log phase, in 18 h hypoxia, and after 18 h hypoxia followed by 2 min re-aeration. 207 

As shown in Fig. 4A, levels of all three of these predicted RNA degradation proteins remained 208 

unchanged in the three conditions. 209 

Because we do not know all of the proteins that contribute to mRNA degradation in 210 

mycobacteria, our second approach was to test the global importance of translation in re-211 

aeration-induced mRNA destabilization. We blocked translation with chloramphenicol (CAM) in 212 

18 h hypoxia cultures and then added RIF. Samples were collected for cultures that remained 213 

under hypoxia as well as those that were re-exposed to oxygen for 2 min (Fig. 4B). Our results 214 

showed that there is destabilization of mRNA after re-aeration even in the absence of protein 215 

synthesis (Fig. 4C), though not to the extent we observed in Fig. 3B. These results suggest that 216 

re-aeration-induced destabilization does not require synthesis of new RNA degradation proteins. 217 

The mRNA stabilization induced by CAM itself is likely related to its mechanism of action. 218 

CAM inhibits elongation by blocking the 50S ribosomal subunit from binding tRNAs, 219 

preventing peptidyl transferase activity (59-61) and causing ribosomal stalling (62). Thus, 220 

consistent with our data, others have reported global stabilization of mRNA pools when 221 
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elongation inhibitors, but not initiation inhibitors, are used for example in log phase cultures of 222 

E. coli (62) or in yeast (63). We hypothesize that stalled ribosomes may increase mRNA stability 223 

by masking RNase cleavage sites. However, we observe mRNA destabilization in response to re-224 

aeration despite this effect (Fig. 4C). Taken together, our data suggest that tuning of protein 225 

levels is not the primary explanation for mRNA stabilization during early adaptation to hypoxia. 226 

mRNA stability is modulated in response to changes in metabolic status 227 

The rapidity of mRNA destabilization in response to re-aeration suggested that mRNA 228 

degradation is tightly regulated in response to changes in energy metabolism. We tested this 229 

hypothesis by treating log phase cultures of M. smegmatis with 5 µg∙mL-1 bedaquiline (BDQ), a 230 

potent inhibitor of the ATP synthase F0F1 (64). We used minimal media that contained acetate 231 

as the only carbon source (MMA) in order to make the respiratory chain the sole source of ATP 232 

synthesis. After 30 min exposure, intracellular ATP levels were reduced by more than 90% in 233 

BDQ-treated cells, when compared to cells treated with the drug vehicle (DMSO), without 234 

affecting cell viability (Fig. 5A and 5B). We then measured half-lives for a set of transcripts 235 

under these conditions. mRNA half-lives were dramatically increased in BDQ-treated cells for 236 

most of the genes we tested (Fig. 5C), indicating that mRNA degradation rates are rapidly altered 237 

in response to changes in energy metabolism status. 238 

We then wondered if we could increase mRNA degradation rates by increasing intracellular ATP 239 

levels. To test this, we treated M. smegmatis cultures with isoniazid (INH) a pro-drug that 240 

interferes with the synthesis of mycolic acids, but that also leads to an accumulation of 241 

intracellular ATP due to increased oxidative phosphorylation (65). We exposed M. smegmatis to 242 

500 µg∙mL-1 INH for 6.5 hours to confirm that we had achieved bacteriostasis (the M. smegmatis 243 

doubling time in MMA media is approximately six hours). As shown in Fig. 5D, INH caused a 244 
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dramatic increase in intracellular ATP after 6.5 h without affecting cell viability (Fig. 5E). 245 

Remarkably, mRNA half-lives were significantly decreased in response to INH (Fig. 5F). To our 246 

knowledge, this is the first report of bacterial mRNA being destabilized rather than stabilized in 247 

response to a growth-impairing stressor. Our results indicate that mRNA stability is regulated not 248 

in response to growth status per se, but rather to energy metabolism. Although we interpreted 249 

