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One summary sentence: novel explainable machine learning algorithm predicts the 

frequency of drug side effects in the population 
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Abstract 

Drug side effects are a leading cause of morbidity and mortality. Currently, the 

frequency of drug side effects is determined experimentally during human 

clinical trials through placebo-controlled studies. Here we present a novel 

framework to computationally predict the frequency of drug side effects. Our 

algorithm is based on learning a latent variable model for drugs and side 

effects by matrix decomposition. Extensive evaluations on held out test sets 

show that the frequency class is predicted with 67.8% to 94% accuracy in the 

neighborhood of the correct class. Evaluations on prospective data confirm 

the commonly held hypothesis that most post-marketing side effects are very 

rare in the population, with occurrences of less than 1 in a 10,000. Importantly, 

our model provides explanations of the biology underlying drug side effect 

relationships. We show that the drug latent representations in our model are 

related to distinct anatomical drug activities and that the similarity between 

these representations are predictive of the drug clinical activity as well as drug 

targets. 
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Introduction 

The frequency of a drug side effect is one of the key variables in drug safety risk 

assessment (1), and it is crucial in the benefit-risk assessment for the clinical 

practice (2). It is well recognized that many drug side effects are not observed during 

clinical drug development, thus remaining a leading cause of morbidity and mortality 

in health care, resulting in an annual loss of billions of dollars (3, 4).  This is due to 

the fact that even rigorous randomized, double-blind, placebo-controlled trials have 

limitations such as cohort size, time frame and lack of accrual (5). Thus, many rare 

or common delayed side effects are only detected after the drug has been marketed, 

in the so-called postmarking phase. Inaccurate estimation of drug side effect 

frequencies also constitutes a major risk for pharmaceutical companies as it can lead 

to drugs being withdrawn from the market (6, 7), or to a reassessment of side effect 

frequencies through new clinical studies, with high associated costs (8). 

In this paper, we propose a novel method to predict the frequency of drug side 

effects. Given a few experimentally determined side effects, our method is able to 

predict the frequency of further side effects. This means that early clinical trials can 

be used to set the direction of the risk assessment before (or after) a drug enters the 

market. Our method can also be used in other aspects of clinical trial design, e.g. in 

the estimation of cohort size. 

To our knowledge, this is the first computational method that successfully addresses 

the problem of predicting the frequency of drug side effects. Existing methods 

typically phrase the problem as a binary classification (9-15), where the aim is to 

predict the presence or absence of a drug side effect, not its frequency. One group 

of methods relies on the chemical structure of the compound or on the known drug 
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target associations to produce de novo predictions (11, 16, 17). Pauwels et al. (16), 

for example, used sparse canonical correlation analysis to associate drug side effect 

profiles with their chemical substructure profiles and then predicted side effects for 

compounds with this model. Another group of methods exploits the structure of 

networks built by connecting drugs to known side effects (9, 10, 15). Cami et. al. (9), 

for example, built a bipartite drug side effect network and extracted feature 

covariates to learn a Bernoulli expectation model based on multivariate logistic 

regression.  

Our idea to predict the frequency of side effects is to use a matrix decomposition 

model to learn a low dimensional latent representation of drugs and side effects that 

encodes the interplay between them. Our model is inspired by movie 

recommendation systems (18-20) that recommends movies to users: our 

recommendation system recommends side effects to drugs. Importantly, we 

constrain our matrix decomposition to be non-negative. This has the important 

advantage of making explicit the parts-based representation thus offering biological 

interpretability. In other words, we can interpret the latent variables in terms of the 

human anatomical system thus explaining the frequency predictions. Furthermore, 

drug latent representations can be used for predicting their clinical and molecular 

activity.  
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Results 

Signature model of drug side effect frequencies  

Five frequency classes are commonly used in clinical trials to describe the 

occurrence of drug side effects in clinical cohorts (Supplementary Note 1, Fig. S1). 

