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Abstract 5 

Tradeoffs constrain the improvement of performance of multiple traits simultaneously. Such 6 
tradeoffs define Pareto fronts, which represent a set of optimal individuals that cannot be 7 
improved in any one trait without reducing performance in another. Surprisingly, experimental 8 
evolution often yields genotypes with improved performance in all measured traits, perhaps 9 
indicating an absence of tradeoffs at least in the short-term. Here we densely sample adaptive 10 
mutations in S. cerevisiae to ask whether first-step adaptive mutations result in tradeoffs during 11 
the growth cycle. We isolated thousands of adaptive clones evolved under carefully chosen 12 
conditions and quantified their performances in each part of the growth cycle. We too find that 13 
some first-step adaptive mutations can improve all traits to a modest extent. However, our 14 
dense sampling allowed us to identify tradeoffs and establish the existence of Pareto fronts 15 
between fermentation and respiration, and between respiration and stationary phases. 16 
Moreover, we establish that no single mutation in the ancestral genome can circumvent the 17 
detected tradeoffs. Finally, we sequenced hundreds of these adaptive clones, revealing novel 18 
targets of adaptation and defining the genetic basis of the identified tradeoffs. 19 
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Introduction 21 

That gain must ultimately be associated with some cost is a fundamental premise in fields 22 
spanning economics, engineering, and biology. Biology in particular has a rich tradition of both 23 
alluding to and attempting to define tradeoffs: here tradeoffs imply that a part of trait space is not 24 
accessible by evolution, such that, within a defined period of time, a lineage cannot evolve 25 
improved performance of two or more traits simultaneously above some threshold. Such 26 
evolutionary tradeoffs have been suggested by various biological phenomena - for instance, 27 
organisms with high fecundity tend to have a short lifespan 1–3 and organisms with large eggs 28 
tend to lay fewer of them 4,5. 29 
 30 
Despite the plethora of such examples of negative correlations between specific traits, such 31 
correlations alone are insufficient to demonstrate the existence of tradeoffs. Indeed, many 32 
alternative explanations exist. For instance, consider an environment in which only one trait is 33 
under selection while a second is not. Over evolutionary time, performance in the first trait is 34 
likely to increase while performance of the second is likely to decrease due to the accumulation 35 
of damaging mutations in the absence of purifying selection6,7. At the same time, a reciprocal 36 
relationship may be observed in an alternative environment if the second trait is subject to 37 
selection and the first one is not. This will lead to a negative correlation between performances 38 
of the two traits. However, it is entirely possible that mutations that improve both traits do exist, 39 
but they are not particularly common and not particularly advantageous in either of the 40 
environments. Additional explanations, such as sexual selection driving some traits to seemingly 41 
suboptimal states8, or current selective pressures not corresponding to the way natural selection 42 
acted in the past might also lead to negative correlations among traits in the absence of 43 
tradeoffs. In short, negative correlation in performance between two traits is expected in the 44 
presence of tradeoffs but in and of itself is not sufficiently strong evidence for the existence of 45 
tradeoffs. 46 
 47 
Consider an organism with two traits under selection (Fig. 1a): its trait-fitness space is two-48 
dimensional, with each axis representing performance for one of the traits. If a tradeoff exists 49 
between the two traits, for every biologically possible value of trait 1, the best value for trait 2 50 
performance will be constrained by trait 1, generating a Pareto optimality front (or Pareto front)9. 51 
Such a Pareto front not only represents the set of optimal trait combinations, but also separates 52 
the “accessible” from the “inaccessible” trait space. For individuals on the Pareto front (green 53 
