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Abstract9

Given the stochastic nature of gene expression, genetically identical cells exposed to the same10

environmental inputs will produce di↵erent outputs. This heterogeneity has consequences for how11

cells are able to survive in changing environments. Recent work has explored the use of information12

theory as a framework to understand the accuracy with which cells can ascertain the state of their13

surroundings. Yet the predictive power of these approaches is limited and has not been rigorously14

tested using precision measurements. To that end, we generate a minimal model for a simple genetic15

circuit in which all parameter values for the model come from independently published data sets.16

We then predict the information processing capacity of the genetic circuit for a suite of biophysical17

parameters such as protein copy number and protein-DNA a�nity. We compare these parameter-18

free predictions with an experimental determination of the information processing capacity of E.19

coli cells, and find that our minimal model accurately captures the experimental data.20

As living organisms thrive in some given environment, they are faced with constant changes in their21

surroundings. From abiotic conditions such as temperature fluctuations or changes in osmotic pressure,22

to biological interactions such as cell-to-cell communication in a tissue or in a bacterial biofilm, living23

organisms of all types sense and respond to external signals. Fig. 1(A) shows a schematic of this24

process for a bacterial cell sensing a concentration of an extracellular chemical. At the molecular25

level where signal transduction unfolds mechanistically, there are physical constraints on the accuracy26

and precision of these responses given by intrinsic stochastic fluctuations [1]. This means that two27

genetically identical cells exposed to the same stimulus will not have an identical response [2].28

The implication of this biological noise is that cells do not have an infinite resolution to distinguish29

signals and, as a consequence, there is a one-to-many mapping between inputs and outputs. Further-30

more, given the limited number of possible outputs, there are overlapping responses between di↵erent31

inputs. In that sense, one might think of cells performing a Bayesian inference of the state of the32

environment given their phenotypic response, as schematized in Fig. 1(B). The question then becomes33

how to analyze this probabilistic rather than deterministic relationship between inputs and outputs?34

The abstract answer to this question was worked out in 1948 by Claude Shannon who, in his seminal35

work, founded the field of information theory [3]. Shannon developed a general framework for how36

to analyze information transmission through noisy communication channels. In his work, Shannon37

showed that the only quantity that satisfies simple conditions of how a metric for information should38

behave, was of the same functional form as the thermodynamic entropy – thereby christening his met-39

ric the information entropy [4]. He also gave a definition, based on this information entropy, for the40

relationship between inputs and outputs known as the mutual information. The mutual information41

I(p; c) between input c and output p, given by42

I(p; c) =
X

c

P (c)
X

p

P (p | c) log2
P (p | c)

P (p)
, (1)
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quantifies how much we learn about the state of the input c given that we get to observe the output43

p.44

It is natural to conceive of scenarios in which living organisms that can better resolve signals might45

have an evolutionary benefit, making it more likely that their o↵spring will have a fitness advantage [5].46

In recent years there has been a growing interest in understanding the theoretical limits on cellular47

information processing [6, 7], and in quantifying how close evolution has pushed cellular signaling48

pathways to these theoretical limits [8–10]. While these studies have treated the signaling pathway49

as a “black box” explicitly ignoring all the molecular interactions taking place in them, other studies50

have explored the role that molecular players and regulatory architectures have on these information51

processing tasks [11–17]. Despite the great advances in our understanding of the information processing52

capabilities of molecular mechanisms, the field still lacks a rigorous experimental test of these ideas53

with precision measurements on a simple system tractable both theoretically and experimentally.54

Over the last decade the dialogue between theory and experiments in gene regulation has led to55

predictive power not only over the mean, but the noise in gene expression as a function of relevant56

parameters such as regulatory protein copy numbers, a�nity of these proteins to the DNA promoter,57

as well as the extracellular concentrations of inducer molecules [18–21]. These models based on58

equilibrium and non-equilibrium statistical physics have reached a predictive accuracy level such that59

for simple cases it is now possible to design input-output functions [22, 23]. This opens the possibility60

to exploit these predictive models to tackle the question of how much information genetic circuits61

can process. The question lays at the heart of understanding the precision of the cellular response to62

environmental signals. Fig. 1(C) schematizes a scenario in which two bacterial strains respond with63

di↵erent levels of precision to three possible environmental states, i.e. inducer concentrations. The64

overlap between the three di↵erent responses is what precisely determines the resolution with which65

cells can distinguish di↵erent inputs. This is analogous to how for an imaging system the point spread66

function limits the ability to resolve two light emitting point sources.67

In this work we follow the same philosophy of theory-experiment dialogue used to determine model68

parameters to predict from first principles the e↵ect that biophysical parameters such as transcription69

factor copy number and protein-DNA a�nity have on the information processing capacity of a simple70

genetic circuit. Specifically, to predict the mutual information between an extracellular chemical signal71

(input c) and the corresponding cellular response in the form of protein expression (output p) (Eq. 1) we72

must compute the input-output function P (p | c). To do so, we use a master-equation-based model to73

construct the protein copy number distribution as a function of an extracellular inducer concentration74

for di↵erent combinations of transcription factor copy numbers and binding sites. Having these input-75

output distributions allows us to compute the mutual information between inputs and outputs I(c; p)76

for any arbitrary input distribution P (c). We opt to compute the channel capacity, i.e. the maximum77

information that can be processed by this gene regulatory architecture, defined as Eq. 1 maximized78

over all possible input distributions P (c). By doing so we can examine the physical limits of what cells79

can do in terms of information processing by harboring these genetic circuits. All parameters used for80

our model were inferred from a series of studies that span several experimental techniques [19, 24–26],81

allowing us to perform parameter-free predictions of this information processing capacity [27].82

