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1 Abstract
Characterizing cellular responses to different extrinsic signals is an active area of research, and curated pathway
databases describe these complex signaling reactions. Here, we revisit a fundamental question in signaling pathway
analysis: are two molecules “connected” in a network? This question is the first step towards understanding the potential
influence of molecules in a pathway, and the answer depends on the choice of modeling framework. We examined the
connectivity of Reactome signaling pathways using four different pathway representations. We find that Reactome
is very well connected as a graph, moderately well connected as a compound graph or bipartite graph, and poorly
connected as a hypergraph (which captures many-to-many relationships in reaction networks). We present a novel
relaxation of hypergraph connectivity that iteratively increases connectivity from a node while preserving the hypergraph
topology. This measure, B-relaxation distance, provides a parameterized transition between hypergraph connectivity
and graph connectivity. B-relaxation distance is sensitive to the presence of small molecules that participate in many
functionally unrelated reactions in the network. We also define a score that quantifies one pathway’s downstream
influence on another, which can be calculated as B-relaxation distance gradually relaxes the connectivity constraint
in hypergraphs. Computing this score across all pairs of 34 Reactome pathways reveals two case studies of pathway
influence, and we describe the specific reactions that contribute to the large influence score. Our method lays the
groundwork for other generalizations of graph-theoretic concepts to hypergraphs in order to facilitate signaling pathway
analysis.

2 Introduction
A major effort in molecular systems biology is to identify signaling pathways, the networks of reactions that link
extracellular signals to downstream cellular responses. Computational representations of signaling pathways have
increased in complexity, moving from gene sets to pairwise interactions in the past two decades [1]. Graphs are
common representations of protein networks, where nodes are proteins and edges represent pairwise interactions
between two proteins. While graph representations have been useful for pathway analysis [2–5] and disease-related
applications [5–7], the limitations of graphs for representing biochemical reactions are well recognized [8–12].

Many pathway databases [13–20] have adopted reaction-centric signaling pathway formats such as the Biological
Pathway Exchange (BioPAX) [21], which provides more mechanistic information about the interactions. As reaction-
centric information has become available, many modeling frameworks have been proposed to overcome the limitations
of graphs for analyzing signaling pathway structure [8, 9, 22, 23]. Compound graphs [24, 25] and metagraphs [8] aim
to represent protein complexes and hierarchical relationships among molecular entities in the cell. Factor graphs [26]
have been used to infer pathway activity from heterogeneous data types. Hypergraphs [27, 28] are generalizations
of directed graphs that allow multiple inputs and outputs, and their realization as a model for signaling pathways is

*Current Affiliation: Department of Computer Science, University of Maryland College Park, College Park, MD, US
†Corresponding Author: aritz@reed.edu

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/593913doi: bioRxiv preprint 

https://doi.org/10.1101/593913
http://creativecommons.org/licenses/by/4.0/


emerging [9, 11, 29]. Other models such as Petri nets [30] and logic networks [31, 32] move away from structural
network analysis and towards discrete dynamic modeling. Many of these modeling frameworks have an underlying
bipartite graph structure.

These new representations have improved fidelity to the underlying biology of signaling reactions but also exhibit
increased mathematical and algorithmic complexity. In this light, we examine a fundamental topological concept:
when are two molecules “connected” in a signaling pathway? Defining and establishing connectivity is the first step
to determining downstream or upstream elements of a molecule, which may indicate the influence of its activity or
the effect of its perturbation. Connectivity is also central to computational methods for identifying potential off-target
effects, determining pathway crosstalk, and computing portions of pathways that may be altered in disease.

We first begin by considering existing connectivity measures on four distinct representations of the Reactome
pathway database [13, 14]. We demonstrate that these measures range from highly permissive (e.g., path-based connec-
tivity in graphs) to very restrictive (e.g., connectivity in directed hypergraphs), depending on the representation. Thus,
two molecules may be “connected” in one representation of a pathway and “disconnected” in another representation.
We then introduce B-relaxation distance, a parameterized relaxation of connectivity that offers a tradeoff between
the permissive and restrictive representations. We show that this new version of connectivity uncovers more subtle
structures within the pathway topologies than previous measures, and is sensitive to the presence of small molecules that
that participate in many reactions. We then consider 34 Reactome signaling pathways and use B-relaxation distance
to capture the downstream influence of one pathway on another. B-relaxation distance allows us to gradually relax
the connectivity constraints in hypergraphs, calculating pathway influence at each step. The graph representation of
Reactome is too highly connected to enable the discovery of such relationships. We also show that the bipartite graph
representation, although not as highly as connected as the graph, does not support this type of result. We describe two
case studies of pathway influence that we recovered, and describe the specific reactions that contribute to the large
influence score.

3 Results
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Fig 1. Representations of two toy reactions as directed graphs, compound graphs, directed hypergraphs, and
bipartite graphs. In this work, we use “directed hypergraphs” and “hypergraphs” interchangeably.

