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Abstract 

Protein turnover is vital to protein homeostasis within the cell. Many proteins are degraded effi-

ciently only after they have been post-translationally “tagged” with a polyubiquitin chain. Ubiq-

uitylation is a form of Post-Translational Modification (PTM): addition of a ubiquitin to the chain 

is catalyzed by E3 ligases, and removal of ubiquitin is catalyzed by a De-UBiquitylating enzyme 

(DUB). Over three decades ago, Goldbeter and Koshland discovered that reversible PTM cycles 

function like on-off switches when the substrates are at saturating concentrations. Although this 

finding has had profound implications for the understanding of switch-like behavior in biochemi-

cal networks, the general behavior of PTM cycles subject to synthesis and degradation has not 

been studied. Using a mathematical modeling approach, we found that simply introducing protein 

turnover to a standard modification cycle has profound effects, including significantly reducing 

the switch-like nature of the response. Our findings suggest that many classic results on PTM cy-

cles may not hold in vivo where protein turnover is ubiquitous. We also found that proteins shar-

ing an E3 ligase can have closely related changes in their expression levels. These results imply 

that it may be difficult to interpret experimental results obtained from either overexpressing or 

knocking down protein levels, since changes in protein expression can be coupled via E3 ligase 

crosstalk. Understanding crosstalk and competition for E3 ligases will be key to ultimately devel-

oping a global picture of protein homeostasis. 
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Introduction 

All proteins undergo some form of turnover. For instance, proteins can become damaged via de-

amidation or some other process and must be degraded in order to prevent unfolding and aggregation. 

Turnover is also important in signaling and the regulation of protein function. A classic example is the 

degradation of 𝐼𝜅𝐵 proteins, which bind the NF-𝜅𝐵 protein complex and sequester it in the cytoplasm. 

During response to different stimuli, 𝐼𝜅𝐵s are phosphorylated by 𝐼𝜅𝐵 kinases, ubiquitylated, and tagged 

for degradation, which allows NF-𝜅𝐵 to translocate to the nucleus (1). In the cell, synthesis and degrada-

tion (i.e. protein turnover) act in concert to maintain an appropriate concentration of active protein (i.e. 

protein homeostasis). Given the centrality of protein turnover to all cellular processes, it is not surprising 

that dysregulation of protein homeostasis has been implicated in a vast array of neurodegenerative dis-

eases and cancers (2, 3). In eukaryotes, degradation is often achieved through the ubiquitin-proteasome 

system, where proteins are tagged with polyubiquitin chains that are recognized by the proteasome, ul-

timately leading to protein degradation (4). Polyubiquitylation represents a form of post-translational 

modification (PTM) cycle where ubiquitin subunits are covalently linked to substrates by E3 ligases and 

removed by deubiquitylating (DUB) enzymes (5). 

Over 35 years ago, Goldbeter and Koshland studied the general properties of a PTM cycle com-

prised of a modifying and demodifying enzyme. They found that reversible cycles of protein modifica-

tion, such as a kinase enzyme adding a phosphoryl group and a phosphatase enzyme removing it, work 

like on-off switches when the enzymes are saturated (6). This phenomenon, known as “0th-order ultra-

sensitivity”, has had profound implications for understanding how biochemical networks can exhibit 

switch-like behavior. Despite decades of progress in understanding 0th-order ultrasensitivity and other 

aspects of PTM function (7-12), to there have been few attempts to systematically characterize the gen-

eral behavior of PTM cycles that drive protein degradation. 

The only exception to this has been the study of ubiquitylation in the context of cell cycle oscil-

lations and bistability (13, 14). While these studies have provided key insights about cell cycle control, 
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they have not investigated how ubiquitylation levels control the steady-state expression levels of pro-

teins not involved in the cell cycle. It has also been shown that adding protein synthesis and degradation 

to models of gene expression and cell signaling can have dramatic effects on system dynamics, but the 

detailed impact of turnover on PTM cycles remains unclear (15-17). 

In addition to a general lack of understanding of the influence of protein homeostasis on PTM 

cycle behavior, we recently discovered that substrates in such cycles can have coupled steady-state re-

sponses if those substrates share modification/demodification enzymes. In particular, if one substrate is 

at saturating levels, or if the substrates collectively saturate the enzymes, then all substrates of that pair 

will respond in a coupled, switch-like manner (18-20). This implies that modification leading to sub-

strate degradation (e.g. ubiquitylation by an E3 ligase) could introduce coupling in the concentrations of 

substrates sharing a ligase. Interestingly, Mather and co-workers have shown that substrate concentra-

tions can be coupled through saturation of the downstream degradation machinery (21, 22). It is current-

ly unclear, though, whether such coupling can arise due to “crosstalk” in the upstream mechanisms that 

tag proteins for degradation. 