These predictions are then contrasted with experimental data, where the channel capacity is in-83

ferred from single-cell fluorescence distributions taken at di↵erent concentrations of inducer for cells84

with previously characterized biophysical parameters [19, 26]. We find that our parameter-free pre-85

dictions closely match the experiments. In this sense we demonstrate how our minimal model can86
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be used to quantify the resolution with which cells can resolve the environmental state with no free87

parameters.88

The reminder of the paper is organized as follows. In Section 1.1 we define the minimal theoretical89

model and parameter inference for a simple repression genetic circuit. Section 1.2 discusses how90

all parameters for the minimal model are determined from published datasets that explore di↵erent91

aspects of the simple repression motif. Section 1.3 computes the moments of the mRNA and protein92

distributions from this minimal model. In Section 1.4 we explore the consequences of variability in93

gene copy number during the cell cycle. In this section we compare experimental and theoretical94

quantities related to the moments of the distribution. Specifically the predictions for the fold-change95

in gene expression (mean expression relative to an unregulated promoter) and the gene expression96

noise (standard deviation over mean). Section 1.5 follows with reconstruction of the full mRNA and97

protein distribution from the moments using the maximum entropy principle. Finally Section 1.6 uses98

the distributions from Section 1.5 to compute the maximum amount of information that the genetic99

circuit can process. Here we again contrast our zero-parameter fit predictions with experimental100

inferences of the channel capacity.101
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Figure 1. Cellular signaling systems sense the environment with di↵erent degrees of precision.
(A) Schematic representation of a cell as a noisy communication channel. From an environmental input
(inducer molecule concentration) to a phenotypic output (protein expression level), cellular signaling systems
can be modeled as noisy communication channels. (B) We treat cellular response to an external stimuli as a
Bayesian inference of the state of the environment. As the phenotype (protein level) serves as the internal
representation of the environmental state (inducer concentration), the probability of a cell being in a specific
environment given this internal representation P (c | p) is a function of the probability of the response given
that environmental state P (p | c). (C) The precision of the inference of the environmental state depends on
how well can cells resolve di↵erent inputs. For three di↵erent levels of input (left panel) the green strain
responds more precisely than the purple strain since the output distributions overlap less (middle panel). This
allows the green strain to make a more precise inference of the environmental state given a phenotypic
response (right panel).
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1 Results102

1.1 Minimal model of transcriptional regulation103

We begin by defining the simple repression genetic circuit to be used throughout this work. As a104

tractable circuit for which we have control over the parameters both theoretically and experimentally105

we chose the so-called simple repression motif, a common regulatory scheme among prokaryotes [28].106

This circuit consists of a single promoter with an RNA-polymerase (RNAP) binding site and a single107

binding site for a transcriptional repressor [19]. The regulation due to the repressor occurs via exclusion108

of the RNAP from its binding site when the repressor is bound, decreasing the likelihood of having109

a transcription event. As with many important macromolecules, we consider the repressor to be110

allosteric, meaning that it can exist in two conformations, one in which the repressor is able to bind111

to the specific binding site (active state) and one in which it cannot bind the specific binding site112

(inactive state). The environmental signaling occurs via passive import of an extracellular inducer113

that binds the repressor, shifting the equilibrium between the two conformations of the repressor [26].114

In previous publications we have extensively characterized the mean response of this circuit under115

di↵erent conditions using equilibrium based models [27]. In this work we build upon these models to116

characterize the full distribution of gene expression with parameters such as repressor copy number117

and its a�nity for the DNA being systematically varied.118

Given the discrete nature of molecular species copy numbers inside cells, chemical master equations119

have emerged as a useful tool to model the inherent probability distribution of these counts [29]. In120

Fig. 2(A) we show the minimal model and the necessary set of parameters needed to predict mRNA121

and protein distributions. Specifically, we assume a three-state model where the promoter can be122

found 1) In a transcriptionally active state (A state), 2) in a transcriptionally inactive state without123

the repressor bound (I state) and 3) with the repressor bound (R state). We do not assume that the124

transition between the active state A and the inactive state I happens due to RNAP binding to the125

promoter. The transcriptional initiation kinetics involve several more steps than simple binding [30].126

We coarse-grain all these steps into an e↵ective “on” and “o↵” states for the promoter consistent with127

experiments demonstrating the bursty nature of gene expression in E. coli [18]. These three states128

generate a system of coupled di↵erential equations for each of the three state distributions PA(m, p; t),129

PI(m, p; t) and PR(m, p; t), where m and p are the mRNA and protein count per cell, respectively and130

t is the time. Given the rates shown in Fig. 2(A) we define the system of ODEs for a specific m and131

p. For the transcriptionally active state we have132

dPA(m, p)

dt
= �

A!Iz }| {
k
(p)
o↵ PA(m, p)+

I!Az }| {
k
(p)
on PI(m, p)

+

m�1!mz }| {
rmPA(m� 1, p)�

m!m+1z }| {
rmPA(m, p)+

m+1!mz }| {
�m(m+ 1)PA(m+ 1, p)�

m!m�1z }| {
�mmPA(m, p)

+

p�1!pz }| {
rpmPA(m, p� 1)�

p!p+1z }| {
rpmPA(m, p)+

p+1!pz }| {
�p(p+ 1)PA(m, p+ 1)�

p!p�1z }| {
�ppPA(m, p) .

