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 2 

Abstract 15 

Background 16 

Bacteria have evolved over billions of years to survive in a wide range of environments. 17 

Currently, there is an incomplete understanding of the genetic basis for mechanisms 18 

underpinning survival in stressful conditions, such as the presence of anti-microbials. 19 

Transposon mutagenesis has been proven to be a powerful tool to identify genes and 20 

networks which are involved in survival and fitness  under a given condition by 21 

simultaneously assaying the fitness of millions of mutants, thereby relating genotype to 22 

phenotype and contributing to an understanding of bacterial cell biology. A recent 23 

refinement of this approach allows the roles of essential genes in conditional stress survival 24 

to be inferred by altering their expression. These advancements combined with the rapidly 25 

falling costs of sequencing now allows comparisons between multiple experiments to 26 

identify commonalities in stress responses to different conditions. This capacity however 27 

poses a new challenge for analysis of multiple data sets in conjunction. 28 

 29 

Results  30 

To address this analysis need, we have developed ‘AlbaTraDIS’; a software application for 31 

rapid large-scale comparative analysis of TraDIS experiments that predicts the impact of 32 

transposon insertions on nearby genes. AlbaTraDIS can identify genes which are up or down 33 

regulated, or inactivated, between multiple conditions, producing a filtered list of genes for 34 

further experimental validation as well as several accompanying data visualisations. We 35 

demonstrate the utility of our new approach by applying it to identify genes used by 36 

Escherichia coli to survive in a wide range of different concentrations of the biocide 37 

Triclosan. AlbaTraDIS automatically identified all well characterised Triclosan resistance 38 

genes, including the primary target, fabI. A number of new loci were also implicated in 39 

Triclosan resistance and the predicted phenotypes for a selection of these were validated 40 

experimentally and results showed high consistency with predictions. 41 

 42 

Conclusions 43 

AlbaTraDIS provides a simple and rapid method to analyse multiple transposon mutagenesis 44 

data sets allowing this technology to be used at large scale. To our knowledge this is the 45 
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only tool currently available that can perform these tasks. AlbaTraDIS is written in Python 3 46 

and is available under the open source licence GNU GPL 3 from 47 

https://github.com/quadram-institute-bioscience/albatradis. 48 

Keywords 49 

Microbial bioinformatics, TraDIS, Tn-Seq, insertion site sequencing, NGS, comparative 50 

analysis, Genotype-phenotype association. 51 
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Background 53 

 54 

Bacteria can evolve and adapt very rapidly to a wide range of challenging conditions, for 55 

example exposure to an antimicrobial. The ability of bacteria to survive antimicrobial stress 56 

is of major importance because, if current trends continue, it is predicted that by 2050 10 57 

million people will die annually due to anti-microbial resistance (1). Despite its importance, 58 

interactions between antimicrobials and bacteria are only partially understood and most 59 

knowledge has been gained from a relatively simple set of laboratory culture conditions. 60 

Whilst the primary modes of action for most anti-microbials are known (2,3), secondary 61 

modes of action are either less well known, or not explored at all. Mechanisms of 62 

antimicrobial action and resistance in bacteria are complex and often vary depending on 63 

growth phase and/or concentration of the antimicrobial applied. A notable example of this 64 

has been described for the biocide Triclosan. Triclosan is a canonical fatty acid inhibitor 65 

although against Escherichia coli it exerts a bacteriostatic effect at low concentrations but is 66 

bactericidal at high concentrations (4). Additionally, understanding bacterial genotype-67 

phenotype associations in different environments and stress conditions might help to 68 

maximise the promising health benefits from symbionts that are part of the human 69 

microbiome.   70 

Transposon mutagenesis is an empirical tool that can provide insights into mechanisms 71 

involved in survival and fitness by simultaneously assaying the role of many genes under 72 

different conditions. This works by testing millions of mutants of a bacterial strain in parallel 73 

under various growth conditions. In this way information on gene essentiality, gene function 74 

and genetic interactions under different growth conditions can be collected (5,6). There are 75 

a number of techniques which are based on transposon mutagenesis and these include: 76 

transposon sequencing (Tn-seq) (7); high-throughput insertion tracking by deep sequencing 77 

