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32 Abstract

33 Genome-wide association studies (GWASs) have identified thousands of variants associated with 

34 asthma and other complex diseases. However, the functional effects of most of these variants are 

35 unknown. Moreover, GWASs do not provide context-specific information on cell types or 

36 environmental factors that affect specific disease risks and outcomes. To address these 

37 limitations, we used cultured upper airway (sinonasal) epithelial cell models to assess 

38 transcriptional and epigenetic responses to a virus (rhinovirus [RV]) and a bacterium 

39 (Staphylococcus aureus [SA]) and provide context-specific functional annotations to variants 

40 discovered in GWASs of asthma. Using genome-wide genetic, gene expression, and DNA 

41 methylation data in RV-, SA- and vehicle-treated cells from 115 individuals, we mapped cis 

42 expression and methylation quantitative trait loci (cis-eQTLs and cis-meQTLs, respectively) in 

43 each condition. Co-localization analyses of these airway epithelial cell molecular QTLs with 

44 asthma GWAS variants revealed potential molecular disease mechanisms of asthma for GWAS 

45 variants, including QTLs at the TLSP locus that were common both to exposure conditions and 

46 childhood onset and adult onset asthma and at the 17q12-21 asthma locus that were specific to 

47 both RV exposure and childhood onset asthma, consistent with clinical and epidemiological 

48 studies of these loci. Overall, our study provides information on functional effects of asthma risk 

49 variants in airway epithelial cells and provides insight into disease-relevant microbial exposures 

50 that modulate genetic effects on transcriptional and epigenetic responses in cells and on risk for 

51 asthma in GWAS.

52

53 Author Summary
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54 Both genetic and environmental factors influence asthma. Genome-wide association studies have 

55 identified thousands of genetic variants associated with asthma but do not provide information 

56 on their functional effects, tissue specificity, or environmental context. To address these 

57 limitations, we used an upper airway epithelial cell model to study responses to microbes that 

58 potentially influence airway disease inception and/or symptoms, and to understand the functional 

59 relevance of asthma risk variants. To this end, we mapped genetic variation associated with gene 

60 expression and DNA methylation in cells exposed to a virus (rhinovirus) or a bacterium 

61 (Staphylococcus aureus) compared to vehicle controls and tested for co-localization of these 

62 molecular traits with variants associated with adult onset and childhood onset asthma in GWAS. 

63 We report putative disease mechanisms of asthma and associated genes and DNA methylation 

64 sites in airway epithelial cells exposed to disease-promoting risk factors.

65 Introduction

66 Over the past decade, genome-wide association studies (GWASs) have identified many 

67 thousands of variants at hundreds of loci containing susceptibility genes for asthma and other 

68 complex diseases [1]. Notably, over 90% of the single nucleotide polymorphisms (SNPs) 

69 identified in GWAS reside in non-coding regions of the genome that are enriched for chromatin 

70 signatures suggestive of enhancers [2] and for expression quantitative trait loci (eQTLs) [2-4]. 

71 These features of SNPs associated in GWAS indicate that they most likely affect underlying 

72 disease pathophysiology through their effects on gene regulation. However, identifying the 

73 causal variants and their target genes for associated loci has been challenging, and the functions 

74 of most associated SNPs remain unknown. Furthermore, the significance threshold (p<5x10-8) 

75 required to control the false discovery rate in GWASs likely excludes many true associations that 

76 do not reach this stringent threshold. We and others have suggested that SNPs with small p-
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77 values that do not meet genome-wide significant thresholds, i.e., the mid-hanging fruit [5], may 

78 be environment- or context-specific associations that are missed in GWAS that typically do not 

79 control for either [6, 7]. Additionally, databases such as GTEx, ENCODE, and ROADMAP are 

80 used to annotate GWAS SNPs and predict molecular mechanisms through which risk variants 

81 affect disease phenotypes [4, 8, 9]. Although these resources have provided important insights 

82 into the interpretation of GWAS results, they do not include all cell types relevant to all diseases 

83 or information on environmental exposures that influence disease outcomes. As a result, 

84 annotations of asthma GWAS variants have been largely limited to studies in cell lines, blood 

85 (immune) cells, and whole lung tissue [10-12].