(2)
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For the transcriptionally inactive state I we have133

dPI(m, p)

dt
=

A!Iz }| {
k
(p)
o↵ PA(m, p)�

I!Az }| {
k
(p)
on PI(m, p)+

R!Iz }| {
k
(r)
o↵ PR(m, p)�

I!Rz }| {
k
(r)
on PI(m, p)

+

m+1!mz }| {
�m(m+ 1)PI(m+ 1, p)�

m!m�1z }| {
�mmPI(m, p)

+

p�1!pz }| {
rpmPI(m, p� 1)�

p!p+1z }| {
rpmPI(m, p)+

p+1!pz }| {
�p(p+ 1)PI(m, p+ 1)�

p!p�1z }| {
�ppPI(m, p) .

(3)

And finally, for the repressor bound state R we have134

dPR(m, p)

dt
= �

R!Iz }| {
k
(r)
o↵ PR(m, p)+

I!Rz }| {
k
(r)
on PI(m, p)

+

m+1!mz }| {
�m(m+ 1)PR(m+ 1, p)�

m!m�1z }| {
�mmPR(m, p)

+

p�1!pz }| {
rpmPR(m, p� 1)�

p!p+1z }| {
rpmPR(m, p)+

p+1!pz }| {
�p(p+ 1)PR(m, p+ 1)�

p!p�1z }| {
�ppPR(m, p) .

(4)

As we will discuss later in Section 1.4 the protein degradation term �p is set to zero since we do135

not consider protein degradation as a Poission process, but rather we explicitly implement binomial136

partitioning as the cells grow and divide.137

It is convenient to rewrite these equations in a compact matrix notation [29]. For this we define138

the vector P(m, p) as139

P(m, p) = (PA(m, p), PI(m, p), PR(m, p))T , (5)

where T is the transpose. By defining the matrices K to contain the promoter state transitions, Rm140

and �m to contain the mRNA production and degradation terms, respectively, and Rp and �p to141

contain the protein production and degradation terms, respectively, the system of ODEs can then be142

written as (See Appendix S1 for full definition of these matrices)143

dP(m, p)

dt
= (K�Rm �m�m �mRp � p�p)P(m, p)

+RmP(m� 1, p) + (m+ 1)�mP(m+ 1, p)

+mRpP(m, p� 1) + (p+ 1)�pP(m, p+ 1).

(6)

1.2 Inferring parameters from published data sets144

A decade of research in our group has characterized the simple repression motif with an ever145

expanding array of predictions and corresponding experiments to uncover the physics of this genetic146

circuit [27]. In doing so we have come to understand the mean response of a single promoter in the147

presence of varying levels of repressor copy numbers and repressor-DNA a�nities [19], due to the e↵ect148

that competing binding sites and multiple promoter copies impose [25], and in recent work, assisted by149
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the Monod-Wyman-Changeux (MWC) model, we expanded the scope to the allosteric nature of the150

repressor [26]. All of these studies have exploited the simplicity and predictive power of equilibrium151

approximations to these non-equilibrium systems [31]. We have also used a similar kinetic model to152

the one depicted in Fig. 2(A) to study the noise in mRNA copy number [24]. As a test case of the153

depth of our theoretical understanding of the so-called “hydrogen atom” of transcriptional regulation154

we combine all of the studies mentioned above to inform the parameter values of the model presented155

in Fig. 2(A). Fig. 2(B) schematizes the data sets and experimental techniques used to measure gene156

expression along with the parameters that can be inferred from them.157

Appendix S2 expands on the details of how the inference was performed for each of the parameters.158

Briefly the promoter activation and inactivation rates k
(p)
on and k

(p)
o↵ , as well as the transcription rate159

rm were obtained in units of the mRNA degradation rate �m by fitting a two-state promoter model160

(no state R from Fig. 2(A)) [32] to mRNA FISH data of an unregulated promoter (no repressor161

present in the cell) [24]. The repressor on rate is assumed to be of the form k
(r)
on = ko[R] where ko162

is a di↵usion-limited on rate and [R] is the concentration of active repressor in the cell [24]. This163

concentration of active repressor is at the same time determined by the mean repressor copy number164

in the cell, and the fraction of repressors in the active state. Existing estimates of the transition rates165

between conformations of allosteric molecules set them at the microsecond scale [33]. By considering166

this to be representative for our repressor of interest, the separation of time-scales between the rapid167

conformational changes of the repressor and the slower downstream processes such as the open-complex168

formation processes allow us to model the probability of the repressor being in the active state as an169

equilibrium MWC process. The parameters of the MWC model KA, KI and �"AI were previously170

characterized from video-microscopy and flow-cytometry data [26]. For the repressor o↵ rate k
(r)
o↵ we171

take advantage of the fact that the mean mRNA copy number as derived from the model in Fig. 2(A)172

cast in the language of rates is of the same functional form as the equilibrium model cast in the173

language of binding energies [34]. Therefore the value of the repressor-DNA binding energy �"r174

constrains the value of the repressor o↵ rate k
(r)
o↵ . These constraints on the rates allow us to make175

self-consistent predictions under both, the equilibrium and the kinetic framework.176

1.3 Computing the moments of the mRNA and protein distributions177

Solving chemical master equations represent a challenge that is still an active area of research.178