(HITS) (8); insertion sequencing (INseq) (9); and transposon-directed insertion-site 78 

sequencing (TraDIS) (6).   79 

Transposon mutagenesis involves randomly inserting a transposon into a bacterium to 80 

produce a mutant. On average there is a single insertion of the transposon sequence in each 81 

bacterial cell.  Some of these random insertions will disrupt gene function or expression, 82 

which could potentially lead to changes in fitness (10). The mutant library can then be 83 
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grown in different conditions. In some cases, the insertion will disrupt systems that are 84 

essential for life, and the bacterium will not grow (11). The corresponding gene can thus be 85 

identified as being essential for life under the given conditions by its absence from the 86 

mutant pool after growth. Likewise, when a single gene supports many insertions and 87 

growth still occurs, that gene can be considered as non-essential for growth in that 88 

condition. 89 

Genes can be essential under one growth condition and non-essential in another. For 90 

example, bacteria may be able to expel low concentrations of antimicrobials relatively 91 

easily, but at high concentrations, above the minimum inhibitory concentration (MIC), may 92 

require different detoxification mechanisms, regulated by a different set of genes, that only 93 

become essential at high concentrations of the antimicrobial.  94 

After exposure of the mutant library to any given condition, mutants are recovered and the 95 

transposon and a small region of genomic material from mutants are extracted and 96 

subjected to next-generation sequencing (12). The resulting sequence reads contain a short 97 

segment of the transposon and at least 45 bases of the genome adjacent to the insertion. 98 

These reads are aligned to an annotated reference genome, which allows the identification 99 

of the position at which the transposon was inserted and the insertions to be associated 100 

with specific genes and their functions. The primary output is a table of the frequencies of 101 

insertions at each base in the reference genome. Results from test conditions are compared 102 

with controls to identify conditionally important genes. 103 

To date, one major barrier to the adoption of transposon mutagenesis for mechanistic 104 

studies has been the complex nature of the protocols and the need for non-standard 105 

sequencing instrument setups (12). These issues have been incrementally overcome which, 106 

in conjunction with the rapidly falling costs of genome sequencing, has made transposon 107 

mutagenesis an increasingly cost-effective method for screening millions of mutants 108 

simultaneously under a large number of different conditions (5,13–16). 109 

A limitation of the traditional TraDIS approach is, that essential genes cannot be effectively 110 

assayed, as mutants with insertions in them will not grow. A recent modification of the 111 

TraDIS protocol (17) (TraDIS+) allows the conditional fitness of all genes in the genome to be 112 

assayed simultaneously, including essential genes. This methodology uses a transposon with 113 

an outward directed inducible promoter allowing the impact of transcription alteration of 114 

each gene to be assayed as well as gene inactivation. By comparing induced and uninduced 115 
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conditions a better ‘signal-to-noise’ ratio is achieved to identify genes where expression 116 

changes contribute to conditional survival. Additionally, it is a suitable approach to identify 117 

where ‘knock-down’ of expression of a gene can influence survival. Incorporating the ability 118 

to alter expression of all the genes of an organism in one experimental condition in a 119 

controlled manner promises to be hugely powerful, as applying changes to all genes in a 120 

genome without prior knowledge about function has the potential to uncover a large 121 

number of new genotype-phenotype relationships.  122 

Analysis of the large-scale highly complex data resulting from experiments using transposon 123 

mutagenesis can be a considerable challenge; analysis involves tens of millions of data 124 

points (each corresponding to a physical bacterium), with controls and multiple replicates. 125 

 The interpretation of these data is thus complicated. Previous work has focused on 126 

manually interpreting insert site patterns by comparing mutants with controls (18) or by 127 

looking for simple signals that indicate whether a gene is essential for the survival of a 128 

bacterium (16), or for its evolutionary fitness using tools such as Bio-TraDIS (12). However, 129 

modes of action and any commonalities between different growth conditions are not 130 

computationally identified within the existing Bio-TraDIS toolkit, and results must be 131 

manually analysed. This is time consuming and limits the number of conditions that can be 132 

compared. While the Bio-TraDIS toolkit identifies essential and non-essential genes as well 133 

as performs comparison between one condition and control, it has little functionality for 134 

filtering, prioritising and cross conditional comparison. In order to evaluate the putative 135 

genes identified by the Bio-TraDIS toolkit, a visualisation tool, such as Artemis (19), must be 136 

used to compare multiple replicates for a condition against controls.  This requires prior 137 

knowledge and experience to judge which inserts are most likely to be biologically 138 

significant. Therefore, visualising all of the information from more than a single condition 139 

becomes impractical due to the volume of information. 140 

To address these issues, we present AlbaTraDIS, a software for rapid large-scale 141 

comparative analysis of TraDIS experiments that predicts the impact of inserts on nearby 142 

genes. It uses the statistical methods published in the Bio-TraDIS toolkit as a foundation. To 143 

our knowledge this is the only tool currently available that can perform these tasks. 144 