ATP levels as a reflection of metabolic status in our INH and BDQ assays, the coupling between 250 

mRNA degradation and metabolic status does not appear to be mediated by ATP directly. We 251 

measured ATP levels in M. smegmatis cultures during the transition to hypoxia-induced growth 252 

arrest, and found that although ATP levels ultimately decrease in hypoxia as has been reported 253 

elsewhere (66, 67), mRNA stabilization precedes the drop in ATP levels (Fig. 5G).  254 

 255 

DISCUSSION 256 

Many stressors cause bacteria to slow or stop growth, and this is usually associated with 257 

increased mRNA stability (3-9, 11-13). Many of these same stressors reduce energy availability 258 

(66, 67), requiring reductions in energy consumption and optimization of resource allocation. We 259 

speculate that the decreased mRNA turnover that accompanies such conditions may be an energy 260 

conservation mechanism. For Mtb, hypoxia can lead to generation of bacterial subpopulations 261 

with varying degrees of antibiotic tolerance (68-70), facilitating bacterial survival and the 262 

acquisition of drug resistance-conferring mutations. Understanding the mechanisms that support 263 

the transitions into non-growing states, and subsequent survival in these states, is therefore of 264 

great importance. 265 
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The transcriptome of Mtb has been previously shown to be stabilized under cold shock and 266 

hypoxia (3). Here, we found that M. smegmatis also dramatically stabilized its mRNA in 267 

response to carbon starvation and oxygen depletion. For the first time, to our knowledge, we 268 

tested the speed at which this stabilization is reversed in mycobacteria upon restoration of energy 269 

availability. Remarkably, mRNAs are rapidly destabilized within minutes of re-aeration of 270 

hypoxic cultures, suggesting that tuning of mRNA degradation rates is an early step in the 271 

response to changing energy environments. 272 

The most straightforward explanation for stress-induced mRNA stabilization would seem to be 273 

downregulation of the mRNA degradation machinery. Indeed, under hypoxic conditions, RNase 274 

E is downregulated at the transcript level, and abundance of cleaved RNAs is notably reduced 275 

(71). However, we found that protein levels were unchanged for three proteins predicted to be 276 

core components of the mRNA degradation machinery. This is largely consistent with what was 277 

reported for Mtb in a quantitative proteomics study (37), although in that case there was an 278 

apparent reduction in levels of a predicted RNA helicase. To address this question in a more 279 

agnostic fashion, we tested the importance of translation for transcript destabilization upon re-280 

exposure of hypoxic cultures to oxygen. However, re-aeration triggered increased transcript 281 

degradation even in the absence of new protein synthesis. Regulation of degradation protein 282 

levels therefore does not appear to contribute to mRNA stabilization during the initial response 283 

to energy stress. However, we found that upon longer periods of hypoxia, transcripts were 284 

stabilized to a greater extent than what we observed 18 hours after sealing the vials. This 285 

suggests that mRNA stabilization progressively increases, and may be the product of multiple 286 

mechanisms. As this work focused on the initial transition into hypoxia-induced growth arrest, 287 
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we cannot discount the possibility that downregulation of the RNA degradation machinery is 288 

important for further mRNA stabilization in later hypoxia stages.  289 

Interestingly, we found greater mRNA stabilization in hypoxic cultures treated with CAM. This 290 

may result from stalled ribosomes (59, 61) masking RNase cleavage sites. Furthermore, the burst 291 

of transcription upon re-aeration is blocked by the presence of CAM, causing up to a four-fold 292 

decrease in transcript abundance in the CAM treated cultures when compared to the vehicle 293 

treated cultures. This is consistent with the idea that transcription and translation are physically 294 

coupled, and blocking translation therefore prevents RNA polymerase from efficiently carrying 295 

out transcript elongation, as has been reported for E. coli (72-76). 296 

Transcript abundance has been found to be inversely correlated with mRNA stability in 297 

exponentially growing bacteria (3, 8, 51, 52, 77), and experimental manipulation of transcription 298 