dots in Fig. 1a), the existence of tradeoffs can be demonstrated straightforwardly: increasing the 54 
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performance for one trait will inevitably decrease performance for another. By contrast, 55 
individuals behind the Pareto front (the black dot in Fig. 1a) are able to improve performance in 56 
both traits simultaneously. It is generally assumed that organisms should be located on or near 57 
a “long-term” Pareto front as they are products of very long term evolution1,2,5,9–12. Surprisingly, 58 
results from experimental evolution often demonstrate the improvement of multiple traits 59 
simultaneously, suggesting that at least for the conditions and traits tested, the ancestor does 60 
not lie on a Pareto front13–19. However, it is important to appreciate that it is possible for an 61 
individual to be on a higher dimensional Pareto front, defined by multiple traits, but when 62 
measuring only a subset of the traits, the organism will appear to be behind the front (Fig. 1b). 63 
In this case, improvement in performance in the subset of traits must come at the cost of 64 
performance in the additional, unmeasured, traits that contribute to the higher dimensional front. 65 
 66 
The Pareto front is typically thought of as being defined by physical, structural, or physiological 67 
constraints. However, the Pareto front may also be defined by genetic constraints, such that the 68 
space above the front might be locally inaccessible in the short-term due to the rarity of specific 69 
genetic changes required to reach that region of trait space. For example, if the “inaccessible” 70 
part of trait space requires the system to move through a fitness valley the system might remain 71 
at the ‘Pareto front’ at least in the short term. The transition into the locally inaccessible part of 72 
the space would then be seen as a true evolutionary innovation that shifts the Pareto front to a 73 
new location. The Pareto front is thus defined both by the timescale of evolution and the 74 
physiological or structural relationships among the traits. 75 
 76 
To explore whether even the first step of adaptation can reveal evolutionary constraints in the 77 
form of Pareto fronts, one needs to sample a large number of adaptive mutants selected for 78 
multiple traits under a range of conditions and then precisely measure their performance along 79 
each trait axis (Fig. 1c,d). Pareto fronts, if present, can then be inferred by an absence of 80 
mutants able to maximize both traits simultaneously (the large red dot in Fig. 1a,c). If the first 81 
step mutations can reach the short-term Pareto optimality front and if the density of sampling is 82 
such that any adaptive single-step mutant that would land beyond the defined front would have 83 
been detected with high likelihood, then a short-term Pareto front will have been demonstrated. 84 
 85 
Here we set out to investigate the existence of Pareto fronts among multiple traits, by evolving 86 
barcoded yeast populations under a number of carefully chosen conditions, selecting for 87 
improved performance in different phases of the yeast growth cycle, including fermentation, 88 
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respiration, and stationary phases. We isolated ~500 independent adaptive clones most of 89 
which carry a single beneficial mutation. We found that a number of adaptive clones improved 90 
all three measured performances to a modest extent without apparent tradeoffs, indicating that 91 
the ancestor cannot be located on a Pareto front for the measured traits. However, no adaptive 92 
clones were able to maximize performance in some pairs of traits. We were able to delineate 93 
apparent short-term Pareto fronts between fermentation and respiration as well as between 94 
respiration and stationary phases, but not between fermentation and stationary phase 95 
performances. Importantly, due to a large number of sampled and tested clones we could assert 96 
that no single point mutation in the yeast genome can improve the performance substantially 97 
beyond either of the two defined Pareto fronts. Finally, by sequencing hundreds of adaptive 98 
clones, we identified the genetic basis underlying the identified tradeoffs and revealed novel 99 
targets of adaptation. 100 
 101 