In this work, we used a set of mathematical models to show that perturbing a standard PTM cy-

cle by simply adding synthesis and degradation has profound effects on the response of the system. Spe-

cifically, we found that the sensitivity of the system to incoming signals and the ultrasensitivity of the 

response are dramatically muted when the substrate is at saturating concentrations. When the modifica-

tion in question drives protein degradation at a higher rate, these effects are even more pronounced. Fur-

thermore, more realistic models allowing for long ubiquitin chains exhibit qualitatively similar behavior 

to the case with a single modification state, but with further decreases in sensitivity and ultrasensitivity. 

These findings are robust to changes in the specific mechanisms utilized by the E3 and DUB enzymes. 

Interestingly, we found that distinct modes of enzyme saturation (i.e. increasing substrate production 

rate vs. decreasing the Michaelis constant of the enzyme) also effect substrate responses differently. This 

indicates that many classic results on PTM cycles, including the extremely ultrasensitive response they 

exhibit when the substrates are at saturating concentrations, may not hold in vivo where protein turnover 
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is inevitable. We also found that proteins sharing an E3 ligase can indeed have closely related expres-

sion profiles. Moreover, the sensitivity protein concentration to changes in E3 activity for any given pro-

tein is largely dependent upon the total expression level of the other proteins. This suggests that it may 

be difficult to interpret experimental results obtained from either overexpressing or reducing protein 

concentrations, since changes in protein expression can be coupled via E3 ligase crosstalk. Further ex-

perimental characterization of E3-ligase/DUB enzyme/substrate relationships will thus be vital to devel-

oping a global understanding of protein regulation within the cell. 

 

Results 

Competition among E3 ligases. As mentioned in the introduction, shared E3 ligases have the potential 

to induce coupling in substrate responses. It is currently unclear, however, how widespread such “cross-

talk” among E3 ligases might be. We searched the E3Net database (23) for statistics of E3-substrate in-

teractions in human cells. For sake of comparison, we also obtained E3-specific statistics from the 

hUbiquitome database (24). The total number of E3 ligases documented in E3Net is 415 and the total 

number of their substrates is 873, making the average ‘substrate load’ (substrate-to-ligase ratio) 2.10. 

Similarly, there are a total of 138 ligases and 279 substrates annotated in the hUbiquitome database, 

yielding a comparable ratio of 2.02. Thus, on average, most E3 ligases will ubiquitylate around two sub-

strates. 

In addition to providing the numbers of ligases and substrates, E3Net also captures information 

on specific E3-substrate interactions. We found that 54% of the E3 ligases in the database have no sub-

strates listed; however, of the remaining E3 ligases, 52% have at least 2 substrates and 11% have more 

than 10 substrates (Fig. 1a). Also, the maximum number of substrates for any ligase is 92. Given that the 

database is incomplete, it is likely that these numbers represent significant underestimates of E3 ligase 

crosstalk. Regardless, the phenomenon of E3 ligases acting on multiple substrates is likely widespread, 
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and little is presently known about what influence crosstalk might have on the responses of these sub-

strates to changes in E3 ligase activity. 

Figure 1 

A        B  
 
 
 
 
 

 
 
C 

Fig. 1. Crosstalk among E3 ligases & schematic diagrams of single-substrate models. (A) 
Probability distribution (on log-log scale) of E3 ligase-substrate specificity as recorded in the E3Net 
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database. The average “substrate load” on a given E3 ligase is 2.1. (B) General representation of the 
canonical Goldbeter-Koshland (GK) loop, with protein turnover included. The case Q = δ( = δ) = 0 
corresponds to the GK loop; Q > 0 and δ( = δ) > 0 corresponds to the “Intermediate” model; Q > 0 
and δ( > δ) > 0 is represented by the “Full” model. Here “M” denotes modifying enzyme and “D” 
denotes demodifying enzyme. Modified substrate is indicated by the dark circle. (C) Schematic diagram 
for one substrate with multiple modification states. Shown here is the model corresponding to the 
Processive E3, Distributive/Sequential DUB case. Each of the first three units is degraded at the rate δ), 
which is smaller than the rate δ( for the remaining units. The maximum length of the polyubiquitin 
chain is denoted by ℓ. 