By coding these classes with integers between 1 and 5 (very rare=1, rare=2, 

infrequent=3, frequent=4, very frequent=5) we created an (nxm) matrix 𝑅, with 759 

drugs (rows) and 994 unique side effect (columns) containing 37,441 frequency 

class associations (see Methods and Table S1). The remaining entries of the matrix 

were filled with zeros. The analysis of this dataset showed that drug side effects 

follow a long-tailed distribution (see Pareto distribution fit (Fig. S2) and QQ plot (Fig. 

S3)), where 80% of the associations are due to only about 30% of the side effect 

terms (Fig. 1a). Popular side effects, such as nausea or headache, account for most 

of the non-zero entries in the matrix and this implies that these popular side effects 

are reported on most drugs. Figure 1b shows that the distribution of frequency 

classes in our gold standard is zero-inflated: about 95% of the associations are 

unobserved. The average frequency rating value is 𝑟 = 3.52, indicating a bias in 

clinical reports towards frequent side effects, that can be possibly attributed to the 

limitation of clinical studies at detecting less frequent side effects occurrences. 

The distribution resembles the one of the ratings found in movie datasets such as 

Netflix or MovieLens (21), where the 30% most popular movies account for 80% of 

the ratings; the distribution of rating values is bias towards high values (Fig. S4). An 

important group of methods for movie recommendation is based on matrix 

decomposition (22). The fundamental assumption is that both user and movies can 

be represented as vectors in a low-dimensional space (i.e. a small set of latent 
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variables) and that a rating value for a specific (user,movie) pair can be obtained by 

the scalar product of the corresponding feature vectors. This assumption is 

reasonable for movie datasets where the latent variables can be thought of as 

modeling both movies genres and user preferences, such as thriller, horror, 

romance, etc.  

This assumption is also reasonable for our problem: drugs and side effects can be 

represented as vectors in a low-dimensional space where the latent variables might 

model specific molecular mechanisms that elicit certain side effects (23). Therefore, 

our aim is to learn a low-dimensional representation for each drug (that we shall call 

drug signature, 𝒘 ∈ ℝ𝑘), and a low-dimensional representation for each side effect 

(side effect signature, 𝒉 ∈ ℝ𝑘), such that the frequency of a drug-side effect pair is 

modelled by the scalar product of the two feature vectors (illustrative example in Fig. 

S5). It amounts to decomposing our original matrix 𝑅 into a product of two matrices, 

𝑊 and 𝐻, where the rows of 𝑊 and columns of 𝐻 are the signatures of drugs and 

side effects respectively; that is, 𝑅𝑛×𝑚 ≈ 𝑊𝑛×𝑘𝐻𝑘×𝑚, where 𝑘 ≪ min (𝑛, 𝑚) (see 

Methods). Our algorithm learns the matrices 𝑊 and 𝐻 by minimizing the following 

loss function: 

 

min
𝑊,𝐻

ℒ(𝑊, 𝐻) =
1

2
∑ (R𝑢𝑗  −  (WH)𝑢𝑗)2

𝑅(𝑢,𝑗)∈ (1,2,3,4,5)

 +
𝛼

2
∑ (WH)𝑢𝑗

2

𝑅(𝑢,𝑗)∈(0)

   (1) 

 

Subject to the non-negative constraints 𝑊, 𝐻 ≥ 0 
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Here, the first summation aims at reconstructing 𝑅 for the known class values, while 

the second one aims at reconstructing the zeros found in 𝑅. These two types of 

values need to be treated separately because they have inherently different 

meanings. While rating values {1, 2, 3, 4, 5} correspond to experimentally measured 

frequency of side effects, a zero entry simply indicates that no side effect was 

detected for a certain drug – which could either mean that the drug does not cause 

the side effect, or that it does, but it could not be detected1. The parameter 𝛼, 

ranging between 0 and 1, is set through cross-validation (see Methods), and controls 

the relative importance of the zeros; in other words, it represents our confidence in 

their correctness (Fig. S6). It should also be noted that the second summation also 

acts as a regularization factor, so no additional regularization terms are needed (see 

Supplementary Note 3). Finally, we impose non-negative constraints on our solution 

as it leads to a parts-based representation (24) and consequently to an increased 

interpretability of drug and side effect signatures, since only additive combinations of 

latent representations are allowed. 