rates of subsets of genes resulted in altered degradation rates (3, 52). Together, these studies 299 

suggest that high rates of transcription inherently increase degradation rates. We report here that 300 

during oxygen depletion transcript levels are reduced in M. smegmatis, which led us to ask if 301 

increased transcript half-lives under stress are a direct result of reduced mRNA levels. However, 302 

our data are inconsistent with this idea; mRNA is rapidly destabilized upon re-aeration even in 303 

the absence of new transcription. We note that one study reported a weak positive correlation 304 

between mRNA abundance and stability in log phase E. coli (12), while another reported mRNA 305 

abundance to be positively correlated with stability in carbon-starved Lactococcus lactis (8). 306 

Taken together, these observations and our own suggest that the relationship between mRNA 307 

stability and abundance is not yet fully understood and may be fundamentally different in 308 

growth-arrested bacteria.     309 
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The rapid reversibility of hypoxia-induced mRNA stabilization suggests that mRNA decay and 310 

energy metabolic status are closely linked. Consistent with this idea, we have shown that drug-311 

induced energy stress causes mRNAs to be stabilized, while mRNA decay is increased by a drug 312 

that induces a hyperactive metabolic state. To our knowledge this is the first demonstration that 313 

the rate of bacterial mRNA degradation can be decoupled from growth rate, and suggests that 314 

mRNA decay is controlled by energy status rather than growth rate per se. The mechanism by 315 

which energy status and mRNA decay are coupled remains elusive; the stringent response is not 316 

required, and the stabilization of mRNA during adaptation to hypoxia precedes a decrease in 317 

ATP levels. Possible explanations that should be investigated in future work include ribosome 318 

occupancy, the presence of other RNA-binding proteins, and the subcellular localization of 319 

mRNAs and the RNA degradation machinery.  320 

 321 

METHODS 322 

Strain and culture conditions 323 

Mycobacterium smegmatis strain mc2155 or derivatives (Table 1) were grown in rich medium, 324 

Middlebrook 7H9 supplemented with ADC (Albumin Dextrose Catalase, final concentrations 5 325 

g∙L-1 bovine serum albumin fraction V, 2 g∙L-1 dextrose, 0.85 g∙L-1 NaCl, and 3 mg∙L-1 catalase), 326 

0.2% glycerol and 0.05% Tween 80 at 200 rpm and 37°C to an OD600 of ~0.8, unless specified 327 

otherwise. For the hypoxic cultures, we used a modification of the Wayne model (55). Briefly, 328 

M. smegmatis was cultured in 30.5 x 58 mm serum bottles (Wheaton, 223687, 20 mL) using rich 329 

medium and an initial OD600=0.01. The bottles were sealed with a vial crimper (Wheaton, 330 

W225303) using rubber stoppers (Wheaton, W224100-181) and aluminum seals (Wheaton, 331 
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224193-01). The cultures were grown at 37 °C and 200 rpm to generate hypoxic conditions. 332 

Oxygen levels were qualitatively monitored using methylene blue.  333 

Carbon starvation cultures were prepared using log phase cells (OD600=0.8) grown in rich 334 

medium. Cultures were rinsed with carbon starvation medium (Middlebrook 7H9 supplemented 335 

with 5 g∙L-1 bovine serum albumin fraction V, 0.85 g∙L-1 NaCl, 3 mg∙L-1 catalase and 0.05 % 336 

Tyloxapol) and centrifuged for 5 min at 3,214 x g at 4°C. After three rinses, the pelleted cells 337 

were resuspended in carbon starvation medium to an OD600= 0.8 and incubated at 200 rpm and 338 

37°C.  339 

RNA extraction and determination of mRNA stability 340 

Biological triplicate cultures were treated with rifampicin (RIF) to a final concentration of 150 341 

µg∙mL-1 to halt transcription and RNA was extracted at various time points thereafter. For 342 

exponentially growing cells in normoxia and cells in carbon starvation, 7 mL samples (OD600 343 