Adding synthesis and degradation to a PTM cycle. Even though E3 ligases generally attach long 

ubiquitin chains to their substrates (4), in order to simplify the problem to an analytically tractable form, 

we first considered a case with just a single modification state (Fig. 1b vs. 1c). Because ubiquitylation 

actively effects protein degradation, any investigation of the interplay between substrates competing for 

a protein and post-translational modifications (PTMs) leading to degradation must account for protein 

turnover. We thus focused first on studying how synthesis and degradation influence the behavior of the 

standard Goldbeter-Koshland loop.  

The first model, which we call the ‘Intermediate’ model, involves one substrate that can exist in 

two forms: modified and unmodified, denoted by 𝑆∗ and 𝑆 respectively (Fig. 1b). When in the 𝑆 state 

substrate is degraded at a first-order rate 𝛿), and when in the 𝑆∗ state it is degraded at a rate 𝛿(. In the 

intermediate model, the modification (e.g. ubiquitylation) does not lead to higher rates of degradation, so 

𝛿) = 𝛿(. Unmodified substrate is also synthesized at a constant rate 𝑄. The enzymatic reaction scheme 

can be used to obtain a system of ordinary differential equations (ODEs) with the binding, dissociation, 

and catalysis steps treated explicitly. We have denoted the kinetic rates of complex formation, complex 

dissociation, and catalysis by 𝑘2,4, where 𝑥 represents the reaction step and 𝑦 represents the enzyme - 

modifying (M) or demodifying (D) (Supp Info Sec. 1.1). For example, 𝑘789,: denotes the catalytic rate 

of the reaction catalyzed by the demodifying enzyme. 

Traditional analyses of post-translational modification cycles (i.e. the GK loop) have examined 

the response of molar fraction of modified protein at steady-state (𝑆∗ ≡ [𝑆∗]/[𝑆]?, where [𝑆]? = [𝑆] +
[𝑆∗] + [𝑀𝑆] + [𝐷𝑆∗]) to changes in the input parameter 𝑟	 ≡ EFGH,I[J]K

EFGH,L[:]K
= MNGO,I

MNGO,:
 (6, 18). We varied 𝑟 by 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/594085doi: bioRxiv preprint 

https://doi.org/10.1101/594085
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

simply changing [𝑀] and numerically integrated the system to extract the steady-state solutions for un-

modified and modified substrate ([𝑆] and [𝑆∗]) at each value of 𝑟. Note that, for the intermediate model, 

[𝑆]? = 𝑄/𝛿), regardless of the values of other parameters (Supp Info Sec. 1.3). Here, we focus on the 

case where the Michaelis constants of the enzymes are equal (𝐾J,J = 𝐾J,:), leaving analysis of sub-

stantially different 𝐾J′s to future work (25).  

One key feature of GK loops is their capacity to exhibit 0th-order ultrasensitivity, which mani-

fests as a switch-like transition in [𝑆∗] vs. 𝑟 when the modification and demodification enzymes are sat-

urated (i.e. [𝑆]? ≫ 𝐾J) (6, 9, 18, 25). To explore this phenomenon in the intermediate model, we initial-

ly increased 𝑄 to change saturation levels, since [𝑆]? = 𝑄/𝛿). In order to conduct these simulations, we 

chose a set of reasonable values for the kinetic rate constants in the model (Supp Info Table S1). In par-

ticular, 𝑘789s and 𝐾Js were taken from experimentally observed ranges (Supp Info Figure S1, (26)) and 

𝛿) was set based on the average observed half-life for proteins in living human cells (27). The value for 

𝛿) is also very similar to the shortest observed protein half-life in mouse C2C12 cells (20, 28). As can be 

seen from Fig. 2a, there are dramatic differences between a GK loop and the intermediate model upon 

saturation. For instance, defining 𝑟ST as the 𝑟-value when [𝑆∗] is half-maximal (i.e. [𝑆∗] = 0.5), we see 

that the curve of 𝑆∗ vs. 𝑟 shifts to the right, indicating a higher 𝑟ST. Secondly, the ultrasensitivity (i.e. the 

effective Hill coefficient 𝑛XYY) of the system under the intermediate model is reduced. Since the inter-

mediate model is simply a GK loop with 𝑄 and 𝛿) added (i.e. 𝛿) = 𝛿(), these results indicate that adding 

synthesis and degradation to a PTM can have a dramatic effect on 0th-order ultrasensitivity. 