To minimize this function subject to the non-negative constraints, we developed an 

efficient iterative algorithm that uses a simple multiplicative update rule. Our 

procedure does not require setting a learning rate nor applying a projection function 

and satisfies the Karush-Kuhn-Tucker (KKT) complementary conditions of 

convergence (see Methods and Supplementary Note 5).  

 

                                                           

1 This is different from what happens in movie recommender systems where zeros 

correspond to missing values only – see Supplementary Note 4 for details. 
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Evaluation of the performance at predicting side effect 

frequency 

We held-out 10% of the observed values in 𝑅 for testing. The remaining 90% were 

used in a tenfold cross-validation procedure to set the two parameters of our 

algorithm: k (the number of latent features) and 𝛼 (confidence in the zeros).  During 

cross validation, performance was assessed using the root mean squared error 

(RMSE) with respect to the known associations for the five frequency classes, as 

well as the area under the receiver operating curve (AUROC) obtained when 

predicting the presence/absence of the associations (see Methods). A good 

performance on the cross-validation sets was obtained with α = 0.05 and 𝑘 = 10 

(mean RMSE = 1.372 ± 0.021  and mean AUROC= 0.920 ± 0.003) – see Fig. S7. 

Note that our algorithm is quite robust with respect to the choice of the parameters α 

and k – the sensitivity analysis is shown in Fig. S8-S9. 

On the held-out test set our model scored a RMSE of 1.32 and an AUROC of 0.923. 

Figure 2 (top) shows, for each of the five frequency classes in the test set, the 

histogram of the values that were predicted for that class. The Pearson correlation 

between the predicted scores and their corresponding frequency classes was 𝜌 =

0.60 (Significance, 𝑝 < 2.22𝑒 − 308); the differences between the distributions of 

scores for the five frequency classes were statistically significant. As a further 

verification of the effectiveness of our scores at capturing the frequency classes, we 

tested whether the same properties hold for scores calculated by the Predictive 

Pharmaco-safety Networks (PPN-NET) (9), which learns probabilities of drug side 

effect associations. We found that PPN-NET scores are only weakly correlated to the 

frequency of drug side effects (Pearson, 𝜌 = 0.09, 𝑝 < 3.75𝑒 − 08). 
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To predict the frequency class of a given drug-side effect pair, we need a way to 

assign scores to frequency classes. To do this, we learned the likelihood function of 

each class (i.e.𝑃(𝑥|𝑐𝑙𝑎𝑠𝑠)) and assigned scores to classes by maximum likelihood. 

Here, the likelihood functions were learned on the cross-validation sets (see 

Methods). Note that, due to biases in the dataset, we cannot obtain reasonable 

estimates for the priors (thus forcing us to use uniform priors for each class). 

Furthermore, due to the lack of experimentally validated zero values, in order to 

discriminate the zeros we followed similar approach of Cami et al. (9) and chose a 

threshold using the ROC curve at a sensitivity of 0.97 given a specificity of 0.57 (see 

Methods). 

Figure 3a shows the percentage of accuracy at predicting frequency classes. For 

drug-side effect pairs in any given class, the most predicted class is the correct one. 

For each class, the prediction accuracy ranges from 55.2% to 75.5% when including 

the immediately lower class, and 67.8% to 94% when both adjacent classes are 

considered. Looking at the first column in the figure, we notice how the system very 

rarely (0.72%) fails to detect a side effect that is very frequent, and seldom misses 

side effects in the rare frequent (2.68%), infrequent (2.52%) and rare (3.11%) 

classes. The number of undetected side effects only increases for the very rare class 

(16.94%) – this is probably due to the small number of known association in this 

class (see Figure 1b and Fig. S8), which in turn reflects the bias in clinical trial 

reports. 