3.1 Connectivity analysis using established traversal algorithms
We considered four established directed representations of signaling pathway topology and their associated measures
of connectivity (Fig. 1). Directed graphs describe relationships among molecules (proteins, and small molecules),
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while the other models describe relationships among entities that include proteins and small molecules, their modified
forms, protein complexes, and protein families. Please refer to the Methods for full details about these representations,
including how they are built.

1. Directed graphs represent molecules as nodes and interactions as pairwise edges. Interactions may be directed
(such as regulation) or bidirected (such as physical binding). We use a Breadth First Search (BFS) traversal to
find connected nodes.

2. Compound graphs represent interactions between pairs of nodes, which may be molecules or groups of
molecules (e.g., protein complexes or protein families). We use a previously-established algorithm that traverses
the BioPAX structure as a compound graph according to biologically meaningful rules [25].

3. Bipartite graphs contain two types of nodes: entity nodes and reaction nodes. Each biochemical reaction has
an associated reaction node, whose incoming edges are connected to reactants and whose outgoing edges are
connected to products. For each entity node, we use BFS to compute the set of connected entity nodes.

4. Directed hypergraphs represent reactions with many-to-many relationships, where each hyperedge e = (Te, He)
has a set of entities in the tail Te and a set of entities in the head He. We adopt a definition of connectivity called
B-connectivity that requires all the nodes in the tail of a hyperedge to be visited before it can be traversed [28].
This definition has a natural biological meaning in reaction networks: B-connectivity requires that all reactants
of a reaction must be present in order for any product of that reaction is reachable [11, 28].

Directed Compound Bipartite Hypergraph
Graph Graph Graph

# Nodes 12,086 19,650 30,775 19,650
# Edges/Hyperedges 285,556 38,218 45,155 11,125

Table 1. Representations of the Reactome database.

B

0.0000 0.2637 0.5274
0

0.32

0.64

Compound Graph Connectivity
19650 nodes surveyed

D

0.0000 0.0006 0.0013
0

0.46

0.93

19650 nodes surveyed

Fraction of Reachable Nodes

Fr
a
ct

io
n
 o

f 
S

o
u
rc

e
 N

o
d

e
s

A

0.00 0.02
0

0.44

0.89

Graph Connectivity
12086 nodes surveyed

0.86 0.88

C

0.00 0.05
0

0.25

0.51

Bipartite Graph Connectivity
19650 nodes surveyed

0.36 0.41

Hypergraph Connectivity

Fig 2. Reactome connectivity across pathway representations. Histograms of the fraction of nodes reached by each
source node in the (A) directed graph BFS, (B) compound graph traversal [25], (C) bipartite graph BFS on molecule
nodes, and (D) hypergraph B-connectivity [28].

We converted the Reactome pathway database to each of the four representations in an effort to determine if they
agreed on connectivity (Table 1). The directed graph has far more edges than the other representations since it represents
protein complexes as complete graphs (cliques). The hypergraph has more nodes than the graph since it represents
protein complexes, families and modified forms as distinct entities. However, since each hyperedge is a multi-way
relationship, the number of hyperedges is smaller than the number of edges in directed graphs. The compound graph
and bipartite graph have the same node set as the hypergraph, but contain more edges since they describe relationships
among entities using pairwise edges. Note that the number of nodes in the bipartite graph is the sum of the number of
nodes and the number of hyperedges in the hypergraph, by definition.

In the directed graph representation, nearly 90% of the nodes reached over 80% of the network due to the large
number of edges (Fig. 2A). For the other representations, we surveyed the same 19,650 entities representing proteins,
small molecules, complexes, and families. We observed two sharp peaks for both the compound and bipartite graph
representations: nodes that reach a large portion of the network and nodes that reach very few nodes in the network.
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Two-thirds of the nodes in the compound graph representation reach 50% of the network while half the nodes in the
bipartite graph representation reach about 40% of the network (Fig. 2B–C). In the hypergraph representation, only five
of the nodes are connected to more than 20 others in terms of B-connectivity, and most of the nodes cannot reach any
others (Fig. 2D). In hypergraphs, the B-connectivity requirement of visiting all nodes in the tail of a hyperedge before
traversal is overly strict for Reactome’s topology.

3.2 B-relaxation distance on hypergraphs
Connectivity in four different representations of Reactome largely exhibits an all-or-nothing behavior: nodes are either
connected to very few or a large fraction of all other nodes. We introduce B-relaxation distance, a parameterized
relaxation of hypergraph B-connectivity that naturally bridges the gap between B-connectivity in directed hypergraphs
and connectivity in bipartite graphs. When we consider the connectivity from a node v in the hypergraph, nodes
with a B-relaxation distance of 0 from v, denoted B0, are exactly the nodes that are B-connected to v. Nodes with a
B-relaxation distance of 1 (B1) allows one hyperedge to be freely traversed, lifting the restriction that all nodes in the
tail must be visited in order to traverse the hyperedge. In general, nodes with a B-relaxation distance of k (Bk) require
k hyperedges to be freely traversed. For shorthand, we will denote B≤k to be the set of nodes with a B-relaxation
distance from a source node of at most k. A formal definition and efficient algorithms for computing B-relaxation
distance appear in the Methods).