While increasing the expression level of 𝑆 (e.g. increasing 𝑄) is a natural way to achieve satura-

tion, one can also saturate the enzymes by decreasing 𝐾J, keeping 𝑄 fixed. In a standard GK loop, vary-

ing [𝑆]? and 𝐾J are mathematically equivalent; in the intermediate model, however, the effects of de-

creasing 𝐾J (with a lower bound of 100 nM for experimentally observed 𝐾Js) are dramatically different 

from the effects of increasing 𝑄. In particular, the change in 𝑟ST and the change in 𝑛XYY are negligible 

(Fig. 2b).  
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Figure 2 
A       B 
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Fig. 2. Effects on various single-substrate models of varying 𝐐 or 𝐊𝐌 as the measure of enzyme 
saturation. (A) Modulating the rate of protein synthesis (Q) results in dramatic reduction of both sensi-
tivity of the system to incoming signals and ultrasensitivity of the response, in the regime of saturated 
enzyme. This is indicated by the rightward shift of the rST and the reduction in the Hill coefficient (n_``) 
from GK to Full. Logarithmic axis used for r. (B) Varying the Michaelis-Menten constant (Kb) results 
in a smaller reduction of rST and n_``, as compared to varying Q, in the regime of saturated enzyme. (C) 
Increasing Q has no effect on the rST for the GK model; the reduction in sensitivity is highly pronounced 
for the Intermediate model, and even more so for the Full model. Axes in log scale. (D) Increasing Q 
results in an unbounded increase of n_`` for the GK model. However, for systems that incorporate pro-
tein turnover (i.e. the Intermediate and Full models), there is a natural limit to the increase in n_`` for 
large enough Q. 

These results can be further understood by treating the system of ODEs analytically at steady-

state. We obtained the following equation relating r50 to 𝑄 and 𝐾J when corresponding kinetic rate pa-
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rameters for the modifying and demodifying enzymes are identical (Supp Info Sec. 1.6): 

𝑟ST = c1 +
𝛿)

𝑘789,:
e + c

1
2𝑘789,: ⋅ [𝐷]?

e𝑄 + c
𝛿)

𝑘789,: ⋅ [𝐷]?
e𝐾J 

Considering the endpoints of the plots in Fig. 2c and the equation above, it is clear that as the rate of 

substrate production is made arbitrarily large, the 𝑟ST grows without bound. Thus the system described 

by the intermediate model becomes less and less sensitive to incoming signals. However, when we make 

𝐾J as small as possible with all other parameters fixed (i.e. 𝐾J → 0), we see that 𝑟ST → 1 +
)

EFGH,L
i𝛿) +

j
(⋅[:]K

k, which is a constant. Note that this constant value is nevertheless larger than 𝑟ST = 1 

for the GK model (Supp Info Sec. 1.6). 

In a similar fashion we can analyze the effective Hill coefficient (𝑛XYY) for the intermediate 

model. Note that the 𝑆∗ vs. 𝑟 curves do not precisely follow the form of a Hill function; as such, we use 
the standard definition 𝑛XYY = log(81) / log iqrs

qts
k (6, 29). We can establish a lower bound on 𝑛XYY for 

the Intermediate model (which we will refer to as 𝑛XYY(I)), indicating that the intermediate model al-

ways exhibits positive cooperativity (i.e. 𝑛XYY(I) > 1, Supp Info Sec. 1.7). As with 𝑟ST, we also find that 

varying saturation by changing 𝑄 or 𝐾J results in opposing effects on 𝑛XYY (Fig. 2d, Supp Info Figure 

S2). While 𝑛XYY(𝐺𝐾) grows without bound in either case, 𝑛XYY(I) is smaller by several orders of magni-

tude. For instance, when 𝑄 is increased, 𝑛XYY(𝐼) evaluates to exactly 2 regardless of the values of the 

other parameters.  

The above results clearly demonstrate that changing saturation by varying 𝑄 and 𝐾J have very 

different consequences for the steady-state response of the PTM cycle in the Intermediate model. Since 

the value of 𝐾J depends on the underlying rate constants for the enzyme-substrate interaction, it is un-

likely to vary on short time scales. As such, it is more likely that saturation will change by changing the 

production rate 𝑄 in vivo. Certainly, experimental manipulation of saturation generally occurs through 

changes in protein expression (e.g. by “overexpressing” the protein, which would correspond to increas-

ing 𝑄 in this model). The steady-state responses of PTM cycles in vivo may thus be quite different from 
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the standard predictions that have been made in the absence of any consideration of protein turnover (7-

12). 