An alternative approach is to find schemes to approximate the distribution. One such scheme, the179

maximum entropy principle, makes use of the moments of the distribution to approximate the full180

distribution. In this section we will demonstrate an iterative algorithm to compute the mRNA and181

protein distribution moments.182

Our simple repression kinetic model depicted in Fig. 2(A) consists of an infinite system of ODEs183

for each possible pair m, p. To compute any moment of the distribution we define a vector184

hm
x
p
y
i ⌘ (hmx

p
y
i
A
, hm

x
p
y
i
I
, hm

x
p
y
i
R
)T , (7)

where hm
x
p
y
i
S
is the expected value of mx

p
y in state S 2 {A, I,R} for x, y 2 N. In other words, just185

as we defined the vector P(m, p), here we define a vector to collect the expected value of each of the186

promoter states. By definition any of these moments hmx
p
y
i
S
are computed as187

hm
x
p
y
i
S
⌘

1X

m=0

1X

p=0

m
x
p
y
PS(m, p). (8)
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Figure 2. Minimal kinetic model of transcriptional regulation for a simple repression

architecture. (A) Three-state promoter stochastic model of transcriptional regulation by a repressor. The
regulation by the repressor occurs via exclusion of the transcription initiation machinery, not allowing the
promoter to transition to the transcriptionally active state. All parameters highlighted with colored boxes
were determined from published datasets based on the same genetic circuit. (B) Data sets used to infer the

parameter values. From left to right Garcia & Phillips [19] is used to determine k
(r)
o↵ and k

(r)
on , Brewster et al.

[25] is used to determine �"AI and k
(r)
on , Razo-Mejia et al. [26] is used to determine KA, KI , and k

(r)
on and

Jones et al. is used to determine rm, k(p)on , and k
(p)
o↵ .

Summing over all possible m and p values in Eq. 6 results in a ODE for any moment of the188
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distribution of the form (See Appendix S3 for full derivation)189

dhm
x
p
y
i

dt
= Khm

x
p
y
i

+Rmhp
y [(m+ 1)x �m

x]i+ �mhmp
y [(m� 1)x �m

x]i

+Rp

D
m

(x+1) [(p+ 1)y � p
y]
E
+ �phm

x
p [(p� 1)y � p

y]i.

(9)

Given that all transitions in our stochastic model are first order reactions, Eq. 9 has no moment-190

closure problem [13]. What this means is that the dynamical equation for a given moment only depends191

on lower moments (See Appendix S3 for full proof). This feature of our model implies, for example,192

that the second moment of the protein distribution
⌦
p
2
↵
depends only on the first two moments of the193

mRNA distribution hmi, and
⌦
m

2
↵
, the first protein moment hpi and the cross-correlation term hmpi.194

We can therefore define µ(x,y) to be a vector containing all moments up to hm
x
p
y
i for all promoter195

states. This is196

µ(x,y) =
⇥⌦
m

0
p
0
↵
,
⌦
m

1
p
0
↵
, . . . , hm

x
p
y
i
⇤T

. (10)

Explicitly for the three-state promoter model depicted in Fig. 2(A) this vector takes the form197

µ(x,y) =
⇥⌦
m

0
p
0
↵
A
,
⌦
m

0
p
0
↵
I
,
⌦
m

0
p
0
↵
R
, . . . , hm

x
p
y
i
A
, hm

x
p
y
i
I
, hm

x
p
y
i
R

⇤T
. (11)

Given this definition we can compute the general moment dynamics as198

dµ(x,y)

dt
= Aµ(x,y)

, (12)

where A is a square matrix that contains all the numeric coe�cients that relate each of the moments.199

We can then use Eq. 9 to build matrix A by iteratively substituting values for the exponents x and y200

up to a specified value. In the next section, we will use Eq. 12 to numerically integrate the dynamical201

equations for our moments of interest as cells progress through the cell cycle.202

1.4 Accounting for cell-cycle dependent variability in gene dosage203

As cells progress through the cell cycle, the genome has to be replicated to guarantee that each204

daughter cell receives a copy of the genetic material. This replication of the genome implies that205

cells spend part of the cell cycle with multiple copies of each gene depending on the cellular growth206

rate and the relative position of the gene with respect to the replication origin [35]. Genes closer to207

the replication origin spend a larger fraction of the cell cycle with multiple copies compared to genes208

closer to the replication termination site [35]. Fig. 3(A) depicts a schematic of this process where209

the replication origin (oriC) and the relevant locus for our experimental measurements (galK) are210

highlighted.211

Since this change in gene copy number has been shown to have an e↵ect on cell-to-cell variability in212

gene expression [24, 36], we now extend our minimal model to account for these changes in gene copy213

number during the cell cycle. We reason that the only di↵erence between the single-copy state and the214

two-copies states of the promoter is a doubling of the mRNA production rate rm. In particular the215

promoter activation and inactivation rates k(p)on and k
(p)
o↵ and the mRNA production rate rm inferred in216
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Section 1.1 assume that cells spend a fraction f of the cell cycle with one copy of the promoter (mRNA217

production rate rm) and a fraction (1 � f) of the cell cycle with two copies of the promoter (mRNA218

production rate 2rm). This inference was performed considering that at each cell state the mRNA219

level immediately reaches the steady state value for the corresponding mRNA production rate. This220

assumption is justified since the timescale to reach this steady state depends only on the degradation221

rate �m, which for the mRNA is much shorter (⇡ 3 min ) than the length of the cell cycle (100 min222

for our experimental conditions) [37]. Appendix S2 shows that a model accounting for this gene copy223

number variability is able to capture the experimental data from single molecule mRNA counts of an224

unregulated (constitutively expressed) promoter.225

Given that the protein degradation rate �p in our model is set by the cell division time, we do226

not expect that the protein count will reach the corresponding steady state value for each stage in227

the cell cycle. In other words, cells do not spend long enough with two copies of the promoter for the228

protein level to reach the steady state value corresponding to a transcription rate of 2rm. We therefore229

use the dynamical equations developed in Section 1.3 to numerically integrate the time trajectory of230

the moments of the distribution with the corresponding parameters for each phase of the cell cycle.231