We computed the B-relaxation distance from every node in the hypergraph to every other node and plotted |B≤k|
for different values of k (Fig. 3A). The first column (k = 0) is the number of B-connected nodes for each source, a
histogram of which is shown in Fig. 2D. The last column (k = 49) corresponds to the other extreme: for each source
node, we display the number of nodes that are B-connected to the source while requiring that only one node in the tail
of a hyperedge needs to be connected to the source for us to determine that every node in the head of the hyperedge is
reachable from the source. The nodes reached for such a large value of k for each source are exactly the nodes that are
connected to the source in the bipartite graph representation (Fig. 2C). As in Fig. 2C, we observe the nodes are divided
into two sets: the top blue half are nodes that are not connected to very few others and the bottom yellow half are the
nodes that are connected to about 40% of the bipartite graph.
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Fig 3. B-relaxation distance survey from each node in the hypergraph. The heatmap shows the number of nodes
in the set B≤k from each source node (rows) for different values of k (columns) in (A) the Reactome hypergraph and
(B) the hypergraph after removing small molecules and three other entities with large connectivity (see text).

The nodes in the bottom half of Fig. 3A exhibited a transition from reaching very few nodes (blue) to reaching many
nodes (yellow). The rapidity of this transition suggested that a small number of nodes may be responsible for it. We
hypothesized that these nodes may be small molecules, e.g., ATP, water, sodium and potassium ions, that participate
in a vast number of reactions that are functionally unrelated. Consequently, we pruned the hypergraph by removing
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the 2,778 nodes labeled as small molecules by Reactome, as well as three other highly-connected entities (cytosolic
Ubiquitin, nuclear Ubiquitin, and the Nuclear Pore Complex). We also removed hyperedges with an empty tail or
head. In total, we altered 5,180 hyperedges by removing these entities, resulting in a filtered hypergraph with 15,440
nodes and 8,773 hyperedges. In this hypergraph, fewer nodes are connected to many others, and further the transition
from low-to-high connectivity is more gradual across different source nodes (Fig. 3(B)). In contrast, removing small
molecules from the directed graph changed the distribution very little, suggesting that small molecules played only a
minor role in the the high level of connectivity in directed graphs (Supplementary Fig. S1). Others have noted that
small molecules increase pathway connectivity through reactions that are not intended to be sequential, so we repeated
the B-relaxation distance survey after removing 155 ubiquitous small molecules flagged by PathwayCommons [19]
from the full hypergraph. As expected, the B-relaxation distance survey on this hypergraph reveals a pattern between
the full hypergraph and the hypergraph with small molecules removed (Supplementary Fig. S2).

From these results, we concluded that we had a promising definition of parameterized distance that allowed us
to relax the strict assumptions posed by B-connectivity, and a hypergraph where reachability was not affected by
ubiquitous molecules that participate in many reactions. For the remainder of this study, we use the hypergraph with all
small molecules removed (Fig. 3B).

3.3 Pathway influence across Reactome
While the entire Reactome pathway database appears to be poorly connected in the hypergraph representation, this
determination comes from treating individual nodes as sources. We wished to leverage Reactome’s pathway annotations
to understand how pathways are connected in the hypergraph according to B-relaxation distance. We identified 34
signaling pathways in Reactome (Supplementary Table S1) and considered the relationship between pairs of pathways
within the hypergraph. When we computed the overlap of the members within each pair of pathways, we found that
some pathway pairs already shared nearly all their members (Fig. 4A). For example, the normalized overlap between
DAG/IP3 signaling and GPCR signaling is 0.9; DAG and IP3 are second messengers in the phosphoinositol pathway,
which is activated by GPCRs. The next largest scores are 0.62 and 0.73 between Insulin Receptor signaling and
Insulin-like Growth Factor 1 Receptor (IGF1R) signaling. Other growth factor pathways have moderate overlap (e.g.,
the overlaps among EGFR, ERBB2, and ERBB range from 0.24 to 0.32).