Driving protein degradation: “Full” model. While the results described above hold for any PTM cy-

cle subject to turnover, we are ultimately interested in PTMs like ubiquitylation that drive protein degra-

dation. This corresponds in our case to 𝛿( > 𝛿), which we term the “Full” model. For the purposes of 

display, we kept 𝛿) close to the average degradation rate of human proteins and set 𝛿( close to the fastest 

degradation rate observed in human cells (i.e. 𝛿) = 2 × 10xS𝑠x) and 𝛿( = 2 × 10xz𝑠x)) (27). 

We first considered how changes in E3 ligase activity relative to DUB activity would influence 

the modification state of the substrate. We found that transitions in [𝑆∗] are even less sensitive to incom-

ing signals in the full model, compared to the intermediate model (Figs. 2a & 2b). Indeed, the 𝑟ST for the 

full model is always greater than that for the intermediate model as 𝑄 is increased (Fig. 2c), and we have 

shown analytically that this is true for any reasonable set of kinetic parameters (Supp Info Sec. 1.6). In-

terestingly, although 𝑛XYY(I) is always less than 𝑛XYY(GK) as discussed above, we see that 𝑛XYY(Full) is 

less than 𝑛XYY(I) only for very small 𝑄 (Fig. 2d). For instance, when 𝑄 is increased without bound 

𝑛XYY(Full) evaluates to exactly log(81) / ~log(9) + log i��t���
�����t

k�, or approximately 7 in our case, which 

is larger than lim
j→�

𝑛XYY(I) = 2.  

 Since E3 ligase activity drives higher levels of protein degradation in the full model, changes in 

the 𝑟 parameter will change not only [𝑆∗] but also the total concentration of substrate ([𝑆]?). Perhaps not 

surprisingly, we found that [𝑆]? also exhibits an ultrasensitive transition in 𝑟. As with the transitions in 

[𝑆∗] discussed above, there is a rightward shift in 𝑟ST for the [𝑆]? vs. 𝑟 curve as 𝑄 is increased in the full 

model (Supp Info Sec. 1.8). This phenomenon can generate interesting behaviors, as shown in Fig. 3a. 

Suppose that we systematically increase the expression level of the protein while keeping the concentra-

tions of the modifying/demodifying enzymes constant, which corresponds to a constant 𝑟 in this model. 

As 𝑄 increases, the 𝑟ST of the curve increases from a point less than the value of 𝑟 to a point greater than 

𝑟. This leads to nonlinear changes in total substrate as Q increases (see below). The [𝑆]? vs. 𝑟 curve has 
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a number of other similarities to the [𝑆∗] vs. 𝑟 curve; for instance, we see that the effective Hill coeffi-

cient for total substrate in the full model does not change significantly when 𝑄 is increased, and never 

exceeds a value of 2 (Fig. 3b). In any case, this work clearly demonstrates that PTMs leading to in-

creased rates of protein degradation can produce ultrasensitive transitions in total protein concentration 

(Figs. 2 and 3). 

Figure 3 

A       B 

 

 

 

 

 

 

C       D 

 
Fig. 3. Effects of varying 𝐐 on the 𝐫𝟓𝟎 and 𝐧𝐞𝐟𝐟 in the Full model and its representative analog for 
multiple modification states. (A) The shift in rST for larger Q is clearly demarcated by the line in red. 
Each dashed curve indicates a different value for Q. The maximum and minimum values of [S]� for each 

10-1 102 105

Synthesis Rate (Q) [nM s-1]

1

1.2

1.4

1.6

1.8

2

H
il

l 
c

o
e

ff
ic

ie
n

t 
(n

e
ff
)

10
0

10
1

10
2

r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a
li
z
e
d

 F
ra

c
ti

o
n

 S
*

100 101 102

r

101

102

103

104

T
o

ta
l 
S

u
b

s
tr

a
te

 [
S

] T
 [

n
M

]

100 101 102 103 104

r

102

103

104

105

106

107

T
o

ta
l 
S

u
b

s
tr

a
te

 [
S

] T
 [

n
M

]