As illustrative examples, Figure 3c (and Fig. S11-12) presents the predicted 

frequency scores for the anticonvulsant drug Gabapentin, a top fifty prescribed drug 

in the U.S. (25), and the cardiovascular side effect arrhythmia, important in 

cardiotoxicity assessment (26).  
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We further tested the performance of our system at predicting the frequency of side 

effects that were detected after the drugs had reached the market. Only the 

presence/absence of these so-called post-marketing associations are known and 

these are normally regarded as side effects of very rare occurrence in the population 

(27, 28). When we analyzed the distribution of scores obtained by our system for 

these associations, we found no significant differences between them and the scores 

of very rare associations in the held-out test set (Fig. 2 bottom and Fig.S7, Wilcoxon 

Significance, p >  0.936). Fig. 3b shows the percentages of post-marketing 

associations assigned to each class by maximum likelihood. It can be seen that 

55.5% of these associations were predicted to be either very rare or rare, while only 

2% were predicted as very frequent. Amongst these, the most recurrent side effects 

were gastrointestinal disorder (16/180), vomiting (7/180), nervous system disorders 

(7/180) and infection (7/180).  

 

Drug signature similarity predicts clinical response and drug 

targets 

The effectiveness of our model at predicting the frequency of side effects prompted 

us to analyze whether the learned signatures are informative of the biology 

underlying drug activity.  

We investigated the link between drug signatures and clinical responses. We 

hypothesized that the signature for two drugs should be more similar when they 

share clinical activity. Drugs were grouped based on their main Anatomical, 

Therapeutic and Chemical (ATC) class (Table S2), a hierarchical organization of 

terms describing clinical activity where lower levels of the hierarchy contain 
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descriptors that are more specific. Figure 4a shows that, in most cases, the cosine 

similarity between the signature of drugs within an anatomical class is higher that the 

similarity between classes (Fig. S13, Supplementary Tables 5-6). We further proved 

that drug signature similarity is related to drug clinical activity similarity by showing 

that drug signatures similarity is predictive of shared ATC category at each of the 

different levels (Fig. 5b and Fig. S14). It is important to note that the prediction 

performance of the drug signature similarity increases as we consider terms located 

lower in the ATC hierarchy – this correctly reflects the fact that drug clinical 

responses become more similar as we move to lower (more specific) levels of the 

ATC hierarchy. 

Encouraged by these results, we decided to test whether drug signature similarity 

can even be used for the prediction of drug targets. Having framed this as a binary 

classification problem (see Methods), we found that drug signature similarities are 

predictive of shared drug protein targets (AUROC = 68.38%) (Fig. 5a,) and performs 

better than baselines previously used elsewhere (27, 29), such as the 2D Tanimoto 

chemical similarity (AUROC = 59.26%) and to the Jaccard side effect similarity 

(AUROC = 61.07%). Note that the difference in the distribution of similarities 

between the two sets of drug pairs (those that share and those that do not share 

targets) is statistically significant (Wilcoxon Significance, p < 2.85x10−242) (see Fig. 

S14). 

We also analyzed the link between side effect signatures and the anatomy and 

physiology of the side effect phenotypes (Fig. 4b and Fig. S15-16). Side effects were 

grouped based on their anatomical class according to MedDRA (Table S3). We 

found that signature for two side effects tend to be more similar when they are 

phenotypically related. Figure 4b shows that, in most cases, the cosine similarity 
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between the signature of side effects within system organ classes (top level of the 

MedDRA hierarchy) is higher that the similarity between classes. Moreover, side 

effect signature is predictive of shared MedDRA class at each of the different levels 

and predictions improve as we move to more specific terms in the MedDRA 

hierarchy (see Fig. S17). 

 

Discussion 

We presented a novel framework for predicting the frequency of drug side effects. 

Our model learns a low dimensional representation of drugs and side effects that 

encodes biologically meaningful information. We can envision the use of our system 

by safety professionals in pre-and post-marketing drug development. In 

premarketing, to assist controlled clinical trials design as a hypothesis generator 

based on previously collected associations from earlier phases of human trials. In 

post-marketing studies, to provide an alternative tool for surveillance reporting 

systems in the early discovery of rare side effects.  Furthermore, our method might 

be useful to public health regulators such as the US Food and Drug Administration 

(FDA) in the assessment of drug safety.  