~0.8) were collected per replicate and time point after blocking transcription. Samples and were 344 

snap-frozen in liquid nitrogen. For hypoxic samples, degassed RIF was injected using a 30G 345 

needle, and all samples were sacrificially collected per time point and replicate (7 mL, OD600 346 

~0.8) and snap-frozen in liquid nitrogen within 6 seconds of unsealing the bottles. Time points 347 

were taken at different intervals after adding RIF depending on the experiment. 348 

Samples were stored at -80°C and thawed on ice immediately before RNA extraction. Cells were 349 

centrifuged for 5 min at 3,214 x g at 4°C, and supernatants removed completely. Working on ice, 350 

the pellet was resuspended in 1 mL of TRIzol (Invitrogen), transferred to 2 mL disruption tubes 351 

(OPS Diagnostics 100 µm zirconium lysing matrix, molecular grade) for cell lysis using a 352 

FastPrep-24 5G (MP) with 3 cycles of 7 m∙s-1 for 30 s, with 2 min on ice after each cycle. 300 353 
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µL chloroform was added to each sample, mixed and centrifuged for 15 min at 21,130 x g and 4 354 

°C. RNA was recovered from the aqueous layer and purified after DNase digestion in-column 355 

using the Direct-zol RNA MiniPrep kit according to the manufacturer’s instructions. A 356 

NanoDrop 2000c (Thermo) was used to determine RNA concentrations and 1% agarose gels 357 

were used to verify RNA integrity. 358 

For cDNA synthesis, 600 ng of total RNA were mixed with 0.83 µL 100 mM tris pH 7.5 and 359 

0.17 µL 3 mg∙mL-1 Random Primers (NEB) to a volume of 5.25 µL, denatured at 70°C for 10 360 

min and snap-cooling for 5 min. Reverse transcription was performed for 5 hours at 42 °C using 361 

100 U of ProtoScript® II Reverse Transcriptase (NEB), 10 U of RNase Inhibitor (Murine, NEB), 362 

0.5 mM each dNTP mix and 5 mM DTT in a final volume of 10 µL. RNA was degraded at 65°C 363 

for 15 min by addition of 5 µL each 0.5 mM EDTA and 1 N NaOH, halting the reaction with 364 

12.5 µL of 1 M Tris-HCl pH 7.5. cDNA was purified using the MinElute PCR Purification Kit 365 

(Qiagen) according to the manufacturer instructions. mRNA abundance (A) over time (t) was 366 

determined for different genes (primers are listed in Table 2) by quantitative PCR (qPCR) using 367 

iTaq SYBR Green (Bio-Rad) with 400 pg of cDNA and 0.25 µM each primer in 10 µL reactions, 368 

with 40 cycles of 15 s at 95°C followed by 1 min at 61°C (Applied Biosystems™ 7500 Real-369 

Time PCR). Abundance was expressed as the -Ct (or the log2A(t)). Linear regression was 370 

performed on -Ct values versus time where the negative reciprocal of the best-fit slope estimates 371 

mRNA half-life. In many cases the decay curves were biphasic, where a rapid period of decay 372 

was followed by a period of slow or undetectable decay. In these cases, only the initial, steeper 373 

slope was used for calculation of half-lives. 374 

  375 
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mRNA stability measured during re-aeration and translational inhibition 376 

Translation was halted in normoxia and hypoxia cultures by chloramphenicol at a final 377 

concentration of 150 µg∙mL-1. 1 min after adding chloramphenicol, rifampicin was added, and 378 

time point samples were collected starting 1 min afterwards. 379 

Re-aeration experiments were done using hypoxia cultures 18 hours after the sealing. Briefly, 380 

each bottle was opened and the contents transferred to a 50 mL conical tube. Rifampicin was 381 

added either 1 min before (transcription inhibition during hypoxia) or 2 min after opening the 382 

bottles (transcription inhibition after re-aeration). Samples were taken 2, 7, 12, 17, and 32 min 383 