Larger
    Q

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/594085doi: bioRxiv preprint 

https://doi.org/10.1101/594085
http://creativecommons.org/licenses/by-nd/4.0/


13 
 

curve is Q/δ) and Q/δ(, respectively. (B) The effective Hill coefficient n_`` is relatively unaffected by 
increase in protein synthesis rate, for the Full model. (C) In the Processive E3, Distributive/Sequential 
DUB model, much more E3 ligase activity is necessary for a maximal response in the saturated regime. 
The curves denote trajectories obtained by deterministic simulations, and the circles denote stochastic 
averages for the trajectories. There is very good agreement between both frameworks. (D) Compared to 
Panel (A), the rightward shift is more pronounced in the presence of polyubiquitin chains. 

Adding multiple modification states to the full model. While the full model is suggestive, it abstracts 

a number of details of the biological systems that control protein homeostasis. For instance, E3 ligases, 

rather than adding just a single ubiquitin to their substrates, instead tend to attach polyubiquitin chains of 

varying lengths (4). To capture the effects of this in our models, we surveyed available literature and 

found that multiple enzymatic mechanisms have been proposed for both E3 ligases and DUB enzymes 

(13, 30-38). E3 ligases may be “processive,” in the sense that the ligase adds an ubiquitin unit to the 

polyubiquitin chain at each catalytic step and stays attached to the substrate while multiple ubiquitins are 

added sequentially. Alternatively, they may be “distributive,” meaning that the ligase disassociates from 

the substrate at the end of each catalytic reaction. In the one case that has been extensively studied ex-

perimentally, a form of E3 called a RING ligase works with the E2 Cdc34 to build polyubiquitin chains 

on substrates in a processive manner (37). Of course, this does not mean that other E3 ligases might not 

display distributive kinetics. Regarding the DUB enzyme counterpart, 3 such enzymes have been found 

in 26S proteasomes: Rpn11, Usp14, and Uch37 (32-34, 38). Rpn11 functions by truncating at the base of 

the chain (in a distributive manner), whereas Usp14 and Uch37 serve primarily to trim the ubiquitin 

chains sequentially (in a processive manner). Interestingly, more than one DUB might act on a given 

chain (32). 

Although there are experimentally characterized examples for several of these possible mecha-

nisms, little is actually known about how widespread each mechanism may be in nature. We thus em-

ployed an exhaustive approach, examining all combinations of the enzyme mechanisms and creating 

models of those scenarios. Our parameter values for the distributive cases correspond to the values in the 

previous section (i.e. Single Substrate, Single Modification State). However, we used parameter values 

directly from literature for the processive cases (37). 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/594085doi: bioRxiv preprint 

https://doi.org/10.1101/594085
http://creativecommons.org/licenses/by-nd/4.0/


14 
 

Given available experimental data (37), we focus on a reasonable and representative model (i.e. 

Processive E3 and Distributive/Sequential DUB) from this set of models. For purposes of display, we 

have depicted this scheme in Fig. 1c. It is known that a polyubiquitin chain typically requires at least 

four ubiquitin units to be effectively degraded by the proteasome (13, 30, 31). We thus assumed that 

each of the first three modification states (0-3 ubiquitins) is degraded at a uniform rate, 𝛿), which is 

smaller than the corresponding (higher) rate 𝛿( for each of the remaining states (4 or more ubiquitins). 

In theory, the ubiquitin chain could reach an infinite length, though of course in practice the action of 

DUBs and degradation will limit the largest chain typically observed in the system. Denoting this maxi-

mum length of the ubiquitin chain by ℓ, we enumerated the chemical reaction networks for all of the 

possible mechanistic scenarios described above (Supp Info Sec. 2.1). Due to the inherent complexity of 

the model, we could not obtain closed-form analytical solutions, and thus focused on numerical simula-

tions. 