AlbaTraDIS is written in Python 3 and is available under the open source licence GNU GPL 3 145 

from https://github.com/quadram-institute-bioscience/albatradis. 146 

 147 
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Implementation of AlbaTraDIS  148 

 149 

In the main AlbaTraDIS workflow (albatradis script), as illustrated in Figure 1, we extend the 150 

Bio-Tradis functionality to identify and analyse signals from data generated by the TraDIS+ 151 

method, which includes determining putative alteration of transcription of genes in the 152 

forward or reverse complementary directions. The input to the albatradis script are insert 153 

site plots along with the annotated reference genome in EMBL format (20). The insert site 154 

files contain the number of insertions on the forward and reverse strands, at each base in 155 

the genome. One or more growth conditions, and a matching number of controls, are 156 

required as input, with a minimum of two replicates recommended to account for 157 

experimental variation.  To generate the insert site files, sequence reads generated using 158 

Illumina sequencing, are aligned to a reference genome using Bio-Tradis.  159 

The first step in the albatradis workflow is to apply normalisation in order to provide a more 160 

consistent analysis in the presence of natural experimental variation, but this option can be 161 

disabled if it is not desired. Each input file is normalised by the ratio of the number of 162 

insertions in the input file to the maximum number of insertions across all files.  163 

In order to screen the genome for different signals, by default, a reference-free sliding 164 

window is used. The window size defaults to 50 bases, as this was found experimentally to 165 

be the minimum window size where a signal could be detected with an insertion site density 166 

of one insertion every ten bases. This can be increased, but the boundaries of an identified 167 

mechanism become poorly defined, or may be missed entirely, if multiple mechanisms are 168 

present within one window, cancelling each other out. Alternatively, there is an option for 169 

an annotated reference-guided analysis. Each of the annotated genes and features are then 170 

treated as windows.  171 
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 172 

 173 

Figure 1: The underlying method for AlbaTraDIS. The inputs are insert site plots, with a 174 

frequency count of the insertions at each base in the genome for a condition and controls 175 

and the annotated genome in EMBL format. The abundance of inserts are normalised and 176 

the plots split into forward strand, reverse strand and combined strand insertions. 177 

Essentiality and differential abundance is assessed using sliding windows or a per gene 178 

option. The height of the log fold change plot indicates the log fold change difference in 179 

insertions between the conditions and controls. The list of significant genes is compiled 180 

using user definable values of corrected p value (q-value), logCPM and logFC. 181 

 182 
Genes and Windows are annotated with their essentiality. An essential gene is a gene which 183 

has no or very few insertions (no data points) as without the functioning gene, the bacteria 184 

do not survive, and thus are not present in the resulting sequencing data from that 185 

particular experiment (See Figure 2B). Essentiality analysis is performed using the method as 186 

implemented in Bio-Tradis (tradis_essentiality.R). A threshold value for the number of 187 
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insertions within essential genes is estimated using the observed bimodal distribution of 188 

insertion sites over genes when normalized for gene length (5). 189 

The log FC of each window, or gene, is overlaid onto the bases of the genome, producing 190 

plot files for analysis of the forward, reverse and combined data, and visualisation in 191 

applications such as Artemis (19).  192 

If the sliding window option is used, short gaps are spanned automatically. This shows 193 

where there is a strong increase or decrease of insertions in any part of the genome, and 194 

whether it is in a single direction, or in both directions.  This translates multiple signal spikes 195 

into clearly delineated blocks with putative modes of action (See Figure 2A). Any regions of 196 

the genome with blocks or genes above pre-defined levels (as previously noted) are selected 197 

as loci that may have a putative role in sensitivity to the test conditions. Putative changes in 198 

the numbers of mutants with insertions upstream or downstream of genes which may alter 199 

transcription are strong indications that those genes are important in bacterial survival under 200 

test conditions and also allows inferences about the importance of essential genes.  201 

 

A 

 

B 

 202 

Figure 2: A) The top four lines are the insertion sites in controls and under treatment 203 

conditions, where red lines are insertions in the forward direction and blue lines are 204 

insertions in the reverse direction, with the height corresponding to the number mapped 205 

reads identified for this site. The next three lines correspond to the signal identified by 206 