Our aim is to quantify how well a source pathway S can reach a target pathway T by finding pathway pairs where
T is “downstream” of S. Since we wish to find a directed relationship between pathways, we should ignore the
initial overlap between their member sets PS and PT . Thus, we developed a score that measures how many additional
members of T may be reached when computing the B-relaxation distance from S, after accounting for the initial
overlap and the total of number of elements that are reached from S. We defined the influence score sk(S, T ) of the
source pathway S on target pathway T for B-relaxation distance up to k as follows:

sk(S, T ) =
| (B≤k(PS) ∩ PT ) \ (PS ∩ PT ) |
|B≤k(PS) \ (PS ∩ PT ) |

. (1)

This score makes use of the pathway overlap between S and T (PS ∩ PT ). The numerator counts the number of nodes
in T that are reached in the set B≤k(PS) that are not already in PS . The denominator counts the total number of nodes
that are reached in B≤k(PS) that are not in the pathway overlap. Pathway pairs with a large initial overlap are penalized
in this score, allowing more subtle patterns to emerge. Moreover, this score penalizes a pathway PS that reaches many
nodes indiscriminately.

We computed sk for every pair of Reactome signaling pathways for k = 0, 1, 2, . . . (Fig. 4B). As k increases, a
few pathway pairs exhibit a peak influence score around k = 3, including the largest computed influence score across
all values of k (red box). There are three pairs that exhibit a large influence score for k = 3 (Fig. 4B): (a) the Mst1
pathway’s influence on MET signaling (s3 = 0.79), (b) the Activin pathway’s influence on TGFβ signaling (s3 = 0.54),
and (c) the BMP pathway’s influence on TGFβ signaling (s3 = 0.48). We discuss these pathway pairs in two case
studies: Mst1 and MET signaling followed by Activin/BMP, and TGFβ signaling.

3.3.1 Mst1 pathway influence on MET signaling

Using Macrophage-stimulating Protein 1 (Mst1) as the source pathway S, we computed the overlap of the other 33
pathways with B≤k as k increases (Fig. 5). The largest influence score that we observed across all pathway pairs was
0.79 at k = 3 for Mst1 to MET signaling, which indicates that almost all the nodes downstream of Mst1 for k = 3
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are MET pathway members. For k = 10, the set B≤k contains many ERK1/ERK2 or PI3K/AKT pathway members;
however, they comprise a relatively small portion of the total number of nodes in B≤k.
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Fig 5. The Mst1 pathway’s influence on downstream pathways. The dashed black line indicates the number of
nodes in B≤k using the Mst1 pathway as the source set for different values of k. There is one line for each of the 33
other target pathways denoting the number of members that appear in B≤k; the MET, ERK1/ERK2, and PI3K/AKT
pathways are highlighted. The inset, which is a row from Fig. 4C, illustrates the large influence score of Mst1 on MET
signaling.

Fig. 5 suggested that the Mst1 pathway may influence the MET pathway. An inspection of the literature and the
topology of the nodes in B≤k from the Mst1 pathway as the source lent support to this hypothesis. Mst1 is produced
in the liver and is involved in organ size regulation [33, 34]. Mst1 acts like a hepatocyte growth factor and has been
established as a tumor suppressor gene for heptacellular carcinoma [34]. MET, also known as hepatocyte growth
factor (HGF) receptor, is a receptor tyrosine kinase that promotes tissue growth in developmental, wound-healing, and
cancer metastasis [35]. Mst1, on the other hand, binds to Mst1R (also known as RON), which is a member of the
MET family. Both MET and Mst1R have been shown to have similar downstream effects and can trans-phosphorylate
when active [36]. Upon inspection of the reactions that involved the nodes B≤3, we found that Hepsin (HPN) was
involved in forming both the Mst1 dimer and HGF dimer (Fig. 6). This protease is known to cleave both pro-Mst1
and pro-HGF into active Mst1 and HGF [37]. The hypergraph also emphasizes the fact that the nodes that in B≤k
but are not in the MET pathway involve STAT regulation in different cellular compartments. The computed pathway
influence (observed as an enrichment of stars in Fig. 6 in the regions named B0, B1, B2, and B3) is due to HPN’s role
in activating the ligands responsible for both Mst1 signaling and MET signaling. Fig. 6 also displays the nodes in B4.
The high prevalence of nodes that are not in the Met pathway (circles) in this region reinforces the fact that the influence
of the Mst1 pathway on the Met pathway is the largest for k = 3.