 Recall that in the full model, which has a single modification state, we found a significant reduc-

tion in both sensitivity and ultrasensitivity of the transition in 𝑆∗ when compared to the intermediate 

model. To compare our more complex model with the full model, we defined 𝑆∗ for the case with multi-

ple modification states as follows: 𝑆∗ ≡ ∑ �𝑆(E)�ℓ
E�z /[𝑆]?, where 𝑘 indexes the substrate modification 

state. To choose a reasonable value for ℓ, we systematically increased this parameter and found a 

threshold value such that changes in 𝑟ST and 𝑛XYY were negligible beyond that threshold. Using this ap-

proach, we chose a value of 500 for ℓ heuristically by visual inspection. To investigate the effects of 

allowing for arbitrarily large chain length, we also performed simulations using an agent-based stochas-

tic modeling framework (39-42). In Figs. 3c & 3d, we see that the inclusion of ubiquitin chains magni-

fies the aforementioned effects in both the 𝑆∗ vs. 𝑟 and [𝑆]? vs. 𝑟 curves. Specifically, much more E3 

ligase activity is necessary to achieve a maximal response in saturated regimes. Furthermore, there is 

excellent agreement between the deterministic framework and its stochastic counterpart, suggesting that 

truncating the system at ℓ = 500 yields a reasonable approximation. All of the models that we exam-

ined, arising from the various mechanisms proposed for the E3 ligase and DUB enzymes, generated sim-
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ilar qualitative behavior (Supp Info Sec. 2.2), which indicates that these findings are largely invariant 

with respect to the catalytic mechanisms utilized by the E3 ligase and DUB enzymes (4).  

Adding multiple substrates to the full model. As mentioned above (Fig. 3a), there is an increase in 𝑟ST 

for the [𝑆]? vs. 𝑟 curve as 𝑄 is increased in the full model. As a consequence, increasing 𝑄 while keep-

ing 𝑟 fixed results in the curve seen in Fig. 4a. For low values of 𝑄, the transition in 𝑟ST occurs before 

this fixed 𝑟-value, so [𝑆]? ≈ 𝑄/𝛿(; for large 𝑄, the transition in 𝑟ST occurs after this fixed 𝑟-value, so 

[𝑆]? ≈ 𝑄/𝛿). For intermediate 𝑄, however, there is a distinct transition between these two regimes. The 

result in Fig. 4a implies that if two substrates share an E3/DUB enzyme pair, the 𝑟ST’s of the transitions 

in total substrate concentrations for these two proteins will be coupled. Thus, overexpressing one protein 

might have an influence on the expression profile of its counterpart. 

Figure 4 
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Fig. 4. Effects of protein overexpression on total protein in single-substrate and multiple-substrate 
models. (A) There is a qualitative transition in the [S]� vs. Q	curve when Q is comparable in magnitude 
with the measure of saturation (in this case, [M]). The slope of the curve approaches 1 on either side of 
the transition, which is consistent with the maximum and minimum values of [S]�. (B) Schematic 
diagram for multiple substrates with one modification state each. Shown here is the model 
corresponding to two substrates, for simplicity. Here “M” denotes modifying enzyme and “D” denotes 
demodifying enzyme. Modified substrate is indicated by the dark circle. (C) Sensitivity to signal for first 
substrate vs. synthesis rate of the second substrate, for the multiple-substrate analog of the Full model. 
The semi-analytical curve was obtained by substituting certain values, obtained empirically from 
simulation, into the analytical expression for rST([S)]�). Axes in log scale. (D) Plot of total 
concentration of first substrate vs. synthesis rate of the second substrate, for the multiple-substrate 
analogs of the Full model and the representative model. Axes in log scale. 

To test this, we introduced more than one substrate in the context of the full model. For the sake 

of display, we have taken the total number of substrates 𝑁 in our model to be 2. As shown in Fig. 4b, 

each E3 ligase and DUB now acts on two substrates with one modification state per substrate. The set of 

ODEs describing the model is given in Supp Info Sec. 3. In contrast to the case of just one substrate, 

here we are interested in capturing the response of [𝑆)]? = [𝑆)] + [𝑆)∗] to changes in the synthesis rate 

of the second substrate, denoted by 𝑄(. In Fig. 4c, we see that increasing 𝑄( yields an increase in [𝑆)]? 

for the Full model, as expected. The general behavior is similar in the Processive E3 and Distribu-

tive/Sequential DUB model, with the transition in [𝑆)]? occurring at lower values of 𝑄(. 