86 In vitro cell models provide an opportunity to address these limitations by identifying and 

87 characterizing genetic and molecular responses to environmental exposures in cells from disease-

88 relevant tissues, and identifying genotypes that modify response to environmental risk [13, 14]. 

89 Joint analysis of datasets (e.g. eQTLs and GWAS) identifies variants associated with both 

90 disease risk and molecular traits as candidate causal variants that contribute to mechanisms of 

91 disease pathophysiology. A multi-trait co-localization (moloc) method [15] was recently 

92 developed to integrate summary data from GWAS and multiple molecular QTL datasets to 

93 identify regulatory drivers of complex phenotypes and to provide a more comprehensive analysis 

94 in multi-trait studies.

95 Here, we report the results of a multi-omics co-localization study to identify condition-

96 specific regulatory effects of asthma risk variants in an epithelial cell model of microbial 

97 response. Because airway epithelium plays a crucial role in response to inhaled exposures, we 

98 used an in vitro upper airway (sinonasal) epithelial cell model of transcriptional and epigenetic 

99 responses to two microbial exposures that are associated with asthma, RV and SA. RV 
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100 respiratory infections are a major cause of asthma inception in young children [16] and asthma 

101 exacerbations in older children and adults [17, 18], and colonization of the nose with SA is more 

102 common among asthmatics and associated with increased asthma symptoms and exacerbations in 

103 children and young adults [19], underscoring the importance of these microbes as contextual 

104 influences in asthma pathophysiology. Using co-localizations of airway epithelial cell molecular 

105 QTLs with asthma GWAS risk variants, we characterized the effects of regulatory variation on 

106 gene expression and DNA methylation levels in each treatment condition and used this 

107 information to annotate and assign condition-specific regulatory effects at asthma GWAS risk 

108 loci. Our integrative multi-omics approach revealed potential environment-specific mechanisms 

109 of asthma pathogenesis, and further support a key role of airway epithelium in the pathogenesis 

110 of childhood onset asthma. 

111

112 Results

113 Genome-wide identification of cis-eQTLs in cultured airway epithelial cells

114 To identify genetic variation influencing gene expression under different conditions, we 

115 performed eQTL mapping in cultured airway epithelial cells treated with two common microbial 

116 exposures (RV and SA), and their corresponding vehicles from 115 individuals (S1 Fig). 

117 Because the vehicles for RV and SA differed (bronchial epithelial basal medium [BEBM] for 

118 RVveh and Dulbecco’s phosphate buffered saline [dPBS] for SAveh) and cells were cultured for 

119 different lengths of time (48 hours for RV and 24 hours for SA), we considered each vehicle as a 

120 separate treatment condition and refer to them as RVveh and SAveh, respectively. We defined 

121 eQTLs within a cis-window of 1 Mb from either side of the transcriptional start site (TSS) of 

122 each autosomal gene and used a false discovery rate (FDR) of 10%. Analyses were performed 
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123 separately for each of the four conditions, testing for associations with 6,665,553 imputed SNPs 

124 and 11,231 and 11,421 autosomal genes (from RNA-seq) for the RV and SA experiments, 

125 respectively (see Materials and Methods). The numbers of SNPs associated with gene expression 

126 (eQTLs), SNPs that are eQTLs for at least one gene (eSNPs), and genes with at least one eQTL 

127 (eGenes) in each condition are summarized in Fig 1. 

128

129 Genome-wide identification of cis-meQTLs in cultured airway epithelial cells

130 In parallel to eQTL mapping, we performed methylation quantitative trait loci (meQTL) 

131 mapping in the same cells used for gene expression studies. We defined meQTLs within a cis-

132 window of 10 Kb from either side of each CpG site on the Illumina EPIC array, using an FDR of 

133 10%. We performed this analysis separately for each condition, testing for associations with the 

134 same imputed SNP set as that used for eQTL mapping and interrogated 792,392 and 749,125 

135 autosomal CpGs for the RV and SA experiments, respectively. A summary of the number of 

136 SNPs associated with methylation levels at one or more CpG sites (meQTLs), SNPs that are 

137 meQTLs for at least one CpG (meSNPs), and CpG sites with at least one meQTL (meCpGs) are 

138 shown in Fig 1.