after opening the bottles and snap-frozen in liquid nitrogen as described before. Samples were 384 

collected in triplicate, steps prior to freezing were performed at 37°C, and incubation of the 385 

samples in either container was done at 200 rpm. 386 

Construction of 6xHis-3xFLAG tagged chromosomal RNase E M. smegmatis strain 387 

The RNase E-tagged strain (SS-M_0296) was built using a two-step process. Plasmid pSS250 388 

was derived from pJM1 (78) and contained 1 kb of the sequence upstream and downstream of 389 

the rne (msmeg_4626) start codon, with the sequence coding for the 6xHis-3xFLAG-TEV-4xGly 390 

linker inserted after the start codon of rne. Constructs were built using NEBuilder HiFi DNA 391 

Assembly Master Mix kit (E2621). Integrants were selected based on HygR (200 µg∙mL-1 392 

hygromycin) and confirmed by sequencing. Counter-selection with 15% sucrose was followed 393 

by PCR screening to identify isolates that subsequently underwent second crossovers resulting in 394 

loss of the plasmid and retention of the rne-FLAG-tagged sequence. 395 

  396 
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Construction of c-Myc tagged Helicase and PNPase strains 397 

The PNPase-tagged strain (SS-M_0412) was built by inserting a second copy of pnp 398 

(msmeg_2656) with an N-terminal c-Myc-4xGly-linker along with its predicted native promoter 399 

and 5’ UTR at the Giles phage integration site (plasmid pSS282) into strain SS-M_0296. The 400 

RNA helicase-tagged strain (SS-M_0416) was constructed in a similar way but using a C-401 

terminal 4xGly-linker-c-Myc tag on msmeg_1930 (plasmid pSS285).  402 

Alteration of intracellular ATP with bedaquiline and isoniazid 403 

Cells were grown as described before to an OD600 of ~1.0, rinsed two times in Minimal Media 404 

Acetate wash (final concentrations are 0.5 g∙L-1 L-asparagine, 1 g∙L-1 KH2PO4, 2.5 g∙L-1 405 

Na2HPO4, 0.5 g∙L-1 MgSO4•7H2O, 0.5 mg∙L-1 CaCl2, 0.1 mg∙L-1 ZnSO4, 0.1% CH3COONa, 406 

0.05% tyloxapol, pH 7.5) using 5 min centrifugation steps at 3,214 x g and 4°C, and finally 407 

resuspended in Minimal Media Acetate with ferric ammonium citrate (MMA, Minimal Media 408 

Acetate wash + 50 mg∙L-1 ferric ammonium citrate) at an OD600=0.07. The cells were then grown 409 

for 24 hours at 37°C and 200 rpm to an OD600 of ~0.8. To remove the high amounts of 410 

extracellular ATP, 30 minutes before drug treatment the cells were rinsed in pre-warmed 411 

Minimal Media Acetate wash as described before, resuspended in pre-warmed MMA, and 412 

returned to the incubator. Either bedaquiline (BDQ), isoniazid (INH) or their vehicles were 413 

added to the cell cultures to a final concentration of 5 µg∙mL-1 or 500 µg∙mL-1, respectively. 414 

Cultures were incubated as described before, and samples were taken 30 min after adding BDQ, 415 

or 6.5 h after adding INH for half-life-estimation and ATP-determination assays. 416 

For half-life measurements, samples for BDQ were taken 0, 3, 6, 9, 12, 15 and 21 min after 417 

adding RIF. Samples for INH were taken 0, 4, 8 and 12 min after adding RIF. All samples were 418 
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collected in triplicates. RNA extraction for cultures in MMA was performed as indicated before 419 

with the following modifications: cell disruption was performed using 2 mL tubes prefilled with 420 