3.3.2 Activin and BMP influence on TGFβ signaling

Following the influence score for Mst1 and MET pathways, the next three largest scores across all pathway pairs and all
values of k were for the Activin pathway on TGFβ signaling (s2 = 0.58, s3 = 0.54) and the Bone Morphogenic Protein
(BMP) pathway on TGFβ signaling (s3 = 0.48). The pattern of sk values for Activin and TGFβ were strikingly similar
to the trends for BMP and TGFβ pathways; for both Activin and BMP, TGFβ was the only target pathway that received
a large influence (Fig. 7). Even though Activin, BMP, and TGFβ are all known ligands of the TGFβ superfamily, our
analysis demonstrates that the Activin and BMP pathways are upstream of the TGFβ pathway. The TGFβ superfamily
regulates processes involved in proliferation, growth, and differentiation through both SMAD-dependent and SMAD-
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Fig 6. Hyperedges traversed to compute B0, B1, . . . , B4 from source pathway Mst1. Node colors represent
B-relaxation distance from k = 0 (B0, blue) to B4 (bright green). Gray nodes are entities that are not in Bk but are
involved in traversed hyperedges. Star-shaped nodes are members of the MET pathway. This network is available on
GraphSpace at http://graphspace.org/graphs/26755?user_layout=6707.
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independent signaling [38]. TGFβ, Activin, and BMP phosphorylate different SMAD proteins by forming dimers and
binding to receptor serine/threonine kinases. TGFβ binds to TGFβ Receptor II (TGFBR2), which forms a homeodimer
with TGFBR1 and activates SMAD2 and SMAD3. Activin also phosphorylates SMAD2 and SMAD2 through binding
and activation of the Activin A receptor (ACVR). BMP, on the other hand, phosphorylates SMAD1, SMAD5, and
SMAD8 through BMP receptor activation. The hypergraph that shows the nodes in B≤3 from Activin consists of
different components and many cycles that denote reuse of SMADs (Supplementary Fig. S3). The hypergraph suggests
that the influence of Activin on TGFβ does not begin at the ligand, but rather at the activation of SMAD proteins.
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Fig 7. (A) Activin pathway and (B) BMP pathway influence on TGFβ signaling. Please refer to Fig. 5 for details.

4 Discussion
Connectivity is a foundational concept in cellular reaction networks, since it lies at the heart of determining the effect of
one molecule upon another. The formal definition of connectivity is familiar and straightforward in directed graphs,
the most common mathematical representation of reaction networks. However, precisely capturing this concept is
challenging in more sophisticated and biologically accurate representations such as compound graphs, bipartite graphs,
and directed hypergraphs. In recent years, scientists have developed these definitions independently for each of these
representations.

This work is the first to systematically compare the relevant formulations of connectivity in four different models
of reactions in signaling pathways. We study their impact on the Reactome database. Our striking finding is that the
directed graph representation of Reactome is very highly connected (90% of the nodes reach over 80% of the graph),
the compound and directed graph versions are somewhat less connected (two thirds of the nodes in the compound graph
are connected to about half the nodes and half the nodes in the bipartite graph reach about 40% of the nodes), whereas
the directed hypergraph model exhibits very poor connectivity (only five nodes are connected to more than 20 nodes).

We attribute this trend to multiple, related factors. The SIF format for Reactome, from which we construct
the directed graph, does not distinguish between modified forms of a protein and represents complexes as cliques.
Compound graphs, bipartite graphs, and directed hypergraphs create a node for each form of a protein and for each
protein complex. However, compound and bipartite graphs are much more connected than hypergraphs since they
record multi-way reactions using multiple, independent edges. Directed hypergraphs accurately represent reactions, but
their biologically-meaningful definition of connectivity (B-connectivity) is very restrictive in practice.

Motivated by these findings, we have provided a relaxed version of hypergraph connectivity, B-relaxation distance,
that is tailored for the analysis of signaling pathways. B-relaxation distance takes the intuitive mechanical significance
of B-connectivity and grants it the leeway necessary to deal with the challenges presented by the topologies of
biomolecular hypergraphs. We show that B-relaxation distance elegantly bridges the gap between bipartite graphs and
hypergraphs.

We use B-relaxation distance to identify downstream influence between annotated pathways in Reactome, defining
an influence score sk that suggests how much a target pathway T might be influenced by the downstream effects of a
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source pathway S. After performing an all-vs-all comparison across 34 Reactome pathways, we demonstrate the ability
of B-relaxation distance to capture points of influence in two case studies: (a) the effect of the Mst1 pathway on MET
signaling and (b) the role of Activin and BMP pathways on TGFβ signaling. Visualizing the hypergraph that contains
nodes with small B-relaxation distance can pinpoint the exact reaction or reactions responsible for the influence of
one pathway on another. While our findings are not biologically novel, they demonstrate how researchers may explore
Reactome in a systematic, unbiased manner to identify possible points of influence among pathways. As pathway
databases such as Reactome continue to expand, B-relaxation distance will become a useful measure for systematically
characterizing connectivity and relationships among annotated pathways.

Our algorithm for B-relaxation distance runs in polynomial time, and is efficient in practice. However, using
directed hypergraphs to solve other computational problems can come with additional algorithmic challenges. For
example, the shortest path problem on graphs is widely known to be solvable in polynomial time, while the analogous
problem on directed hypergraphs is NP-complete [11, 28], even when bounding the number of nodes in the tail and
head sets [29]. These challenges invite the generalization of other classic graph algorithms that have been used in
biological applications to directed hypergraphs; in fact, random walks [39] and spectral clustering [40] have already
been developed for directed hypergraphs with applications to other fields.