Interestingly, 𝑟ST([𝑆)]?) also depends on 𝑄( (Fig. 4d). Specifically, when 𝑄( is large enough in 

the Full model, 𝑟ST increases linearly with respect to 𝑄(. In a similar manner to Fig. 4c, a lower value of 

𝑄( is sufficient to obtain a linear increase in 𝑟ST in the presence of multiple modification states. Note the 

excellent agreement in the Full model between the 𝑟ST values extracted empirically from simulation out-

put and the analytical expression for 𝑟ST([𝑆)]?) (Fig. 4d & Supp Info Sec 3.3). In fact, when we make 

𝑄( arbitrarily large, we obtain 

𝑟ST([𝑆)]?) = �
𝛿(

𝑉�82,:
�	�

1
𝛼(
− 1� 𝛿) + 𝛿(�� 𝑄( 

where 𝛼(	is the molar fraction of modified 𝑆( at steady-state when [𝑆)]? is half-maximal. In other 

words, as the concentration of the second substrate is increased, it takes more and more activity of the 

E3 ligase to drive the transition in 𝑆) concentration. Interestingly, all of these results can be readily gen-
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eralized for any number of substrates, independent of substrate identity (Supp Info Sec. 3). Thus, cross-

talk in PTMs can lead to coupling of not only modification states (18, 19), but also of overall protein 

levels. 

Discussion 

 It has been over 35 years since Goldbeter and Koshland discovered the phenomenon of 0th-order 

ultrasensitivity. Since then, there has been extensive characterization of PTM cycles with 0th-order ultra-

sensitivity, both experimentally (43-45) and computationally (18, 20, 25, 46, 47). Until now, however, 

the properties of PTM cycles that drive protein degradation have not been studied in a systematic way. 

Using a mathematical modeling framework, we found that adding synthesis and degradation to a PTM 

cycle suppresses both sensitivity to signal and ultrasensitivity of the response, even when the PTM in 

question does not serve as a signal for protein degradation. Thus switch-like behaviors in vivo may or 

may not be the consequence of 0th-order ultrasensitivity, depending on the stability of the protein sub-

strate. Although there are exceptions (15-17), most models of signaling networks ignore protein turnover 

(48, 49). Our findings indicate that incorporating turnover, especially turnover based on actual protein 

stabilities, is key to capturing the global PTM dynamics of signaling systems. 

 Interestingly, we found the general trend of decreasing sensitivity and ultrasensitivity holds for 

PTMs that drive protein degradation, even when accounting for many of the complicated mechanisms 

that describe polyubiquitylation by E3 ligases and deubiquitylation by DUB enzymes (Fig. 3 & Supp 

Info Sec. 2). By adding E3 ligase crosstalk, we demonstrated that overexpressing one protein can elevate 

the concentration of another, and can also reduce the sensitivity of other proteins to incoming signals 

that would drive their degradation (Figs. 4c, 4d). In other words, if one protein is overexpressed, it be-

comes more difficult to degrade any of its counterparts sharing the same E3/DUB enzyme pair.  

 Although there is some data available about the specificity of E3 ligases (34, 50, 51), this infor-

mation is very far from complete. Consider the highly common experimental scenario where a primary 

aim is to characterize the function of a protein by manipulating its expression level. Our findings indi-
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cate that the interpretation of overexpression data in eukaryotic cells may be very difficult because some 

of the observed phenotypic or molecular effects could be directly due to the higher concentration of the 

protein that was expressed, but other effects could be due to E3 ligase coupling (Fig. 4c). Additional 

complications could also appear due to the change in sensitivity to the shared E3 ligases for other sub-

strates in the system (Fig. 4d). For instance, if a protein is being actively regulated by its E3 ligase and a 

degradation signal appears, then a high concentration of other proteins in the system would potentially 

inhibit the signal. This could have unforeseen large-scale effects on the overall system. 

 A global picture of E3-ligase/DUB enzyme specificity will thus likely be essential to compre-

hending the regulation of protein levels within cells. This will allow us to begin determining how to iso-

late direct effects of changes in protein expression levels from indirect effects. Equally necessary are 

mathematical or computational models of signaling dynamics, gene regulatory networks, and other cel-

lular processes that describe the interplay between PTMs that do not lead to degradation and those that 

drive degradation. Incorporating the coupled dynamics of protein levels into our understanding of cell 

signaling and cellular physiology thus represents a grand challenge for both experimental and computa-

tional systems biology. 

Materials and Methods 

Experimental methods: Our model behaviors can be described deterministically by systems of ordinary differential equa-

tions (ODEs). Numerical integration of the systems was performed by the stiff solver ode15s in MATLAB. All analyses were 

performed at steady-state. In parallel, agent-based stochastic simulations of the systems (39-41) were conducted using cus-

tom-built software implemented in C++. Parameter values were chosen to ensure equivalence between the deterministic and 

stochastic systems. See the supporting information for full details regarding all the models considered here. All simulation 

software codes are available upon author request. 
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