Results 102 

Experimental System and Isolation of Evolved Clones 103 
When yeast cells grow in conditions with a fermentable carbon source, such as glucose used in 104 
this study, they go through a sequence of growth phases: (i) lag phase, where cells acclimate to 105 
the medium, with no cell division; (ii) fermentation, where cells divide exponentially by 106 
converting glucose into ethanol; (iii) respiration, where glucose is exhausted and cells divide 107 
slowly by consuming the ethanol produced during fermentation; and (iv) stationary/starvation 108 
phase, where cells cease growth because readily-available carbon has been depleted from the 109 
medium (Fig. 2a). 110 
 111 
To isolate adaptive clones with improved performances in fermentation, respiration, and/or 112 
stationary phase (or combinations thereof) we propagated barcoded haploid yeast populations 113 
under four serial transfer conditions having differing cycle lengths: 1) 1-day (referred to as 114 
Evo1D below) including 4h lag, 16h fermentation, and 4h respiration; 2) 2-day (Evo2D, 115 
conducted in Levy, Blundell et al20) including additional 24h respiration; 3) 5-day (Evo5D) 116 
including a further 12h respiration and 60h stationary phase; and 4) alternating 1-day and 5-day 117 
transfer (Evo1/5D) (Fig. 2a). We used barcode trajectories to determine that cell cultures in 118 
cycle 11 contained a high proportion of diverse adaptive clones. Furthermore, our previous 119 
analysis indicated that at this time point most adaptive clones would contain only a single 120 
adaptive mutation20. Subsequent sequencing of individual clones (Venkataram, Dunn et al21 and 121 
see below) confirmed this supposition. 122 
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 123 
We isolated clones from cycle 11 for subsequent analysis. Specifically, from Evo1D, Evo2D, 124 
Evo5D, and Evo1/5D we isolated respectively 120, 3048 (isolated in Venkataram, Dunn et al21), 125 
157, and 384 distinct evolved clones carrying unique barcodes. We previously found that ~50% 126 
of clones isolated from Evo2D had self-diploidized during the course of evolution21 and were 127 
beneficial across all fitness measurement conditions22. We therefore assayed the ploidy of 128 
newly isolated clones, and observed 43%, 45%, and 14% diploids among clones isolated from 129 
Evo1D, Evo5D, and Evo1/5D, respectively. 130 
 131 
We measured the fitness of all isolated clones in 1-day (Fit1D), 2-day (Fit2D), 3-day (Fit3D) and 132 
5-day (Fit5D) serial transfer conditions (Fig. 2b, clones from Evo2D were measured in Li, 133 
Venkataram et al22) using the method developed in Venkataram, Dunn et al21. For each clone, 134 
we therefore have its fitness in the “home” condition (except for Evo1/5D clones), as well as the 135 
“away” conditions. Note that one condition (Fit3D) was not used as an evolutionary condition but 136 
instead was important for evaluating stationary phase performance. Below we use these values 137 
to investigate patterns of local adaptation and to estimate performance of each clone in 138 
fermentation, respiration, and stationary phases. Using the fitness and ploidy measurements, 139 
we identified 66, 144, 58, and 132 adaptive haploids and 4, 40, 57, and 6 high-fitness diploids 140 
(assumed to have additional beneficial mutations besides diploidy) from Evo1D, Evo2D, Evo5D, 141 
and Evo1/5D, respectively. We refer to these adaptive haploids and high-fitness diploids 142 
collectively as adaptive clones. 143 
 144 
Local Adaptation Results from Performance Differences in Different Growth Phases 145 
We observed a large range of fitness both in the “home” and “away” environments (Fig. 2c). For 146 
example, the fitness of all adaptive clones varied from -0.35 to +2.2 per growth cycle in Fit5D, 147 
suggesting multiple adaptive strategies and targets of adaptation among these clones. While 148 
only 4.5% of the adaptive clones are maladaptive in any away condition, we do find that in 149 
general, adaptive clones exhibit evidence of local adaptation. Specifically, for each fitness 150 
remeasurement condition, both the average and the highest fitness of clones evolved in the 151 
home condition (indicated by arrows) are greater than those of clones evolved in the away 152 
conditions. Nonetheless, under a given fitness measurement condition, not all “home” clones 153 
are more fit than all “away” clones. 154 
 155 
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We further used our combined fitness data to determine the performance of individual clones in 156 