AlbaTraDIS using a sliding window of 50 bases and an interval of 25 bases, with the height 207 

corresponding to the log fold change between the treatments and controls. The bottom 208 
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section shows the genes as found in the reference genome, with the forward reading 209 

frames of translation. B) The pattern of insertions around a gene that Imply transcriptional 210 

augmentation, in the forward or reverse complementary direction. The shape of the gene 211 

indicates the direction, with the 5’ at the beginning (flat end) and the 3’ prime at the 212 

pointed end. Insertions on the forward strand are above the line and insertions on the 213 

reverse strand are below the line. 214 

 215 

In order to identify insertions that may alter gene transcription as well as knockouts, the 216 

insertions are divided into the forward and reverse inserts, giving three streams for analysis 217 

(forward, reverse and combined). The aim is to identify significant changes in each sliding 218 

window or gene between condition and control as described in (5) (See Figure 2B).  This 219 

analysis is based on methodology used for differential expression analysis as implemented 220 

in edgeR (21), as the data is given as insertion counts per gene or genetic region and can 221 

therefore be modelled by a negative binomial distribution. Therefore, the next step in the 222 

albatradis workflow is calling the Bio-TraDIS toolkit (tradis_comparison.R ) to perform 223 

comparison of insertion abundances between control and condition. This comparison 224 

comprises a normalisation of trimmed mean of M values (TMM) (22) and the calculation of 225 

distribution parameters based on tag-wise dispersion estimates. The resulting distributions 226 

for condition and control are then compared using an adopted exact test. P values are 227 

corrected for multiple testing using the Benjamini-Hochberg method (23).  A list of all 228 

significant genes is produced. The user can specify parameters that mark significance, but as 229 

a default a corrected P value (Q value) of < 0.05, an absolute log fold change (log FC) of > 1, 230 

and an absolute log count per million (log CPM) > 8 are considered significant. The produced 231 

list also contains a summary of each statistically-significant gene, its classification (up/down 232 

regulation, knockout), its coordinates, its maximum log FC, whether there is increased or 233 

decreased expression, the direction of the signal (forward/reverse strain, or both) and the 234 

upstream gene.  235 

 236 

Multiple condition comparison 237 

 238 

The albatradis main workflow compares replicates of one control and one condition. Often 239 

there are many different conditions and/or timepoints. Aiming to give a more complete 240 
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picture of what happens, it is of interest to compare the different conditions/timepoints in 241 

order to identify commonalities. The albatradis-presence_absence script summarises and 242 

performs comparative analysis of the outputs from the albatradis workflow. The impact of 243 

each test condition on each gene can be observed. Changes in essentiality of genes are 244 

compared with the control (i.e., where essential genes become non-essential and where 245 

non-essential genes become essential). All of these methods are designed to allow scaling 246 

up and automation of the TraDIS analysis. The input to the script are multiple gene reports, 247 

representing various test conditions and the annotated genome (embl format).  A variety of 248 

outputs is produced: the union and intersection of the genes for the test conditions which 249 

allows for further analysis of commonalities, a global heatmap of the log FC observed 250 

between the conditions and the controls and a spreadsheet representing the heatmap data. 251 

Common patterns can be represented by a tree structure, grouping common biological 252 

modes of action together. Two trees are created, one using hierarchical clustering 253 

(dendrogram) and one using the neighbour-joining method. Both trees are supplied in 254 

Newick format (http://evolution.genetics.washington.edu/phylip/newicktree.html) and can 255 

be viewed using a visualisation program like FigTree (24) (See Figure 3A). 256 

 

 

A 

 

B 

 257 
Figure 3: A) Neighbour joining tree of the presence and absence of genes that have 258 

significant differences in the number of insertions compared with the control after exposure 259 

to different concentrations of Triclosan. This shows how similar different conditions relate 260 

to each other based on their modes of action. B) Example network of the relatedness of 261 
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different modes of action where the green nodes are different conditions (such as drug 262 

concentrations), and the grey nodes are a single gene. 263 

 264 

A graphical representation of the collection of genes under different conditions is provided. 265 

Genes and conditions are represented as nodes in the graph. Where AlbaTraDIS has 266 

identified a link between a test condition and a gene, an edge is added, which is weighted 267 

by the number of identified connections. Figure 3B gives an example of such a network. The 268 

grey nodes represent genes and the green nodes represent test conditions. This allows for 269 

interrogation of commonalities between conditions using standard graph theory algorithms.  270 