Our method is inspired by collaborative filtering models from movie recommendation 

systems. However, our method differs from the standard movie recommendation 

system in the model assumption. While in movie recommendation unobserved 

values represent missing values, in our problem, they can also represent a zero 

value that indicates that the side effect was not detected for a certain drug. To 

account for this uncertainty, we have developed an objective function and a novel 

multiplicative algorithm with theoretical guarantees of convergence (see 
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Supplementary Note 3). Other decomposition methods, such as singular value 

decomposition (SVD), or non-negative matrix factorization (NMF) (30), do not 

account for this uncertainty, and as such, they cannot weight for their importance in 

the learning. 

Drug side effects have been previously found predictive of molecular targets (23) 

and therapeutic indications (31). One important question was whether our model’s 

signatures were associated with the molecular and the clinical drug activity. We 

found that drugs with similar signatures were more likely to share a protein target 

and to belong to the same anatomical, therapeutic, pharmacological and chemical 

class. 

Biases in the dataset represents a challenge. We observed that the frequency of 

side effects from clinical trials are biased towards frequent side effects (Fig. 1b). 

Recent reports also indicate that clinical trials are biased towards Caucasians: 86% 

of clinical trials cohorts were white-dominated in 2014 (32). Numerous previous 

research also reported divergent drug responses in subjects with a different genetic 

background (33). It is possible to improve our framework applicability by integrating 

metadata from clinical trials. Additional knowledge about drugs or side effects can be 

incorporated into our model as constraints. For example, by considering gender or 

age-related side effects we might be able to enforce true zeros in the associations. 

Our framework applicability requires known experimental associations for each drug 

and for each side effect from placebo-controlled studies. It would be interesting to 

extend the analysis presented here to predict the frequency of side effects for novel 

compounds based solely on chemical or cellular features. For instance, by exploiting 

similarities in chemical structure or in activity across cell lines. It can pave the way to 

establish direct relationships between chemical or cellular features and the 
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phenotypic drug signatures of our model. Furthermore, drug signatures could be 

useful in the study of adverse effects produced by drug combinations, for instance, 

by studying whether additive drug signatures can explain the exponential risk 

increase of adverse effects.   

 

Material and Methods 

1. Datasets 

We used the drug side effect frequencies from the Side effect Resource (SIDER) 

database version 4.1 (34, 35). In the database, around 40% of the pairs have 

frequency information whereas, for the remaining associations, the frequency is 

unknown. Drugs are indexed by their PubChem IDs and side effect terms are 

mapped to the Medical Dictionary for Regulatory Activities (MedDRA) taxonomy. We 

only considered side effect terms that were Preferred-Terms (PT) in MedDRA. We 

also kept only the drugs with known monotherapy Anatomical Therapeutic and 

Chemical (ATC) classification according to the 2018 World Health Organization 

(WHO) release. Frequency data is presented in different formats, i.e. as exact, range 

or frequency label. We used frequency labels common in clinical trials, i.e. very rare, 

rare, infrequent, frequent and very frequent. Finally, we encoded the frequency 

labels using natural numbers from one to five (five-star rating system), i.e. very rare 

(=1), rare (=2), infrequent (=3), frequent (=4) and very frequent (=5). Our gold-

standard dataset contains 37,441 frequency associations for 759 drugs and 994 side 

effect terms (see Supplementary Note 1).  
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We used Drugbank v5.0.5 (36) to extract drug protein targets and the SMILES 

fingerprints of drugs. The drug Anatomical,Therapeutic and Chemical (ATC) classes 

as well as the route of administrations (Adm.R) were obtained from WHO release 

2018 (see Supplementary Note 2). 

 

2. Matrix decomposition model 

We modeled the drug side effect frequency estimation as linear combinations of 

drugs and side effects activation patterns over a set of latent features. To predict a 

drug-side effect frequency rating value, each component in the drug signature is 

multiplied by the corresponding component of the side effect signature and then the 

products are summed together. Thus the frequency of a side effect 𝑗 for a given drug 

𝑑 can be expressed it as a combination of 𝑘 components as follow, 

 

�̂�(𝑑, 𝑗) = ∑ 𝑊(𝑑, 𝑝)𝐻(𝑝, 𝑗)

𝑘

𝑝=1

 

 

       where 𝑊(𝑑, 𝑝) is the drug signature and 𝐻(𝑝, 𝑗) is the side effect signature on 

the p𝑡ℎ component. 