three of the phases in the growth cycle: fermentation, respiration, and stationary phase (Fig. 157 
2d). Here, we define performance as the increase in fitness, per hour, for a given growth phase; 158 
our previous study demonstrated that the overall fitness scales linearly with the amount of time 159 
spent in each of the growth phases22. The slope of the relationship between the relative fitness 160 
of a clone and the length of a particular growth phase (measured as fitness change per hour) 161 
can thus be used as a measure of clone performance in that phase. For instance, as the clones 162 
spend 24 extra hours in respiration during every cycle when growing under Fit2D compared to 163 
Fit1D we can calculate respiration performance by subtracting relative fitness of each clone in 164 
Fit1D from that in Fit2D and then dividing by 24 hours. Similarly, we calculated the fermentation 165 
and stationary performances (Supplementary Information section 6). 166 
 167 
We compared these three performances for clones evolved in all four conditions. Overall, while 168 
clones from each condition often revealed specific and consistent patterns of apparent tradeoffs, 169 
the tradeoffs observed were not necessarily shared across all conditions (Fig. 2d,e). For 170 
example, we previously found that most adaptive clones from Evo2D have improved 171 
performance in both fermentation and respiration, but decreased performance in stationary 172 
phase22. By contrast, adaptive clones from Evo1D have improved performance in fermentation, 173 
yet decreased performance in respiration and nearly unchanged performance in stationary 174 
phase. Most adaptive clones from Evo5D exhibit yet a different pattern -- improved performance 175 
in both fermentation and stationary phases but their performance in respiration on average is 176 
largely unchanged. Finally, adaptive clones from Evo1/5D have improved fermentation and 177 
stationary phase performance and generally decreased respiration performance. Overall, we 178 
found adaptive clones that improved every pair of fermentation, respiration, and stationary 179 
phase performances, as well as some that showed improved performance across all three 180 
(indicated by arrows in Fig. 2e), suggesting that the ancestor is behind any potential Pareto front 181 
for these three performances. 182 
 183 
The Genetic Basis of Adaptation and Tradeoffs 184 
We determined the genetic basis of adaptation by genome-wide sequencing of 47, 67, and 85 185 
adaptive clones from Evo1D, Evo5D, and Evo1/5D respectively. Putative adaptive mutations 186 
were successfully identified in 35 (74%), 66 (98%), and 81 (95%) of these clones. The identity of 187 
125 adaptive mutants from Evo2D was determined previously21,22. Many genes or pathways 188 
were recurrently mutated in our adaptive clones – in such cases we can be confident that these 189 
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mutations are indeed adaptive. Specifically, out of the 182 adaptive clones in which we 190 
identified putative adaptive mutations, 118 (~65%) harbor mutations in genes/pathways hit in 191 
multiple clones (Table S3). Furthermore, 79 of them harbor mutations in genes/pathways 192 
independently hit five or more times (Table 1). 193 
 194 
In general, within each evolutionary condition, beneficial mutations were limited to a small 195 
number of genes that serve similar biological functions. At the same time, across evolutionary 196 
conditions, beneficial mutations tend to differ in their genetic bases (Table 1). For instance, we 197 
previously reported that the majority of adaptive mutants for Evo2D upregulated the RAS/PKA 198 
and TOR/Sch9 nutrient sensing pathways21, but we rarely recovered adaptive mutations in 199 
these pathways from the other evolutionary conditions. By contrast, loss of function in SXM1 (a 200 
nuclear transport factor interacting with the nuclear pore complex23) was the prevalent cause of 201 
adaptation in Evo1D. While SXM1 mutants were also observed in Evo5D, they were not the 202 
predominant mutant class. Instead, a wide variety of mutations were observed among Evo5D 203 
adaptive clones, including (i) 11 duplications of chromosome 11 (Chr11Dup), (ii) 10 independent 204 
loss of function mutations in FPK1, and (iii) 9 mutations in three components of the high-205 
osmolarity glycerol (HOG) response pathway: SSK1, SSK2, and HOG1. Given that Evo5D 206 
contains a long period of starvation, observation of Chr11 aneuploidy is consistent with previous 207 