Fig. 3(B) shows an example corresponding to the mean mRNA level (upper panel) and the mean232

protein level (lower panel) for the case of the unregulated promoter. Given that we inferred the233

promoter rates parameters considering that mRNA reaches steady state at each stage, we see that the234

numerical integration of the equations is consistent with the assumption of having the mRNA reach235

a stable value at each stage (See Fig. 3(B) upper panel). On the other hand, the mean protein level236

does not reach a steady state at either of the cellular stages. Nevertheless it is interesting to observe237

that after a couple of cell cycles the trajectory from cycle to cycle follows a repetitive pattern (See238

Fig. 3(B) lower panel). Previously we have experimentally observe this repetitive pattern by tracking239

the expression level over time with video microscopy as shown in Fig. 18 of [27].240

To test the e↵ects of including this gene copy number variability in our model we now compare241

the predictions of the model with experimental data. Specifically as detailed in Methods we obtained242

single-cell fluorescence values of di↵erent E. coli strains under twelve di↵erent inducer concentrations.243

The strains imaged spanned three orders of magnitude in repressor copy number and three distinct244

repressor-DNA a�nities. Since growth was asynchronous, we reason that cells were randomly sampled245

at all stages of the cell cycle. Therefore when computing statistics from the data such as the mean246

fluorescence value, in reality we are averaging over the cell cycle. In other words, as depicted in247

Fig. 3(B) quantities such as the mean protein copy number change over time, i.e. hpi ⌘ hp(t)i. This248

means that computing the mean of a population of unsynchronized cells is equivalent to averaging249

this time dependent mean protein copy number over the span of the cell cycle. Mathematically this250

is expressed as251

hpi
c
=

Z
td

to

hp(t)iP (t)dt, (13)

where hpi
c
represents the average protein copy number over a cell cycle, to represents the start of the252

cell cycle, td represents the time of cell division, and P (t) represents the probability of any cell being253

at time t 2 [to, td] of their cell cycle. We do not consider cells uniformly distributed along the cell254

cycle since it is known that cells follow an exponential distribution, having more younger than older255

cells at any time point [38]. All computations hereafter are therefore done by applying an averaging256

like the one in Eq. 13 for the span of a cell cycle. We remind the reader that these time averages are257

done under a fixed environmental state. It is the trajectory of cells over cell cycles under a constant258
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environment what we need to account for.259

Fig. 3(C) compares zero-parameter fit predictions (lines) with experimentally determined quanti-260

ties (points). The upper row shows the non-dimensional quantity known as the fold-change in gene261

expression [19]. This fold-change is defined as the relative mean gene expression level with respect to262

an unregulated promoter. For protein this is263

fold-change =
hp(R 6= 0)i

c

hp(R = 0)i
c

, (14)

where hp(R 6= 0)i
c
represents the mean protein count for cells with non-zero repressor copy number264

count R over the entire cell cycle, and hp(R = 0)i
c
represents the equivalent for a strain with no265

repressors present. The experimental points were determined from the fluorescent intensities of cells266

with varying repressor copy number and a �lacI strain with no repressor gene present (See Methods267

for further details). The fold-change in gene expression has previously served as a metric to test268

the validity of equlibrium-based models [34]. We note that the curves shown in the upper panel of269

Fig. 3(C) are consistent with the predictions from equilibrium models [26] despite being generated270

from a clearly non-equilibrium process as shown in Fig. 3(B). The kinetic model from Fig. 2(A) goes271

beyond the equilibrium picture to generate predictions for moments of the distribution other than the272

mean mRNA or mean protein count. To test this extended predictive power the lower row of Fig. 3(C)273

shows the noise in gene expression defined as the standard deviation over the mean protein count.274

The good correspondence between the zero-parameter fit theoretical predictions and the experimental275

data is only achieved when considering the gene copy number variability introduced in this section.276

(See Appendix S4 for comparison when this variability is not included).277

1.5 Maximum Entropy approximation278

Having numerically computed the moments of the mRNA and protein distributions as cells progress279

through the cell cycle we now proceed to make an approximating reconstruction of the full distributions280

given this limited information. As hinted in Section 1.3 the maximum entropy principle, first proposed281

by E.T. Jaynes in 1957, approximates the entire distribution by maximizing the Shannon entropy282

subject to constraints given by the values of the moments of the distribution, among other quantities283

[39]. This procedure leads to a probability distribution PH of the form (See Appendix S5 for full284

derivation)285

PH(m, p) =
1

Z
exp

0

@�

X

(x,y)

�(x,y)m
x
p
y

1

A , (15)

where �(x,y) is the Lagrange multiplier associated with the constraint set by the moment hmx
p
y
i, and286

Z is a normalization constant. The more moments hmx
p
y
i included as constraints, the more accurate287

the approximation resulting from Eq. 15 becomes.288

The computational challenge then becomes a minimization routine in which the values for the289

Lagrange multipliers �(x,y) that are consistent with the constraints set by the moments values hmx
p
y
i290

need to be found. Appendix S5 details our implementation of a robust algorithm to find such values.291

Fig. 4 shows example predicted protein distributions reconstructed using the first six moments of292

the protein distribution for a suite of di↵erent biophysical parameters and environmental inducer293

concentrations. As repressor-DNA binding a�nity (columns in Fig. 4) and repressor copy number294