3. Objective function and the decomposition algorithm 

Let 𝑅𝑛×𝑚 be a matrix of n drugs and m side effects which contains the observed 

frequency ratings from clinical trials for each drug. For any matrix 𝐴, let the projection 

𝐴𝑅 (both with dimension n × m) be such that: 
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𝐴𝑅(i, j)  =  {
𝐴(𝑖, 𝑗)    𝑖𝑓  𝑅(𝑖, 𝑗) > 0

 0      otherwise
 , 

 

this amounts to obtaining all entries in matrix 𝐴 that correspond to the non-zero 

entries in the matrix 𝑅 (note that trivially 𝑅𝑅 = 𝑅). Likewise, the negative projection of 

matrix 𝐴, denoted by 𝐴¬𝑅 is defined as: 

𝐴¬𝑅(i, j) =  {
𝐴(𝑖, 𝑗)    𝑖𝑓  𝑅(𝑖, 𝑗) = 0

 0      otherwise
, 

 

which amounts to obtaining all entries in matrix 𝐴 that correspond to the zero entries 

in matrix 𝑅.  

Using this notation, we can now write our objective function as: 

 

min
𝑊≥0,𝐻≥0

ℒ(W, H) =
1

2
∥ R − (WH)𝑅 ∥𝐹

2  +
𝛼

2
∥ (WH)¬𝑅 ∥𝐹

2  

 

where 𝑊𝑛×𝑘  contains the drug signatures, 𝐻𝑘×𝑚 the side effect signatures, 𝛼 is the 

confidence on the null associations, and ∥. ∥𝐹
2  is the Frobenius norm. Notice that this 

objective is the matrix form of equation (1) in the main manuscript. 

The objective function is composed as the sum of two terms: 

 The term ∥ R − (WH)𝑅 ∥𝐹
2  learns to fit the linear model (�̂� = 𝑊𝐻) on the 

observed clinical trials data; 
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 The term 𝛼 ∥ (WH)¬𝑅 ∥𝐹
2  learns to fit the model to unobserved associations 

weighted by a confidence coefficient 𝛼.  

We obtained a multiplicative update rule that minimizes ℒ(W, H) at each iteration 

without requiring a step size parameter nor a projection function, i.e., 

𝑊 ← 𝑊 ∘
𝑅𝐻𝑇

((WH)𝑅 + 𝛼(WH)¬𝑅)𝐻𝑇 + 𝜀
 

𝐻 ← 𝐻 ∘
𝑊𝑇𝑅 

𝑊𝑇((WH)𝑅 + 𝛼(WH)¬𝑅) + 𝜀
 

   where ∘ denotes element-wise product, the division is element-wise, and 𝜀 = 10−16 

is a small number added to prevent division by zero (37). In our experiments, both 

matrices are initialised as random dense matrices uniformly distributed in the range 

[0, σ], with σ = 0.1.  

Furthermore, to avoid the well-known degeneracy (24) associated with the 

invariance WH under the transformation W → WΛ and H → Λ−1H, for a diagonal 

matrix Λ, we normalized H at each iteration as follow; 

𝐻(𝑝, 𝑗) ←
𝐻(𝑝, 𝑗)

∥ 𝐻(𝑝, ∙ ) ∥𝐹
 

where 𝐻(𝑝, ∙ ) denotes the 𝑝-th row in 𝐻.  

The convergence criteria for our algorithm was based on the termination tolerance 

on relative change in the elements of 𝑊 and 𝐻. Default value was TolX <  10−3, that 

occurred in typically in about 2,000 iterations for 𝑘 =  10. 

The algorithm satisfies the Karush-Khun-Tucker (KKT) supplementary condition of 

local minima convergence (Proof in Supplementary Note 5). The code for the 

implementation of the algorithm is provided (Supplementary Code 1). 
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4. Cross-validation procedure and model selection 

We used a tenfold cross-validation procedure (22) for the setting of the parameters 𝑘 

and 𝛼. Let Ω denote the set of observed entries in 𝑅. We first randomly removed 

10% of the entries in Ω to create a hold-out test set Ε. The entries in T = Ω − Ε were 

then randomly split into ten disjoint subsets 𝑠𝑗 , j ∈ (1, . . . ,10) for cross-validation.  