findings that aneuploidies can improve survival under extremely stressful conditions124–26, 208 

although the underlying mechanism is unknown. FPK1 (a flippase activator) has been 209 
previously shown to increase viability in stationary phase27, which we experimentally confirmed 210 
(Table S4). The genetic bases of adaptation among Evo1/5D clones were similar to those for 211 
Evo5D clones, with mutations in SXM1 and FPK1 as well as duplication of Chr11. 212 
 213 
Next, we examined the relationship between the identified genetic basis of adaptation and the 214 
resulting increases/decreases in performance (Fig. 3a-c). As stated above, in this study 215 
“performance” represents fitness change per hour in a particular growth phase rather than 216 
measurements of physiological traits (e.g. growth rate) as it is commonly used. The SXM1 217 
mutants, predominant in Evo1D, have among the highest observed fermentation performances, 218 
at >6% per hour (giving >96% fitness advantage over the ancestor over the full 16-hour period 219 
of fermentation in our conditions). This likely explains why nutrient-sensing pathway mutants, 220 
which have lower fermentation performance, and are common in Evo2D, were not observed in 221 
Evo1D. However, the high fermentation performances of SXM1 mutants come at a cost of 222 
reduced respiration performance (negative 2-3% per hour). This likely explains their near 223 
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absence in Evo2D given that the Evo2D condition contains a long period of respiration. 224 
Similarly, the most prevalent Evo2D RAS/PKA nutrient-sensing pathway mutants with the 225 
highest respiration performance tradeoff strongly in stationary phase22, explaining why they 226 
were not observed in Evo5D. Finally, clones that are common in Evo5D, which contains all 227 
phases of the growth cycle, are the least likely to show decreased performance in any phases of 228 
the growth cycle. Indeed, Evo5D specific mutations, such as Chr11 duplication and SSK1 229 
mutation, show no obvious tradeoffs, but rather modest improvements in one or more 230 
performances (Fig. S1). Interestingly, Evo5D clones also include SXM1 mutants that show 231 
increased performance only in fermentation with decreased performance in respiration and little 232 
change in stationary phase. In this case, their strong improvement in fermentation and lack of 233 
tradeoff in stationary phase appears to compensate enough for their reduced fitness in 234 
respiration. 235 
 236 
In summary, adaptation under these conditions is idiosyncratic yet predictable: the genetic basis 237 
of adaptation under a particular evolutionary condition tends to target a narrow, recurrent and 238 
thus a posteriori predictable set of genes. However, these gene targets are not shared across 239 
all environments, meaning that adaptation across conditions often relies on entirely different 240 
genetic pathways. This idiosyncratic nature explains the specific patterns of performances 241 
across conditions (Fig. 2d,e). While we do detect clones that increase all performances, clones 242 
that perform best in any one growth phase tend to tradeoff in performance in some other growth 243 
phase(s). This hints at the existence of evolutionary constraints, preventing the emergence of 244 
adaptive clones that simultaneously maximize performance in all growth phases. 245 
 246 
Identification of Evolutionary Constraints and Delineation of Pareto Fronts 247 
We observed an absence of clones near the upper limits of either both fermentation and 248 
respiration performances, or both respiration and stationary performances (the large red dot in 249 
Fig. 3a,d and 3b,e). Thus, there is at least the appearance of an empty space in the upper right 250 
corner, where these pairs of performances would be maximized. We used the convex hull 251 
algorithm to delineate potential Pareto fronts that separate the short-term evolutionarily-252 
accessible space from the empty, putatively short-term inaccessible space above the front (grey 253 
curves in Fig. 3). 254 
 255 
We first tested whether, given the marginal distributions of trait performances, the absence of 256 
clones at the top right of those plots is statistically unexpected (Supplementary Information 257 
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section 10). Under a null hypothesis of independence of performances, the observation of no 258 
clones beyond these putative fronts is indeed unexpected (P < 1E-4 for fermentation and 259 