Lysing Matrix B (MP) and 3 cycles of 10 m∙s-1 for 40 s; RNA was recovered from the aqueous 421 

layer by isopropanol precipitation and resuspension in RNase-free H2O; samples were treated 422 

with 5U of TURBO™ DNase (Ambion) in presence of 80 U of RNase Inhibitor, Murine (NEB) 423 

for 1 hour at 37°C and under agitation. RNA was purification with an RNeasy Mini Kit (Qiagen) 424 

according to the manufacturer’s specifications. 425 

Intracellular ATP estimation 426 

ATP was estimated using the BacTiter-Glo kit (Promega). For BDQ or INH treatments in MMA, 427 

after the treatment periods stated above, 1 mL of culture was pelleted at ~21°C for 1 min at 428 

21,130 x g. The supernatant was removed and the cells were resuspended in 1 mL of pre-warmed 429 

MMA containing either BDQ, INH or the vehicle to match the prior treatment condition.  430 

Immediately after, 20 µL samples were transferred to a white 384-well plate (Greiner bio-one) 431 

containing 80 µL of the BacTiter-Glo reagent and mixed for 5 minutes at room temperature. 432 

Luminescence was measured in a VICTOR3 plate reader (PerkinElmer) (intracellular ATP). We 433 

included controls for the supernatant collected (extracellular ATP), media + drug/vehicle 434 

(background), and freshly made ATP standards for each reading. 435 

To estimate the intracellular ATP in normoxia and hypoxia Middlebrook 7H9 cultures, 20 µL 436 

samples were collected at 37°C and immediately combined with the reagent to measure total 437 

ATP (intracellular + extracellular). From the same cultures, 1 mL samples were syringe-filtered 438 

(PES 0.2 µm) and the filtrate combined with the reagent to measure extracellular ATP. 439 

Luminescence was measured as described above. Intracellular ATP was calculated by 440 
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subtracting the extracellular ATP values from the total ATP values. Hypoxia samples were 441 

sacrificially harvested per time point/replicate and combined with the reagent in <6 seconds. The 442 

respective controls and ATP standards were also included for each reading. All samples were 443 

measured in biological triplicate, and in at least two independent experiments. 444 
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FIGURES  736 

 737 

Figure 1 738 

Transcript half-lives are increased in response to hypoxia and carbon starvation stress. 739 

Transcript half-lives for the indicated genes were measured for M. smegmatis mc2155 after 740 

blocking transcription with 150 µg∙mL-1 RIF. RNA samples were collected (A) during log phase 741 

normoxia, and hypoxia (18 hours after closing the bottles); or (B) during log phase in 7H9 742 

supplemented with ADC, glycerol, and Tween 80 (rich media) or 7H9 with Tyloxapol only 743 

(carbon starvation, 24 hours). Degradation rates were compared using linear regression (n=3), 744 

and half-lives were determined by the reciprocal of the best-fit slope. Error bars: 95% CI. *** 745 

p<0.001; **** p<0.0001. When a slope of zero was included in the 95% CI (indicating no 746 

degradation), the upper limit for half-life was unbounded, indicated by a clipped error bar with a 747 

double line. (C) Growth kinetics for M. smegmatis under hypoxia using a variation of the Wayne 748 

model (55), showing OD stabilization at 18-24 hours. Oxygen depletion was assessed 749 

qualitatively by methylene blue discoloration. 750 
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 751 

Figure 2 752 

Transcript stabilization in hypoxia and carbon starvation is not dependent on the stringent 753 

response. (A) Growth kinetics for M. smegmatis mc2155 (WT) and Δrel, Δsas2 strains cultured 754 

in 7H9 in flasks sealed at time 0. (B) Transcript half-lives for a set of genes 24 hours after 755 

sealing the hypoxia bottles (arrow in A). RNA samples were collected after blocking 756 

transcription with 150 µg∙mL-1 RIF. (C) Bacteria were grown to log phase in 7H9 supplemented 757 

with ADC, glycerol, and Tween 80, then transferred to 7H9 supplemented with Tyloxapol only 758 

at time 0. (D) Transcript stability for a set of genes 22 hours after transfer to carbon starvation 759 

media (arrow in C). In A and C, the mean and SD of triplicate cultures is shown. In B and D, 760 

half-lives were compared using linear regression analysis (n=3). Error bars: 95% CI. **** 761 

p<0.0001, n.s. p>0.05. In cases where no degradation was observed or when the upper 95% CI 762 

limit was unbounded, the bar or upper error bar were clipped, respectively.  763 
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765 
Figure 3 766 