Then, for each fold 𝑠𝑗 , , the entries in 𝑠𝑗 were used for testing, while the remaining 

T − 𝑠𝑗   sets were used for training.  The evaluation was computed as follow;  

(A) To evaluate the ability of the model for the accurate estimation of the frequency 

rating value, we use the Root Mean Squared Error (RMSE) on the unseen test set 𝑠𝑗: 

 

RMSE𝑗  = √
∑ (�̂�𝑑𝑖  −  𝑟𝑑𝑖)2|𝑠𝑗|

(d,i)

|𝑠𝑗|
 

where |𝑠𝑗| denotes the cardinality of the test set, 𝑟𝑑𝑖 ∈ 𝑠𝑗 is the frequency 

rating value of drug side effect pair and �̂�𝑑𝑖 = 𝑤𝑑ℎ𝑖
𝑇 is the prediction for the dth drug 

and ith side effect.   

(B) To evaluate the ability of the model to rank higher the known associations in 𝑠𝑗 

with respect to the set of remaining unobserved entries M = ((d, j)  ∉  T − 𝑠𝑗) , we 

used the Area Under the Receiver Operating Characteristic Curve (AUROC), a 

standard measure in binary classification and binary side effect prediction (9).  
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We repeated this procedure for each of the sets in 𝑠𝑗 and then computed the mean 

RMSE and the mean AUROC for the ten folds. To select the model parameters, we 

first chose 𝛼 based on a close to optimal binary classification performance (AUROC) 

while ensuring a good RMSE. We found that a good choice of 𝛼 was 0.05.  We then 

chose the optimal number of latent features that minimized the mean RMSE. This 

occurred for  𝑘 =  10.  

Finally, to show that the performance on a hold-out test set was as good as the ones 

from cross-validation, we trained our model 1,000 times (to find a good local 

minimum) with the chosen parameters using all the entries in Ω − Ε and tested it on 

the hold-out test set Ε.  

 

5. Maximum likelihood estimate for frequency class prediction 

To predict specific frequency classes, we first collected the predicted scores (�̂�) in 

the cross-validation for each of the values in each fold 𝑠𝑗, j ∈  {1, … ,10}. Then, for 

each of the five frequency classes, we fitted a normal kernel smoothing function to 

the predicted scores and obtained a probability density function (pdf) for each of the 

five classes. Finally, to evaluate the performance of the method on the hold-out test 

set Ε, we assigned each entry in Ε to the highest 𝑃(class|𝑥) given a score 𝑥 predicted 

for a drug side effect pair in Ε. To assign a hard threshold for the class zero 

(frequency zero), we used the ROC curve obtained in the test set Ε. We obtained a 

sensitivity of 0.97 given a specificity of 0.57. The threshold obtained for the class 

zero was 0.426. For the following classes, the obtained thresholds were 1.26, 2.43, 

3.25 and 3.93.  
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6. Similarity between drug and side effect signatures 

We quantify the similarity between two drug or side effect signatures using the 

cosine similarity over the set of latent representations. In detail, given two drug 

signatures 𝑤1 and  𝑤2 (each a vector of 𝑘 dimensions), the drug signature similarity 

is given by the dot product of the vectors divided by the product of the norm of each 

vector. 

 

S(𝑤1, 𝑤2)  =  
𝑤1𝑤2

𝑇

√(𝑤1𝑤1
𝑇)(𝑤2𝑤2

𝑇)
 

 

Therefore, the similarity for non-negative signatures ranges from 0 to 1.  

7. Using drug signature similarity to predict clinical activity and 

drug targets 

We used the drug signature similarities to predict whether two drugs share or not 

clinical activity or drug protein targets. Following the approach by Tattoneti et al. 