respiration phases and 3.5E-4 for respiration and stationary phases, respectively; Fig. 3d,e and 260 
S2a,b). By contrast, there is no unexpected lack of clones close to the upper limits of both 261 
fermentation and stationary performances (Fig. 3f and S2c; P > 0.99). 262 
 263 
The Mutational Target Size of the Optimal Types is Smaller Than A Single Nucleotide 264 
To further explore the absence of clones beyond the putative Pareto fronts, we determined the 265 
target size for possible single-step mutations that would give rise to the maximum performances 266 
for fermentation and respiration, or respiration and stationary phase (marked by the large red 267 
dot in Fig. 3a,d and 3b,e). Mutants that could maximize two traits simultaneously would be more 268 
fit than the observed mutants at least in some evolutionary conditions; thus, based on this 269 
increased fitness, such mutants, should they arise at a similar rate as the observed mutants, 270 
should be sampled frequently in those conditions. For example, mutants that improve 271 
fermentation and respiration simultaneously beyond the putative front should have a higher 272 
fitness than most of sampled clones in Evo2D (Fig. S3a), as clones in this condition experience 273 
only fermentation and respiration. Likewise, clones that improve respiration and stationary 274 
phase beyond the putative front should have a high fitness in Evo5D (Fig. S3b), given that the 275 
majority of clones with high respiration or stationary performance have a positive fermentation 276 
performance as well. The fact that we didn’t observe any clones beyond the putative fronts 277 
suggests that the genomic mutational target size towards such extremely fit mutants located 278 
beyond the putative Pareto fronts must be smaller than that for the observed mutants. 279 
 280 
Next, we used a mathematical model to quantitatively assess the probability of sampling a 281 
single-step mutation with a given selection coefficient s (Supplementary Information section 11). 282 
Several factors determine the probability of sampling such a single-step mutation: the rate at 283 
which a mutation occurs, the probability of such a mutation surviving random drift and 284 
establishing in the population (~ proportional to s), and the exponential division rate after the 285 
mutation establishes (its cell number roughly reaches e^(s*t), with t generations between 286 
establishment and sampling). With mutations entering the population at a fixed rate, the more fit 287 
a mutant is (the larger s is), the more likely the mutant establishes in the population, the faster 288 
the mutant divides and eventually the higher frequency the mutant reaches by the sampling 289 
time. 290 
 291 
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First, consider a gene with the same target size for adaptive mutations as IRA1 (which were 292 
observed 39 times after sampling at cycle 11 of Evo2D 21,22), but whose mutation results in a 293 
fitness benefit at the hypothetical optimal type, with maximal fermentation and respiration (the 294 
red dot in Fig. 3a,d). Such a hypothetical mutant would have a fitness of ~2.56 per cycle in 295 
Evo2D, compared to ~1.64 per cycle for IRA1-nonsense mutations. If such a hypothetical gene 296 
exists, we would expect to observe mutations in this gene ~25,000 times more frequently than 297 
we observed mutations in IRA1 in Evo2D. Thus, it is exceptionally unlikely that such a gene with 298 
a similar target size to IRA1 does exist. Furthermore, if the target size for such a gene is just a 299 
single base pair, our mathematical model suggests that we would expect to see such a mutation 300 
84 to 99 percent of the time in our evolution experiments (Supplementary Information section 301 
11). Thus, we believe it is unlikely that there is even a single site in the genome of the ancestral 302 
strain that can be mutated to provide such a high fitness. 303 
 304 
Similarly, the hypothetical optimal type which maximizes the respiration and stationary phase 305 
performances would have a fitness benefit ~2.98 per cycle in Evo5D (represented by the red dot 306 
in Fig. 3b,e) (assuming a fermentation performance of zero). If a single site (1bp) can be 307 
mutated to this hypothetical optimal type, we would expect to sample such a mutant 88 to 98 308 
percent of the time in Evo5D experiments. Thus, there is likely no single-step mutation in the 309 
ancestral yeast genome that can simultaneously maximize either both fermentation and 310 
respiration, or both respiration and stationary performances to their highest observed levels. 311 