Hypoxia-induced mRNA stability is reversible and independent of mRNA abundance. (A) 767 

M. smegmatis was sealed in vials for 18 hours to produce a hypoxic environment, then re-768 

exposed to oxygen for two minutes before transcription was inhibited RIF (top) or injected with 769 

RIF one minute prior to opening the vials and re-exposing to oxygen (bottom). (B) Transcript 770 
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half-lives for a set of genes are displayed for log phase normoxia cultures, hypoxia (18 h), and 771 

re-aeration with RIF added either before or after opening the vials. Half-lives were compared by 772 

linear regression analysis (n=3). (C) Expression levels of transcripts in hypoxia (18 h) or 2 min 773 

re-aeration relative to the expression levels in log phase normoxia cultures (percentage). Error 774 

bars: SD. (D) Expression levels of transcripts in hypoxia (18 h) or log phase normoxia after 775 

being treated with 200 ng∙mL-1 ATc for 1 h or 10 min, respectively, to induce dCas9 776 

overexpression, relative to the expression levels in a H2O vehicle treatment (percentage). Error 777 

bars: SD. (E) Transcript half-lives for dCas9 and sigA for log phase normoxia and hypoxia (18 h) 778 

after induction of dCas9 with ATc or vehicle treatment as shown in D. In B and E, degradation 779 

rates were compared using linear regression (n=3), and half-lives were determined by the 780 

reciprocal of the best-fit slope. Error bars: 95% CI. * p<0.05, ** p<0.01, **** p<0.0001, n.s. 781 

p>0.05. 782 

 783 
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 785 

Figure 4 786 

mRNA stability is regulated independently of degradation protein levels. (A) Western 787 

blotting for FLAG-tagged RNase E, and c-Myc-tagged PNPase or RNA helicase (msmeg_1930) 788 

in M. smegmatis in log phase normoxia, hypoxia (18 h), and 2 min re-aeration. Samples were 789 

normalized to total protein level, which were similar on a per-OD basis in all conditions. (B) 790 

Translation was inhibited in hypoxic cultures by 150 µg∙mL-1 CAM 1 min before adding 150 791 

µg∙mL-1 RIF. RNA was harvested at time points beginning 2 min after adding CAM. (C) 792 

Transcript half-lives for samples from hypoxic cultures with the drug vehicle (ethanol), hypoxic 793 

cultures after translation inhibition, and 2 min re-aeration after translation inhibition. 794 

Degradation rates were compared using linear regression (n=3), and half-lives were determined 795 

by the reciprocal of the best-fit slope. Error bars: 95% CI. n.s., p>0.05, * p<0.05, *** p<0.001, 796 

**** p<0.0001. 797 
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 798 

 799 

FIG 5 800 

mRNA stability is modulated in response to changes in metabolic status. (A) M. smegmatis 801 

was cultured in MMA media for 22 hours to OD600 0.8 before being treated with 5 µg∙mL-1 BDQ 802 

or the vehicle (DMSO) for 30 min. Intracellular ATP was determined using the BacTiter-Glo kit. 803 

(B) Growth kinetics for M. smegmatis from panel A in presence of BDQ. (C) Transcript half-804 

lives for a sub-set of transcripts collected during intracellular ATP depletion (30 min with BDQ) 805 

or at the basal levels (30 min with DMSO). (D) As in panel A, but for M. smegmatis treated with 806 

500 µg∙mL-1 INH or the vehicle (H2O) for 6.5 hours. (E) Growth kinetics for M. smegmatis from 807 

panel D in presence of INH. (F) Transcript half-lives for a sub-set of transcripts after 6.5 h of 808 