(27), we frame it as a binary classification problem, where the scores are the 

signature similarities and the labels are one if two drugs share activity and zero 

otherwise. The performance is measured using the AUROC. We applied the same 

procedure for side effect signatures. 
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Figure Legends 

Figure 1.  Distribution of drug side effects. The distributions are shown for the 

dataset (a) Side effects are ordered in decreasing order of popularity (number of 

drugs in which a side effect appear). Inset. A word cloud shows the fifteen most 

popular side effects. The size of the word is proportional to its popularity and the five 

most popular side effects amongst drugs are colored in orange (b) Histogram of drug 

side effect frequency values. The relative frequency of the population affected by 

drug side effects can be: very rare (less than 1 in 10,000), rare (1 in 10,000 to 1 in 

1,000), infrequent (1 in 1,000 to 1 in 100), frequent (1 in 100 to 1 in 10) or very 

frequent (greater than 1 in 10) – shown in shaded red bars. The remaining of the 

associations are unobserved (grey bar). 

Figure 2. Distributions of scores for held out and post-marketing datasets (a) 

Normalized histogram of scores obtained for each of the five frequency classes in 

the held out test set. The differences in the distributions between the classes are 

statistically significant: rare vs very rare (p < 2.80x10−12 ), infrequent vs rare (p <

1.31x10−40), frequent vs infrequent (p < 3.45x10−51) and very frequent vs frequent 

(p < 9.00x10−26). The smoothness of the histogram is related to the class 

numerosity.  (b) Normalized histogram of scores obtained for post-marketing reports. 

There are no significant differences between these scores and those obtained for 

very rare side effects. Significance levels between the scores are indicated with 

asterisks (p ≤ 0.001, ***), (p ≤ 0.01, **). Two-tailed Wilcoxon rank sum test was used 

all the cases. Median values are shown as grey vertical lines. 
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Figure 3. Evaluation of side effect frequency predictions. (a) Accuracy 

percentages for the predictions in the held-out test set. Frequency classes are 

predicted by maximum likelihood. Zeros, corresponding to “no side effect” prediction, 

are predicted for score values below 0.42 (corresponding to 0.97 sensitivity given 

0.57 specificity). (b) Distribution of classes assigned to post-marketing data. (c) 

Illustrative example from the held-out test set. Twelve randomly chosen predictions 

for the anticonvulsant drug Gabapentin (left) and the cardiovascular side effect 

arrhythmia (right) are shown around polar plots, each in a dedicated sector. Gray 

concentric circles between frequency classes correspond to thresholds learned by 

maximum likelihood. The correct class for each association is colored in each 

circular sector while predicted scores are shown as blue squares.  

Figure 4. Drug signatures capture the drug clinical and molecular activity. (a) 

Heat maps of mean drug signature similarities per anatomical class.  Each (x, y) tile 

represents, for each main Anatomical, Therapeutic and Chemical (ATC) drug 

category, the mean similarity of drug pairs where one drug belong to category x and 

the other to category y. The value ranges from 0.27 (Nervous system - 

Dermatological) to 0.55 (Nervous system- Nervous system). The colours range 

between the minimum mean similarity and 0.466, with all values above 0.466 (In the 

diagonal: 0.471 (C), 0.512 (D), 0.55 (N), 0.47 (P), 0.52 (R), 0.475 (V)) set to 0.466.  

Inset: the average intra-class similarity is significantly higher than the average inter-

class similarity (t-test p-value < 2.62e-13). (b) ROC curve representing the ability of 

the drug signature similarity, side effect similarity and Tanimoto chemical similarity 

scores to predict which pairs of drugs share targets. For 435 drugs in our dataset, 

2,808 pairs were known to share molecular targets whereas 91,587 pairs were 

unknown. (b) ROC curve representing the ability of the drug signature similarity to 
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predict which pairs of drugs share Anatomical, Therapeutic and Chemical (ATC) 

category at each of the different levels in the ATC taxonomy. Drug signature 

similarity was predictive of clinical drug activity at different levels: anatomical class 

(38,711 pairs share vs 248,950, AUROC = 65.33%), therapeutic subclass (11,960 

pairs share vs 275,701, AUROC = 69.51%), pharmacological subclass (5,522 pairs 

share vs 282,139, AUROC = 71.54%) and chemical subclass (1,736 pairs share vs 

285,925 do not, AUROC = 76.05%). 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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