(rows in Fig. 4) are varied, the responses to di↵erent signals (i.e. inducer concentrations) overlap to295
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Figure 3. Accounting for gene copy number variability during the cell cycle. (A) Schematic of a
replicating bacterial genome. As cells progress through the cell cycle the genome is replicated, duplicating
gene copies for a fraction of the cell cycle. oriC indicates the replication origin, and galK indicates the locus at
which the reporter construct was integrated. (B) mean mRNA (upper panel) and mean protein (lower panel)
dynamics. Cells spend a fraction of the cell cycle with a single copy of the promoter (light brown) and the rest
of the cell cycle with two copies (light yellow). Black arrows indicate time of cell division. (C) Zero
parameter-fit predictions (lines) and experimental data (circles) of the gene expression fold-change (upper
row) and noise (lower row) for repressor binding sites with di↵erent a�nities (di↵erent columns) and di↵erent
repressor copy numbers per cell (di↵erent lines on each panel). Dotted lines indicate linear scale while solid
lines indicate logarithmic scale. White dots on the lower row are plotted on a di↵erent scale for visual clarity.

varying degrees. For example the upper right corner frame with a weak binding site (�"r = �9.7 kBT )296

and a low repressor copy number (22 repressors per cell) has virtually identical distributions regardless297

of the input inducer concentration. This means that cells with this set of parameters cannot resolve298

any di↵erence in the concentration of the signal. As the number of repressors is increased, the degree299

of overlap between distributions decreases, allowing cells to better resolve the value of the signal input.300

On the opposite extreme the lower left panel shows a strong binding site (�"r = �15.3 kBT ) and301

a high repressor copy number (1740 repressors per cell). This parameter combination shows overlap302

between distributions since the high degree of repression skews all distributions towards lower copy303

numbers, giving again little ability for the cells to resolve the inputs. In Appendix S5 we show the304
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comparison of these predicted distributions with the experimental single-cell fluorescence distributions.305

In the following section we formalize the notion of how well cells can resolve di↵erent inputs from an306

information theoretic perspective via the channel capacity.307

Figure 4. Maximum entropy protein distributions for varying physical parameters. Predicted
protein distributions under di↵erent inducer (IPTG) concentrations for di↵erent combinations of
repressor-DNA a�nities (columns) and repressor copy numbers (rows). The first six moments of the protein
distribution used to constrain the maximum entropy approximation were computed by integrating Eq. 9 as
cells progressed through the cell cycle as described in Section 1.4.

1.6 Theoretical prediction of the channel capacity308

As a useful measure of the ability of the genetic circuit to allow the cell to infer the environmental309

state, i.e. the inducer concentration, we turn to the channel capacity. The channel capacity is defined310

as the mutual information between input and output, maximized over all possible input distributions.311

Putting this into mathematical terms we define c as the inducer concentration. P (c) represents312

the distribution of inducer and P (p | c) the distribution of protein counts given a fixed inducer313

concentration - e↵ectively the distributions shown in Fig. 4. The channel capacity is then given by314

C ⌘ max
P (c)

I(p; c), (16)

where I(p; c), the mutual information between protein count and inducer concentration is given by315

Eq. 1.316
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If used as a metric of how reliably a signaling system can infer the state of the external signal,317

the channel capacity, when measured in bits, is commonly interpreted as the logarithm of the number318

of states that the signaling system can properly resolve. For example, a signaling system with a319

channel capacity of C bits is interpreted as being able to resolve 2C states, though channel capacities320

with fractional values are allowed. As a result, we prefer the Bayesian interpretation that the mutual321

information, and as a consequence the channel capacity, quantifies the improvement in the inference322

of the input when considering the output compared to just using the prior distribution of the input323

by itself for prediction [13, 40]. Under this interpretation a channel capacity of a fractional bit still324

quantifies an improvement of the ability of the signaling system to infer the value of the extracellular325

signal compared to having no sensing system at all.326

Computing the channel capacity as defined in Eq. 16 implies optimizing over an infinite space of327

possible distributions P (c). For special cases in which the noise is small compared to the dynamic328

range, approximate analytical equations have been derived [16]. But given the high cell-to-cell variabil-329

ity that our model predicts, the conditions of the so-called small noise approximation are not satisfied.330

We therefore appeal to a numerical solution known as the Blahut-Arimoto algorithm [41]. This algo-331

rithm, starting on any (discrete) distribution P (c), converges to the distribution at channel capacity.332

Fig. 5(A) shows zero-parameter fit predictions of the channel capacity as a function of the number333

of repressors for di↵erent repressor-DNA a�nities (solid lines). These predictions are contrasted with334

experimental determinations of the channel capacity as inferred from single-cell fluorescence intensity335

distributions taken over 12 di↵erent concentrations of inducer. Briefly, from single-cell fluorescent336

measurements we can approximate the input-output distribution P (p | c). Once these conditional337

distributions are fixed, the task of finding the input distribution at channel capacity become a compu-338

tational minimization routine that can be undertaken using conjugate gradient or similar algorithms.339