5 Methods

5.1 Connectivity measures
Given a pathway and two entities, we wish to ask a very fundamental connectivity question: “is a downstream of b”?
The answer to this question in directed graphs can be efficiently computed using a traversal algorithm such as breadth
first search. Established connectivity measures on compound graphs [25] and hypergraphs [28] generalize breadth-first
traversal. We begin with hypergraph connectivity and then describe our proposed relaxation to this measure, which
is the main computational contribution in this work. We then describe another version of connectivity for compound
graphs, which lies conceptually between graph connectivity and hypergraph connectivity.

5.1.1 Hypergraph connectivity

A directed hypergraph H = (V, E) contains a set V of nodes and a set E of hyperedges, where a hyperedge e =
(Te, He) ∈ E consists of a tail set Te ⊆ V and a head set He ⊆ V of nodes [28]. The cardinality of hyperedge e is
the sum of the nodes in the tail and head, i.e., |Te| + |He|. Note that directed graphs are a special case of directed
hypergraphs where |Te| = |He| = 1 for each hyperedge e. In a directed graph, the set of nodes connected to some
source s is simply all nodes that are reachable via a path from s. The equivalent notion in a directed hypergraph is
B-connectivity. Given a set of nodes S ⊆ V , B-connectivity ensures the property that traversing a hyperedge ∈ E
requires that all the nodes in Te are connected to S. The following definition is adapted from Gallo et al. [28]:

Definition 1. Given a directed hypergraphH = (V, E) and a source set S ⊆ V , a node u ∈ V is B-connected to S if
either (a) u ∈ S or (b) there exists a hyperedge e = (Te, He) where u ∈ He and each element in Te is B-connected to
S. We use B(H, S) to denote the set of nodes that are B-connected to S inH.

We can compute B(H, S) using a hypergraph traversal [28]. This traversal works by finding hyperedges that have tails
whose nodes are all B-connected to S, augmenting the set of B-connected nodes with the nodes in the heads of these
hyperedges, and repeating this process until it does not discover any new nodes. The running time of this algorithm is
linear in the size ofH.

5.1.2 Parameterized hypergraph connectivity

While B-connectivity is a biologically useful notion of connectivity, it is overly restrictive for the purpose of assessing
the connectivity of pathway databases. We establish a relaxation ofB-connectivity which works around such restrictions.
Before we formally define B-relaxation distance, we distinguish different sets of hyperedges based on their association
with the source set S (Fig. 8).

1. Given a hypergraph H = (V, E) and a source set S ⊆ V , a hyperedge e = (Te, He) is reachable from S if at
least one element of Te is B-connected to S.
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2. Given a hypergraphH = (V, E) and a source set S ⊆ V , a hyperedge e = (Te, He) is traversable from S if all
elements of Te are B-connected to S.

3. Given a hypergraphH = (V, E) and a source set S ⊆ V , a hyperedge e is restrictive (with respect to S) if it is
reachable but not traversable from S. We use R(H, S) to denote the set of restrictive hyperedges.

S

Reachable &
Traversable

Restrictive:
Reachable but
not Traversable

Fig 8. Reachable, traversable and restrictive hyperedges. This hypergraph has eight reachable hyperedges with
respect to S: five traversable hyperedges (blue) and three restrictive hyperedges (red).

We modify the b_visit() algorithm from [28] to return the B-connected set B(H, S) and the restrictive hyperedges
R(H, S) (Algorithm 1). The main difference between this traversal and a typical BFS is that a hyperedge is traversed
only when all the nodes in the head have been visited. We also return the set of traversed hyperedges to avoid redundant
computation in the relaxation algorithm that we describe later.

Algorithm 1 b_visit(H = (V, E), S ⊂ V )

1: c[e]← 0 for each hyperedge e ∈ E // counter of reached nodes in e’s tail
2: B ← S // set of B-connected nodes
3: X ← ∅ // set of traversed hyperedges
4: Q← S // queue of nodes to traverse
5: while Q is nonempty do
6: select and remove some node v ∈ Q
7: for each hyperedge e ∈ E where v ∈ Te do
8: c[e]← c[e] + 1
9: if c[e] = |Te| then

10: Q← Q ∪ [He \B] // add unvisited heads of e to queue
11: B ← B ∪He // add heads of e to B-connected set
12: X ← X ∪ {e} // add e to traversed hyperedges
13: R← ∅ // set of restrictive hyperedges
14: for each hyperedge e ∈ E do
15: if c[e] ≥ 1 and c[e] < |Te| then
16: R← R ∪ {e} // hyperedge e reached but not traversed

return B, R, X

We iteratively relax the notion of B-connectivity by allowing restrictive hyperedges to be traversed; to do so, at
each iteration k we need to keep track of Bk(H, S), the connected nodes, and Rk(H, S), the restrictive hyperedges.
We initialize these sets to be the outputs of b_visit():