INH or vehicle treatment. (G) Growth kinetics for M. smegmatis transitioning into hypoxia, and 809 
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intracellular ATP levels at different stages. The dotted line represents the time at which transcript 810 

stability analysis were made for the hypoxia (18 h) condition for Figures 1-4. In C and F, half-811 

lives were compared using linear regression analysis (n=3). Error bars: 95% CI. * p<0.05, ** 812 

p<0.01, *** p<0.001, **** p<0.0001. 813 

 814 

TABLES 815 

TABLE 1 816 

Strains used and sources 817 

Strain Characteristics Reference or source 

mc2155 M. smegmatis, WT (79) 

SS-M_0296 

mc2155 in which the native copy of RNase E (rne) is 

N-terminally tagged with 6xHis-3xFLAG-TEV-

4xGly linker 

(CACCACCACCACCACCACGATTACAAGGAT

CACGATGGCGATTACAAGGATCATGACATC

GACTATAAGGACGATGACGATAAGGAGAAC

CTGTACTTCCAGGGCGGCGGCGGC). 

This work 

SS-M_0412 

SS-M_0296 derivative containing a second copy of 

PNPase (msmeg_2656) with its predicted native 

promoter and 5’ UTR, and N-terminally tagged with 

c-Myc-4xGly-linker 

(GAGCAGAAGCTGATCTCGGAAGAGGACCTC

GGCGGCGGCGGC) contained on Giles-integrating 

plasmid pSS282 (HygR). 

This work 

SS-M_0416 

SS-M_0296 derivative containing a second copy of 

RNA helicase (msmeg_1930) with its predicted 

native promoter and 5’ UTR, and C-terminally 

tagged with 4x Gly linker-c-Myc 

(GGCGGCGGCGGCGAGCAGAAGCTGATCTCG

GA) contained on a Giles-integrating plasmid 

pSS285 (HygR). 

This work 

ΔrelMsm mc2155 derivative, ∆rel ∆sas2 (56) 

SS-M_0203 
mc2155 derivative transformed with plasmid 

pJR962, containing an ATc regulated dCas9. 
(58) 
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TABLE 2 820 

Primers for qPCR 821 

Primer name Gene Directionality Sequence 5’ → 3’ 

SSS903 atpB (msmeg_4942) Forward TGTTCGTGTTCGTCTGCTAC 

SSS904 atpB (msmeg_4942) Reverse CGGCTTGGCGAGTTCTT 

SSS909 atpE (msmeg_4941) Forward GGGTAACGCGCTGATCTC 

SSS910 atpE (msmeg_4941) Reverse GAAGGCCAGGTTGATGAAGTA 

SSS1241 dCas9  Forward GACAAGTCGAAGTTCCTGATGTA 

SSS1242 dCas9  Reverse GATCTGCTTGTTCGGGTAGTT 

SSS537 esxB (msmeg_0065) Forward GGTGAGGACACAGGGAAATAAG 

SSS538 esxB (msmeg_0065) Reverse CGGAGATGCGCTCGAAAT 

SSS856 katG (msmeg_6384) Forward GGCCCAATCAGCTCAATCT 

SSS857 katG (msmeg_6384) Reverse CGGACCGGTAGTCGAAATC 

SSS706 rnj  (msmeg_2685) Forward TCATCCTCTCATCGGGTTTC 

SSS707 rnj  (msmeg_2685) Reverse TTCGCGCTCAACCTTCT 

SSS697 rraA (msmeg_6439) Forward AACTACGGCGGCAAGAT 

SSS698 rraA (msmeg_6439) Reverse GTCGAGAGGATCGACTTCAG 

JR273 (58) sigA (msmeg_2758) Forward GACTACACCAAGGGCTACAAG 

JR274 (58) sigA (msmeg_2758) Reverse TTGATCACCTCGACCATGTG 
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