If there are no genes in common amongst the conditions, the graph consists of several 271 

disconnected subgraphs. 272 

 273 

Results 274 

Experimental data used to evaluate usefulness of AlbaTraDIS 275 

To evaluate the performance of AlbaTraDIS, it was used to analyse a dataset from TraDIS+ 276 

experiments of E. coli grown in different concentrations of the antibacterial agent, Triclosan. 277 

This showed that large scale analysis was possible and confirmed the identity of known 278 

modes of action. A full description of this dataset is given in the companion article (17); this 279 

is the first dataset of this scale to be published. We briefly summarise the experiments and 280 

the data collected. 281 

Triclosan is an antibacterial agent that has been widely used in clinical practice and in 282 

cleaning and domestic hygiene products (25). It is known to exhibit concentration 283 

dependent effects; at low concentrations it is bacteriostatic (inhibits growth) and 284 

bactericidal (kills) at high concentrations (25,26). However, the mechanisms for these 285 

modes of action are not well understood, with only one primary target well validated (25). 286 

TraDIS was used to gain a better understanding of the consequences of exposure to 287 

Triclosan at different concentrations with E. coli BW25113 (27). This bacterium was chosen 288 

because it is well characterised laboratory strain with a fully sequenced genome. E. coli 289 

BW25113 is also the parent strain of the Keio collection (28), for which every gene in the 290 

genome has been systematically knocked out, allowing for subsequent experimental 291 

validation of phenotype. A library of around half a million mutants was generated from E. 292 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 31, 2019. ; https://doi.org/10.1101/593624doi: bioRxiv preprint 

https://doi.org/10.1101/593624


 13

coli BW25113 using a transposon that contained an inducible outward directed promoter. 293 

The promotor allowed for enhanced expression with Isopropyl β-D-1-thiogalactopyranoside 294 

(IPTG). The mutant library was then grown for 24 hours in eight concentrations of Triclosan 295 

(from 0.008 to 1 mg/L) and in combination of three concentrations of the inducer to give a 296 

spectrum of promoter expression. There were two controls and two technical replicates, 297 

resulting in 60 individual TraDIS experiments. Table 1 provides the accession numbers for 298 

data collected and the conditions evaluated (Triclosan concentrations) for each experiment. 299 

The genome of E. coli BW25113 (accession number GCA_000750555.1) (27) consists of 300 

4,631,469 bases in a single chromosome with 4,774 annotated genes. 301 

 302 

Ability of AlbaTraDIS to identify primary modes of action 303 

To confirm that the results from AlbaTraDIS are accurate, we used it to evaluate the 304 

Triclosan dataset for E. coli BW25113 as listed in Table 1. We looked for the presence of 305 

genes that are known from experimental validation to be important in the action of 306 

Triclosan, and also important in bacterial resistance to Triclosan. The primary target of 307 

Triclosan is the enzyme FabI.  Mutation or over-expression of fabI are known mechanisms of 308 

resistance to Triclosan (25). Whilst fabI is essential, and therefore not assayed by traditional 309 

transposon mutagenesis approaches, inserts upstream of fabI at the 5’ end were clearly 310 

identified by AlbaTraDIS. An induction of fabI was classified as beneficial for survival when 311 

grown in Triclosan(Figure 4). Other genes known to be involved in resistance were also 312 

identified including the efflux  and regulators acrR, acrB, marR, soxS, and many genes 313 

involved in generation of lipopolysaccharide. A number of loci not known previously to be 314 

involved in Triclosan resistance were also identified. The predicted phenotypes for a 315 

selection of these were validated by using the corresponding knockout mutants from the 316 

Keio library, growing them in different Triclosan concentrations for 24h and assessing their 317 

growth rate in comparison to the parent strain BW25113. The results showed high 318 

consistency with predictions. As previously mentioned, more details on these results and 319 

other biological outcomes as well as methodology can be found in the companion paper 320 

(17). 321 
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 323 

Figure 4: The top 4 panels show the transposon insertion sites, 2 controls and 2 for libraries 324 

grown in 0.5 mg/L triclosan. The next three lines correspond to the signal identified by 325 

AlbaTraDIS using a with the height corresponding to the log fold change between the 326 

treatments and controls. There is an increase in insertions in the promotor area (upstream) 327 

in the direction towards the gene, which indicates that up-regulation of fabI in E. coli grown 328 

in 0.5 mg/L of Triclosan might be beneficial to survival. This shows that AlbaTraDIS can 329 

identify the primary target of Triclosan.  330 

 331 

Computational Environment 332 

All of the computational experiments were performed on the MRC CLIMB framework (30), 333 

using the Genomics Virtual Laboratory (v4.2) (31). The operating system was Ubuntu 16.10 334 