For the particular case of the channel capacity on a system with a discrete number of inputs and340

outputs the Blahut-Arimoto algorithm is built in such a way that it guarantees the convergence to-341

wards the optimal input distribution (See Appendix S6 for further details). Fig. 5(B) shows example342

input-output functions for di↵erent values of the channel capacity. This illustrates that having access343

to no information (zero channel capacity) is a consequence of having overlapping input-output func-344

tions (lower panel). On the other hand, the more separated the input-output distributions are (upper345

panel) the higher the channel capacity can be.346

Fig. 5(A) has interesting features that are worth highlighting. On one extreme for cells with no347

transcription factors there is no information processing potential as this simple genetic circuit would348

be constitutively expressed regardless of the environmental state. As cells increase the transcription349

factor copy number, the channel capacity increases until it reaches a maximum to then fall back down350

at high repressor copy number since the promoter would be permanently repressed. The steepness351

of the increment in channel capacity as well as the height of the maximum expression highly depend352

on the repressor-DNA a�nity. For strong binding sites (blue curve in Fig. 5(A)) there is a rapid353

increment in the channel capacity, but the maximum value reached is smaller compared to a weaker354

binding site (orange curve in Fig. 5(A)).355

Discussion356

Building on Shannon’s formulation of information theory, there have been significant e↵orts using357

this theoretical framework to understand the information processing capabilities of biological systems,358

and the evolutionary consequences for organisms harboring signal transduction systems [1, 5, 8, 42–359
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(A) (B)

Figure 5. Comparison of theoretical and experimental channel capacity. (A) Channel capacity as
inferred using the Blahut-Arimoto algorithm [41] for varying number of repressors and repressor-DNA
a�nities. All inferences were performed using 12 IPTG concentrations as detailed in the Methods. Lines
represent zero-parameter fit predictions done with the maximum entropy distributions as those shown in
Fig. 4. Points represent inferences made from single cell fluorescence distributions (See Appendix S6 for
further details). Solid lines indicate plot in logarithmic scale, while dashed line indicates linear scale. (B)
Example input-output functions of opposite limits of channel capacity. Lower panel illustrates that zero
channel capacity indicates that all distributions overlap. Upper panel illustrates that as the channel capacity
increases, the separation between distributions increases as well.

44]. Recently, with the mechanistic dissection of molecular signaling pathways significant progress has360

been made on the question of the physical limits of cellular detection and the role that features such361

as feedback loops play in this task [6, 13, 15, 45, 46]. But the field still lacks a rigorous experimental362

test of these ideas with precision measurements on a system that is tractable both experimentally and363

theoretically.364

In this paper we take advantage of the recent progress on the quantitative modeling of input-output365

functions of genetic circuits to build a minimal model of the so-called simple repression motif [27]. By366

combining a series of studies on this circuit spanning diverse experimental methods for measuring gene367

expression under a myriad of di↵erent conditions, we infer all parameter values of our model - allowing368

us to generate parameter-free predictions for processes related to information processing. Some of the369

model parameters for our kinetic formulation of the input-output function are informed by inferences370

made from equilibrium models. We use the fact that if both, kinetic and thermodynamic languages371

describe the same system, the predictions must be self-consistent. In other words, if the equilibrium372

model can only make statements about the mean mRNA and mean protein copy number because373

of the way these models are constructed, those predictions must be equivalent to what the kinetic374

model has to say about these same quantities. This condition therefore constrains the values that the375

kinetic rates in the model can take. To test whether or not the equilibrium picture can reproduce376

the predictions made by the kinetic model we compare the experimental and theoretical fold-change377

in protein copy number for a suite of biophysical parameters and environmental conditions. The378

agreement between theory and experiment demonstrates that these two frameworks can indeed make379

consistent predictions.380
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The kinetic treatment of the system brings with it increasing predictive power compared to the381

equilibrium picture. Under the kinetic formulation, the predictions are not limited only to the mean382

but to any moment of the mRNA and protein distribution. We first test these novel predictions by383

comparing the noise in protein copy number (standard deviation / mean) with experimental data.384

Since the model is able to accurately predict the noise in protein count we extended our analysis to385

infer entire protein distributions at di↵erent input signal concentrations by using the maximum entropy386

principle. What this means is that we compute moments of the protein distribution, and then use387

these moments to build an approximation to the full distribution. These predicted distributions are388

then compared with experimental single-cell distributions as shown in Appendix S5. The agreement389

between our predictions and the experimental data at the full protein distribution means that we can390

use our model to predict the information processing capacity of the genetic circuit.391

By maximizing the mutual information between input signal concentration and output protein392

distribution over all possible input distributions we predict the channel capacity for a suite of biophys-393

ical parameters such as varying repressor protein copy number and repressor-DNA binding a�nity.394

We compare these theoretical channel capacity predictions with experimental determinations, finding395

that our minimal model is able to predict with no free parameters this quantity. In principle since396

our predicted input-output distributions were in close agreement with experimental data we could397

have chosen any arbitrary input distribution P (c) and compute the mutual information between input398

and outputs. The relevance of the channel capacity comes from its interpretation as a metric of the399

limits of how precise the inference that cells can make about what the state of the environment is400

given this simple genetic circuit. Our model makes non-trivial predictions such as the existence of401

an optimal repressor copy number for a given repressor-DNA binding energy (See Fig. 5). We note402

that this di↵ers from previous theoretical results since this optimal combination does not come from403

adding a cost term for the regulation [15]. This is a consequence of the parameters inferred in [26] for404

the allosteric repressor never allowing all repressors to go into the inactive (non-DNA binding) state.405