B0(H, S) = B(H, S) (2)
R0(H, S) = R(H, S). (3)
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In the kth iteration of this relaxation process, we consider the heads of each restrictive hyperedge e from the previous
iteration. Bk(H, S) is the set of B-connected nodes and Rk(H, S) is the set of restrictive hyperedges for each head set
from Rk−1(H, S):

Bk(H, S) =
⋃

e∈Rk−1(H,S)

B(H, He) (4)

Rk(H, S) =
⋃

e∈Rk−1(H,S)

R(H, He). (5)

Note that computing Rk(H, S) using this definition requires |Rk−1(H, S)| different b_visit() calls, which is
necessary to ensure that only one restrictive hyperedge is used to establish connectivity. With these definitions in hand,
we are now ready to define our relaxation of B-connectivity.

Definition 2. Given a hypergraph H = (V, E), a source set S ⊆ V , and an integer k ≥ 0, a node v ∈ V is
Bk-connected to S if v ∈ Bi(H, S) for i = 0, 1, . . . , k.

The B-relaxation distance of a node v from a source set S is the smallest value of k such that v is Bk-connected to
S inH. In the main text, we use B≤k to denote the Bk-connected set. An example of computing B-relaxation distance
for all nodes in a hypergraph is shown in Fig. 9.

Iteration 0 (b_visit()) Iteration 1

Iteration 2 Iteration 3

SS

B0 R0 B1
Rs1

SS

B2
R2

SS
B3

SS

Fig 9. Computing B-relaxation distance. Connected nodes are in blue and restrictive hyperedges are in red for each
iteration k. In this example, all nodes are B3-connected to S = {a, b} and node r has B-relaxation distance of three.

We calculate theB-relaxation distance from S to every node in the hypergraph by calling b_visit() on restrictive
hyperedges for k = 0, 1, 2, . . . (Algorithm 2). The algorithm first calls b_visit() from S to get the B-connected set
B0,1 the restrictive hyperedgesQ0, and the traversed hyperedgesX (line 1). TheB-relaxation distance dictionary dist
is initialized to 0 for nodes in B0 and infinity otherwise, and the seen dictionary of hypereges set to True if they have
been traversed and False otherwise. While there are unseen restrictive hyperedges to traverse, the algorithm computes
Bk and Rk by calling b_visit() on the heads of each restrictive hyperedge from iteration k − 1 (lines 7–11). We
update the seen dictionary with all traversed hyperedges from each b_visit(), since these hyperedges may be
restrictive with respect to another set of nodes and would be recomputed at a later iteration (lines 12–13, Supplementary
Fig. S5). Finally, the algorithm updates the dist dictionary for all nodes that are reached in the k-th iteration and
increments k (lines 14–17). This implementation keeps track of B0, B1, . . . , Bk and R0, R1, . . . , Rk, which may be
returned for other purposes.

1In the algorithm we drop the parameterization of the hypergraph and source set to declutter notation.

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/593913doi: bioRxiv preprint 

https://doi.org/10.1101/593913
http://creativecommons.org/licenses/by/4.0/


Algorithm 2 b_relaxation (H = (V, E), S ⊆ V )

1: B0, R0, X ← b_visit(H,S)
2: dist[v]← 0 if v ∈ B0 else∞ for each node v ∈ V
3: seen[e]← True if e ∈ X else False for each hyperedge e ∈ E
4: k ← 1
5: while there exists some e ∈ Rk−1 where seen[e] = false do
6: Bk ← ∅, Rk ← ∅
7: for e ∈ Rk−1 where seen[e] = False do
8: seen[e]← True

9: B, R, X ← b_visit(H,He)
10: Bk ← Bk ∪B
11: Rk ← Rk ∪R
12: for e′ in X do
13: seen[e′]← True

14: for v in Bk do
15: if dist[v] =∞ then
16: dist[v]← k

17: k ← k + 1

18: return dist

Runtime analysis. The original b_visit() from Gallo et al. runs in O(size(H)) time where size(H) refers to
the sum of the hyperedge cardinalities inH [28]. The modified b_visit incurs no additional asymptotic runtime cost
since the timing of the additional operations it conducts (Algorithm 1, lines 13-16) is trivially bounded by |E|, which is
bounded by size(H).

In Algorithm 2, initializing the dist and seen dictionaries takes |V | and |E| time, respectively. The while loop
(line 5) contains two for loops. The first loop in line 7 iterates over all restrictive hyperedges, performing work only
when that hyperedge has not been previously traversed. Thus, the code in the first loop will be executed at most |E|
times over the full course of the algorithm, corresponding to the case where every hyperedge in H appears in some
restrictive set. The first loop calls b_visit() in line 9 at each iteration, which runs inO(size(H)) time as previously
mentioned. The second loop in line 14 updates the B-relaxation distance of each node exactly once, when it is first
discovered by the algorithm. It will be executed at most |V | times over the full course of the algorithm. The running
time of the first loop (line 7) dominates those of the initialization steps and the distance update loop; thus, the runtime
of Algorithm 2 is O(|E| · size(H)).