LTS and the resources available were four processors and 32 Giga Bytes (GB) of memory. 335 

Resources of this scale are not required to run AlbaTraDIS, these were merely the default 336 
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minimum available.  AlbaTraDIS version 0.0.5 running on Python version 3.6.7 and Bio-337 

TraDIS version 1.4.1 (12) running on Perl version 5.22.1 were used. Experimental running 338 

times and peak memory usage were measured using the time command.  339 

 340 

Performance of AlbaTraDIS 341 

The scalability of AlbaTraDIS was evaluated by varying the number of test conditions 342 

included in the analysis using the data and computing resources described. As the number 343 

of test conditions increased the total running time of the main AlbaTraDIS workflow 344 

increased linearly (See Figure 5) which matched the theoretical runtime (O(n)). However, 345 

the most resource-intensive part of the process can be parallelised, and runtime is constant 346 

when the number of processors equal the number of test conditions. The condition 347 

comparisons running time, while also linear, was negligible. As an indication of the overall 348 

running time, the full dataset described previously took 74 minutes when run with a single 349 

processor. This is likely to vary with the available computing resources and datasets. 350 

 351 

Figure 5: The total running time, including comparative analysis, for varying numbers of test 352 

conditions when using a single CPU (Blue) and the total memory usage in GB, including 353 

comparative analysis, for varying numbers of conditions when using a single CPU (Grey). 354 

 355 
The total memory usage (See Figure 5) remained constant but will vary with different 356 

datasets. When 1 processor was available for each condition (n=8), the total running time 357 
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was just 9.4 minutes.  The memory requirement was 2.1 GB for eight conditions, which is 358 

low enough that it can be run on a standard desktop machine.  We were able to achieve 359 

these results by using Cython (32) is used internally for computationally-intensive parts of 360 

the method, allowing for native C-compiled code to be used within Python.  361 

 362 

Conclusions 363 

AlbaTraDIS allows the analysis of large-scale transposon insertion sequencing experiments 364 

to be performed and results compared across conditions than had previously been possible. 365 

In addition, the context of inserts in relation to local genes and their impacts can be 366 

predicted which greatly reduces the complexity of the analysis required for large data sets. 367 

Comparative analysis of the results from a range of experimental conditions allows 368 

identification of common modes of action. Known mechanisms of resistance were efficiently 369 

identified, including those where expression changes were important. AlbaTraDIS is fast, 370 

scalable and can be run on standard desktop machines.  371 

 372 

Availability and requirements 373 

Project name: AlbaTraDIS 374 

Project home page: https://github.com/quadram-institute-bioscience/albatradis 375 

Operating system(s): Linux, OSX 376 

Programming language: Python version 3.3+ 377 

Other requirements: Bio-TraDIS toolkit 378 

License: GNU GPL version 3 379 

Any restrictions to use by non-academics: GNU GPL version 3 380 

The software can be installed using conda (33), pip (https://pypi.org) or as a Docker 381 

container (34). 382 

 383 

List of Abbreviations 384 

GMI: Global Microbial Identifier 385 

IPTG: Isopropyl β-D-1-thiogalactopyranoside 386 

NGS: Next Generation Sequencing 387 
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TraDIS: Transposon Directed Insertion-site Sequencing 388 

MIC: Minimum Inhibitory Concentration 389 

TMM: Trimmed Mean of M values 390 

CPM: Count Per Million 391 

FC: Fold Change 392 

GB: Giga Bytes 393 

 394 

Table 1: Conditions evaluated (Triclosan concentrations) and accession numbers for each 395 
experiment. The overall project accession number is PRJEB29311. 396 
 397 
Triclosan (mg/L) Accession number for experiment 

 Replicate 1 Replicate 2 

0.008 ERR2854367 ERR2854368 

0.015 ERR2854369 ERR2854370 

0.03 ERR2854371 ERR2854372 

0.06 ERR2854373 ERR2854374 

0.125 ERR2854375 ERR2854376 

0.25 ERR2854377 ERR2854378 

0.5 ERR2854379 ERR2854380 

1.0 ERR2854381 ERR2854382 

Control 1 ERR2854363 ERR2854364 

Control 2 ERR2854365 ERR2854366 

 398 
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