That means that even at saturating concentrations of inducer, as the number of repressors increases,406

a significant number of them are still able to bind to the promoter. This causes all of the input-output407

functions to be biased towards low expression levels, decreasing the amount of information that the408

circuit is able to process.409

It is important to highlight the limitations of the work presented here. As first reported in [26],410

our model fails to capture the steepness of the fold-change induction curve for the weakest repressor411

binding site (See Fig. 3(B)). This systematic deviation for weak binding sites remains an unresolved412

problem that deserves further investigation. Also the minimal model in Fig. 2(A), despite being413

widely used, is an oversimplification of the physical picture of how the transcriptional machinery414

works. The coarse-graining of all the kinetic steps involved in the transcription initiation into two415

e↵ective promoter states - active and inactive - ignores potential kinetic regulatory mechanisms of416

intermediary states [47]. Furthermore it has been argued that despite the fact that the mRNA count417

distribution does not follow a Poisson distribution, this e↵ect could be caused by unknown factors not418

at the level of transcriptional regulation [48].419

The findings of this work open the opportunity to accurately test intriguing ideas that connect420

Shannon’s metric of how accurately a signaling system can infer the state of the environment, with421

Darwinian fitness [5]. Beautiful work along these lines has been done in the context of the developmen-422

tal program of the early Drosophila embryo [8, 10]. These studies demonstrated that the input-output423

function of the pair-rule genes works at channel capacity, suggesting that selection has acted on these424
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signaling pathways, pushing them to operate at the limit of what the physics of these systems allows.425

Our system di↵ers from the early embryo in the sense that we have a tunable circuit with variable426

amounts of information processing capabilities. Furthermore, compared with the fly embryo in which427

the organism tunes both the input and output distributions over evolutionary time, we have exper-428

imental control of the distribution of inputs that the cells are exposed to. What this means is that429

instead of seeing the final result of the evolutionary process, we can set di↵erent environmental chal-430

lenges, and track over time the evolution of the population. These experiments could shed light into431

the suggestive hypothesis of information bits as a metric on which natural selection acts. We see this432

exciting direction as part of the overall e↵ort in quantitative biology of predicting evolution [49].433

2 Materials and Methods434

2.1 E. coli strains435

All strains used in this study were originally made for [26]. We chose a subset of three repressor copy436

numbers that span 3 orders of magnitude. We refer the reader to [26] for detail on the construction437

of these strains. Briefly the strains have a construct consisting of the lacUV5 promoter, one of438

three possible binding sites for the lac repressor (O1, O2, and O3) controlling the expression of a439

YFP reporter gene. This construct is integrated into the genome at the galK locus. The number of440

repressors per cell is varied by changing the ribosomal binding site controlling the translation of the lac441

repressor gene. The repressor constructs were integrated in the ybcN locus. Finally all strains used in442

this work constitutively express an mCherry reporter from a loc copy number plasmid. This serves as443

a volume marker that facilitates the segmentation of the cells when processing the microscopy images.444

2.2 Growth conditions445

For all experiments cultures were initiated from a 50% glycerol frozen stock at -80�C. Three strains -446

autofluorescence (auto), �lacI (�), and a strain with a known binding site and repressor copy number447

(R) - were inoculated into individual tubes with 2 mL of Lysogeny Broth (LB Miller Powder, BD448

Medical) with 20 µg/mL of chloramphenicol and 30 µg/mL of kanamycin. These cultures were grown449

overnight at 37�C and rapid agitation to reach saturation. The saturated cultures were diluted 1:1000450

into 500 µL of M9 minimal media (M9 5X Salts, Sigma-Aldrich M6030; 2 mM magnesium sulfate,451

Mallinckrodt Chemicals 6066-04; 100 mM calcium chloride, Fisher Chemicals C79-500) supplemented452

with 0.5% (w/v) glucose on a 2 mL 96-deep-well plate. The R strain was diluted into 12 di↵erent453

wells with minimal media, each with a di↵erent IPTG concentration (0 µM, 0.1 µM, 5 µM, 10 µM,454

25 µM, 50 µM, 75 µM, 100 µM, 250 µM, 500 µM , 1000 µM, 5000 µM) while the auto and � strains455

were diluted into two wells (0 µM, 5000 µM). Each of the IPTG concentration came from a single456

preparation stock kept in 100-fold concentrated aliquots. The 96 well plate was then incubated at457

37�C with rapid agitation for 8 hours before imaging.458

2.3 Microscopy imaging procedure459

The microscopy pipeline used for this work followed exactly the steps from [26]. Briefly, twelve 2%460

agarose (Life Technologies UltraPure Agarose, Cat.No. 16500100) gels were made out of M9 media (or461

PBS bu↵er) with the corresponding IPTG concentration (See growth conditions) and placed between462

two glass coverslips for them to solidify after microwaving.463
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After the 8 hour incubation in minimal media 1 µL of a 1:10 dilution of the cultures into fresh464

media or PBS bu↵er was placed into small squares (roughly 10 mm ⇥ 10 mm) of the di↵erent agarose465

gels. A total of 16 agarose squares - 12 concentrations of IPTG for the R strain, 2 concentrations for466

the � and 2 for the auto strain - were mounted into a single glass-bottom dish (Ted Pella Wilco Dish,467

Cat. No. 14027-20) that was sealed with parafilm.468

All imaging was done on an inverted fluorescent microscope (Nikon Ti-Eclipse) with custom-469

built laser illumination system. The YFP fluorescence (quantitative reporter) was imaged with a470

CrystaLaser 514 nm excitation laser coupled with a laser-optimized (Semrock Cat. No. LF514-C-000)471

emission filter. All strains, including the auto strain included a constitutively expressed mCherry472

protein to aid for the segmentation. Therefore for each image 3 channels YFP, mCherry, and phase473

contrast were acquired.474

On average 30 images with roughly 20 cells per condition were taken. 25 images of a fluorescent475

slide and 25 images of the camera background noise were taken every time in order to flatten the476

illumination. The image processing pipeline for this work is exactly the same as [26].477
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