Pre-processing speedup. When we ran b_relaxation() on each source node on the Reactome hypergraph, the
algorithm took an average of 31.6 seconds per node on a Linux machine with quad Intel Core i7-4790 processors. The
quadratic runtime is tractable for a handful of calls, but calling b_relaxation() from every vertex in V (as we do
in this work) will result in a cubic runtime. We formulated an optimized version of b_relaxation(), which we
initialized by calling b_visit() on He for each e ∈ E and recording the resulting connected nodes and restrictive
hyperedges. This initialization step incurs a cost of |E| · size(H) time, but replaces the call to b_visit() in line 9
with a constant-time lookup operation. Thus the sole quadratic term in the runtime of Algorithm 2 becomes linear in the
optimized version. The optimized version, when applied to each source node on the Reactome hypergraph, gave an
average running time of 0.310 seconds per node, giving an improvement of two orders of magnitude.

5.1.3 Compound graph connectivity

There are multiple definitions of compound graphs [8, 25]. Here we describe compound pathway graphs CP = (G, I)
that consist of two graphs [25]. The pathway graph G = (V,EG) is a mixed graph where V denotes the set of nodes
and EG denotes the interaction and regulation edges among nodes, some of which may be directed.2 The inclusion
graph I = (V,EI) is on the same node set V and EI denotes the undirected edges for defining compound structure
membership (e.g., complexes and abstractions). To traverse a compound pathway graph, we need, for each compound

2Edges may also denote inhibition/activation; here, we ignore this aspect of the compound graph.
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structure, two flags: (a) compound: if a compound structure is reached, are all its members also reached? and (b)
member: if a member of a compound structure is reached, are all other members in the compound structure also
reached? During the traversal, once a node u is reached, the algorithm determines if any other nodes are “equivalent” to
u based on these flags. Note that while compound graphs handle traversals through entities such as protein complexes
and families, the edges only connect pairs of these entities. Thus, the requirements imposed by B-connectivity on
hypergraphs cannot be implemented on compound graphs as they are currently defined.

A compound path between two nodes consists of edges that are either from the pathway graph EG or represent a
link between nodes that are equivalent for traversal based on the compound and structure flags. These compound
paths are used to establish the set of nodes that are downstream of a source node. For comparison with other measures,
we modify the definition from [25] to ignore activation/inhibition effects and remove a restriction on path lengths:

Definition 3. Given a compound pathway graph CP = (G, I) and a source set S ⊆ V , a node u ∈ V is downstream
of S in CP if there exists some compound path from any node s ∈ S to u in CP .

We run the DOWNSTREAM algorithm implemented in the PaxTools software [25, 41] on each source node in S, ignoring
activation/inhibition sign and the path length limit.

5.2 Data formats and representations
We automatically generate the four Reactome representations – directed graph, compound graph, bipartite graph,
and hypergraph – using a suite of tools (Fig. 10). We use PathwayCommons, a unified collection of publicly-
available pathway data [19], to collect BioPAX and SIF files representing the entire Reactome database (http:
//www.pathwaycommons.org/archives/PC2/v10/). The SIF files are generated by PathwayCommons by
converting BioPAX relationships to binary relations; more details are available at http://www.pathwaycommons.
org/pc2/formats. We convert the SIF files to a directed graph by converting each binary relation to a directed or
bidirected graph (Supplementary Table S2).

We use the PaxTools java parser to work with BioPAX files [41]. PaxTools offers querying algorithms such as
DOWNSTREAM that operates on the compound graph representation [25]. We use PaxTools to construct hypergraphs by
traversing the BioPAX files. For each biochemical reaction in BioPAX, we construct a hyperedge with the reactants and
control elements in the tail and the products in the head. We use the algorithms provided in the Hypergraph Algorithms
Package (HALP, http://murali-group.github.io/halp/) to work with hypergraphs. The B-relaxation
distance algorithm is provided in a developmental branch of HALP. Finally, we build the bipartite graph directly from
the hypergraph, converting each hyperedge e into a reaction node r and connecting the tails of e to r and then r to
the heads of e. Thus, the number of nodes in the bipartite graph is exactly the number of nodes plus the number of
hyperedges in the hypergraph, and large B-relaxation distance corresponds to traversing the bipartite graph.

We visualize hypergraphs using GraphSpace [42], a web-based collaborative network visualization tool. The
hypergraphs are available as interactive networks on GraphSpace using the with the GLBio2019 tag (http://
graphspace.org/graphs/?query=tags:glbio2019).
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Fig 10. Building pathway representations from Reactome.
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