 312 

Discussion 313 

A Large Number of Diversely Selected Adaptive Clones Is Needed to Delineate Pareto 314 
Fronts 315 
Despite the fact that tradeoffs have been widely assumed in studies of evolution, it is extremely 316 
challenging to formally establish the existence of tradeoffs. Here, by sampling a large number of 317 
adaptive clones from a range of evolutionary conditions, and measuring their performance in 318 
three different traits, we were able to demonstrate the existence of Pareto fronts between 319 
fermentation and respiration, and between respiration and stationary phase performances. 320 
Furthermore, we were able to show that the ancestor must be behind these fronts, because for 321 
both pairs of traits there were clones that were able to improve performance in both traits 322 
simultaneously; indeed, some clones were able to improve performance in all three traits. 323 
 324 
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If the ancestor was on a front delineated by two traits, characterization of the front using 325 
experimental evolution would be straightforward, because no adaptive clones could improve 326 
both traits simultaneously – indeed, by definition, improvement of performance in one trait would 327 
lead to a loss of performance in the other. However, because the ancestor lies behind the fronts 328 
we identified, only by mapping a very large number of adaptive clones whose performances 329 
span the trait space could we map the Pareto fronts. By randomly subsampling our data, we 330 
estimated that ~100-200 independent adaptive mutants are required to detect the Pareto fronts 331 
in our experiment (Supplementary Information section 10). Furthermore, given that clones 332 
isolated from a particular evolutionary condition, e.g. Evo1D, tend to occupy a specific part of 333 
the trait space, clones from Evo1D, Evo2D, and Evo5D together were required to detect the 334 
Pareto fronts. 335 
 336 
Finally, having such a large number of adaptive clones enabled us to show that for both of the 337 
identified Pareto fronts there is no single mutation that can occur in the genome of the ancestral 338 
strain that would enable the strain to maximize performance in both traits. These fronts 339 
therefore constrain the evolutionarily accessible space over short timescales. 340 
 341 
No Observed Pareto Front between Fermentation and Stationary Phase 342 
We were unable to identify a Pareto front between fermentation and stationary phase 343 
performances, suggesting either an absence of tradeoffs between these two traits or that single-344 
step mutations provide insufficient performance improvement to reach a hypothetical Pareto 345 
front between these two traits. However, this may also be due to experimental limitations: 346 
specifically, clones selected under Evo5D experienced both fermentation and respiration prior to 347 
stationary phase. Thus, it is entirely possible that the maximum stationary phase performance is 348 
larger than we observed, if clones with such a large stationary phase performance tradeoff 349 
strongly in fermentation or respiration. A longer stationary phase, e.g. a 10-day serial transfer, 350 
may help select for such mutants and define a Pareto front between fermentation and stationary 351 
phase performances should one exist. Additionally, evolution in a non-fermentable carbon 352 
source followed by a long stationary phase may also enable selection of clones with high 353 
stationary phase performance that tradeoff strongly in fermentation. 354 
 355 
The Shape of Pareto Fronts and Nature of Tradeoffs 356 
Levin (1962)28 suggested that the geometry of Pareto fronts will affect an organism’s 357 
evolvability, and whether generalists or specialists will tend to evolve. For instance, a convex-358 
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shaped front allows for better evolvability and produces different optimal types based on the 359 
particular evolutionary condition, allowing for local adaptation (Fig. 4a). By contrast, a concave-360 
shaped front leads to less evolvability, because regardless of the importance of performance in 361 
each trait, one of the two most specialized types will always be the most fit (Fig. 4b). 362 
 363 
Previous studies have used, for example, ecological data in phytoplankton29, interactions 364 
between phage and E. coli30, and synthetic, E. coli based systems31 to investigate the geometry 365 
of Pareto fronts, and in one case, it has been shown that an evolving ancestor is likely on a 366 
Pareto front12. However, no study has yet quantitatively defined a Pareto front or characterized 367 
its geometry in evolving populations where the ancestor lies behind the front, which is the case 368 
in most experimental evolutions. Here we identified not one, but two convex-shaped fronts for 369 
two independent tradeoffs under well-controlled selection pressures in our short-term evolution 370 
experiments. It is possible that the shape of the Pareto front itself may change over the 371 
timescales of evolution32,33 and the way in which it might change will be informative about 372 
whether the observed front is due solely to a genetic constraint, or instead whether there is an 373 
underlying intrinsic physiological constraint. 374 
 375 
Over longer-term evolution, the space that is inaccessible in the short term may become 376 
populated, and the shape change to become a rectangle (Fig. 4c). This would imply there is no 377 
physiological constraint between the two traits and the observed Pareto front is purely due to a 378 
genetic constraint – that is, no clones with single mutations are able to occupy the seemingly 379 
inaccessible space, yet clones with multiple mutations can. Alternatively, the front may either 380 
stay in place (Fig. 4d), or move forward but retain the same shape (Fig. 4e), always defining an 381 
inaccessible space. This scenario would suggest intrinsic physiological constraints that no 382 
single individual could maximize performances in both traits simultaneously. A final possibility is 383 
that longer-term evolution may change the shape of the front from being convex to being 384 
concave (Fig. 4f) such that individuals with extreme performance in one or the other trait are the 385 
most fit depending upon the exact condition in which they are evolved. 386 
 387 
The behavior of clones containing multiple adaptive mutations should provide some insights. 388 
We observed three clones carrying two adaptive mutations each in genes specific to different 389 
evolutionary conditions. These clones harbor mutations in SXM1 and HOG1, SXM1 and SSK1, 390 
and SXM1 and CYR1, respectively. We observed that each of these double mutants is no closer 391 
to the front than the corresponding single mutants (Fig. S4), suggesting the front itself might be 392 
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moderately stable. However, clearly both long-term evolution and further evolution of already 393 
adaptive clones under various conditions are needed to test this. 394 
 395 
Future Prospects 396 
Despite much focus on the study of tradeoffs in ecology and evolution, rigorous demonstration 397 
of tradeoffs has proven surprisingly difficult15,34. Furthermore, even when tradeoffs have been 398 
demonstrated, the underlying causes typically remain elusive -- the genetic bases of adaptation 399 
and tradeoffs identified here provide additional potential targets for further investigation of 400 
whether the detected tradeoffs are caused by intrinsic physiological constraints. Here we have 401 
shown that it is possible to use barcoding and experimental evolution across a range of 402 
conditions to isolate a large enough number of adaptive mutants that together can map the 403 
shape of the evolutionary accessible trait space in short-term evolution, from which tradeoffs 404 
can be inferred. Our approach is generic and can be used to study tradeoffs between multiple 405 
traits including ecologically relevant traits such as the ability to sporulate or undergo mating and 406 
can be performed with different founding strains and species. Such studies hold promise in 407 
helping us to understand the shape of tradeoffs among multiple traits both in pairs and in higher 408 
dimensions.  409 
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Data Availability 410 

All sequencing data are deposited in Short Read Archive under Bioproject ID PRJNA515761. 411 
  412 
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Figures515 

 516 
Figure 1: Evolutionary constraints in trait-performance space. a, The Pareto optimality front 517 
separates the evolutionary accessible (white space) from the inaccessible space (shaded 518 
space). The red dot represents mutants that maximize both traits simultaneously. When 519 
organisms are on the Pareto optimality front (green dots), increasing the performance for one 520 
trait decreases the performance for the other. By contrast, when organisms are behind the 521 
Pareto front (black dot), organisms can improve the performance of both traits until the front is 522 
reached. b, An organism on a three-dimensional Pareto surface (green dot) appears to be sub-523 
optimal when it is projected onto a two-dimensional space. c-d, When the ancestor (Anc) is 524 
behind the Pareto front, many individuals occupying different parts of the trait space (c) are 525 
required to characterize the Pareto front. By contrast, too few individuals (d) are insufficient to 526 
delineate the front.  527 
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 528 
Figure 2: Experimental design and the observation of local adaptation and tradeoffs. a, 529 
Three chosen evolutionary conditions span different phases of the yeast growth cycle. Clones 530 
were also evolved in a 1-day/5-day alternating condition (Evo1/5D). b, Fitness measurement 531 
conditions designed to quantify fermentation, respiration and stationary performances (fitness 532 
change per hour) of each clone. Dashed vertical lines separate different growth phases, colored 533 
as (a). c, Fitness measurements of adaptive clones, grouped by their “home” evolutionary 534 
condition, in “home” and “away” conditions. Arrows point to adaptive clones measured in their 535 
“home” condition. d, Adaptive clones’ fermentation, respiration and stationary performances 536 
grouped by their evolutionary condition. +/- indicates increased/decreased performance 537 
compared to the ancestor. e, Clones are separated by their evolutionary condition and colored 538 
by their stationary phase performance. Each dot represents a clone. Note that some blue 539 
colored clones from Evo5D and Evo1/5D (pointed by arrows) improve performances in all three 540 
growth phases.  541 
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 542 
Figure 3: Mapping of the evolutionarily accessible trait space. For each pair of 543 
performances (fitness change per hour in each growth phase), adaptive clones are plotted and 544 
colored by either their molecular basis (a-c), or their evolutionary conditions (d-f). Each dot 545 
represents a clone. The large red dots represent the optimum phenotypes, achieving the upper 546 
limits (dashed lines) of each pair of performances. The grey curves, defined by the convex hull 547 
algorithm, represent putative Pareto optimality fronts. d-f, Histograms on the side represent the 548 
density distribution of each trait’s performance. Based on the null distribution, the number of 549 
clones expected to be observed (Exp.) in the empty space between the putative front and the 550 
optimal type (the large red dot) is reported, along with the p-value of not observing any clone in 551 
this empty space. 552 
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 554 
Figure 4: Pareto front geometry, and possible changes over longer-term evolution. a-b, 555 
(a) the convex-shaped Pareto front favors generalists, while (b) the concave-shaped front favors 556 
specialists during evolution. c-f, The current convex Pareto front (the solid grey curve) can (c) 557 
change into a rectangle, with the previously inaccessible space being populated, (d) stay in 558 
place, (e) move forward while keeping its shape, and (f) change its shape over longer-term 559 
evolution. Potential Pareto fronts after longer-term evolution are depicted in orange dashed 560 
lines. 561 
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Tables 563 

Table 1: Genetic basis of adaptation and tradeoffs 564 

 565 
The number of clones carrying recurrent mutations within genes or pathways. These 566 
genes/pathways were independently mutated more than four times. Genes in the same pathway 567 
are grouped by the large parenthesis on the left. 568 
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Supplementary Figures570 

 571 
 572 
Figure S1: The genetic basis of adaptive clones in the trait space. a-c, Adaptive clones are 573 
colored by their genetic basis and plotted for each pair of performances. Each dot represents a 574 
lineage. 575 
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 577 
Figure S2: Null distribution indicates the existence of an evolutionarily inaccessible 578 
space. a-c, The background color represents the expected number of clones with 579 
corresponding performances under a null hypothesis that performances in different growth 580 
phases are independent. Clones, represented by dots, are colored by their evolutionary 581 
condition. The thin grey curves represent putative Pareto fronts drawn by the convex hull 582 
algorithm. The red curves represent the second degree polynomial fit of these putative Pareto 583 
fronts. 584 
  585 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/593947doi: bioRxiv preprint 

https://doi.org/10.1101/593947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 586 
Figure S3: Fitness estimates in evolutionarily inaccessible space. a-b, The red dashed 587 
lines represent putative evolutionary fronts identified by the convex hull algorithm. The black 588 
lines represent (a) estimated fitness in Evo2D using the corresponding fermentation and 589 
respiration performance, and (b) estimated fitness in Evo5D using the corresponding respiration 590 
and stationary phase performance with the fermentation performance assumed to be zero. 591 
Fitness estimates per cycle are labeled on top of the panel. 592 
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 594 
Figure S4: Epistasis between recurrent beneficial mutations. (a) Two mutants carrying 595 
mutations in both SXM1 and HOG pathway genes, and (b) a mutant carrying mutations in both 596 
SXM1 and RAS/PKA pathway gene CYR1 are shown in the performance space. Double 597 
mutants are colored and shown in large dots. Their corresponding single mutants are colored 598 
and shown in small dots. Note that double mutants cannot outcompete both single mutants in all 599 
conditions and cannot break the detected Pareto fronts (in grey curve). 600 
  601 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/593947doi: bioRxiv preprint 

https://doi.org/10.1101/593947
http://creativecommons.org/licenses/by-nc-nd/4.0/


Source Tables 602 

Table S1: Barcode counts of all lineages during the course of evolution 603 
Table S2: Fitness measurements of isolated clones  604 
Table S3: Genetic basis of genome-wide sequenced clones 605 
Table S4: Viability measurement of FPK1 mutants and wild-type strains 606 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/593947doi: bioRxiv preprint 

https://doi.org/10.1101/593947
http://creativecommons.org/licenses/by-nc-nd/4.0/