139

140 Estimating shared and condition-specific molecular QTL effects 

141 We first explored the impact of culture conditions (RV+RVveh vs SA+SAveh) and treatments 

142 (RV and/or SA vs RVveh and/or SAveh, respectively) on eQTLs and meQTL effects using an 

143 empirical Bayes method, multivariate adaptive shrinkage (mash) [20]. This is accomplished in 

144 two general steps; we first identified existing patterns within the observed dataset, including 

145 correlations among effects, sparsity, and sharing, and then we used these learned patterns to 
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146 make improved effect estimates and significance measurements for a given set of data from 

147 multiple conditions. Compared to direct comparisons between conditions, mash increases power, 

148 improves effect-size estimates, and provides better quantitative assessments of effect size 

149 heterogeneity of molecular QTLs, thereby allowing for greater confidence in effect sharing and 

150 estimates of condition-specificity. Additionally, as a confidence measurement of the direction of 

151 each effect (molecular QTL), mash provides a ‘local false sign rate’ (lfsr) that is the probability 

152 that the estimated effect has the incorrect sign [21], rather than the expected proportion of Type I 

153 errors as would be assessed using FDR thresholds.

154 To identify condition-specific eQTLs, we analyzed the effect estimates for 337,699 

155 eQTLs and observed broad sharing of eQTLs across these treatment conditions (see Materials 

156 and Methods). Pairwise comparisons showed that between 63-89% of eQTLs were shared in at 

157 least two conditions (lfsr < 0.05; Fig 1A and S2 Fig). The RV and RVveh cells showed the most, 

158 and SA and SAveh cells the second most, eQTL effect sharing (89% and 72%, respectively), 

159 while lower and similar amounts of sharing were observed between the other pairwise 

160 comparisons (63-71%). In contrast, only 0.98 to 9.20% of all eQTLs were specific to one 

161 condition, with the largest number detected in the SA-treated cells and the least in the RV-treated 

162 cells (Fig 1A). The RV and SA culture conditions (RV+RVveh vs SA+SAveh) had relatively 

163 large impacts on eQTL effects, with 10.6% and 20.6% of the eQTLs specific to culture 

164 conditions, respectively. Another 10.6% of the eQTLs (35,874) were specific to the microbial-

165 treated cells only (RV+SA vs RVveh+SAveh), potentially representing genetic variants that 

166 modify responses to microbes in airway epithelial cells. Examples of treatment-specific eQTLs 

167 are shown in Fig 2B.
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168 Condition-specific meQTLs were identified among the 1,669,925 meQTLs. A pair-wise 

169 analysis revealed that between 73-79% of meQTLs were shared in two or more of the four 

170 conditions (lfsr < 0.05; Fig 2C and S2 Fig), with 73% of these shared among culture conditions 

171 (RV vs RVveh or SA vs SAveh), many more than those observed for eQTLs. In contrast, only 

172 3.0 and 5.2% of meQTLs were treatment-specific (RV+SA or RVveh+SAveh), respectively (Fig 

173 2D), many fewer than observed for eQTLs. Examples of treatment-specific meQTLs are shown 

174 in Fig 2D. 

175 In total, using mash we identified between 3,295 - 30,994 eQTLs associated with 102 - 

176 582 eGenes (lfsr<0.05) that were unique to a culture condition, and between 84,602 - 48,415 

177 meQTLs associated with 7,636 - 12,817 meCpGs that were unique to a culture condition. This 

178 approach allowed us to assign QTL effects sharing and potential condition- and/or treatment-

179 specific effects with greater confidence than by pairwise comparisons using FDR thresholds 

180 [20].

181

182 Molecular QTL co-localizations with adult onset and childhood onset asthma loci

183 Integrating molecular QTLs with GWAS data is a powerful way to identify functional variants 

184 that may ultimately influence disease risk. This approach can provide functional insights into 

185 known disease-associated variants as well to facilitate prioritizing variants with small p-values 

186 that do not reach criteria for genome-wide significance in GWAS. One such approach is through 

187 co-localization in which we directly test whether a genetic variant is underlying associations 

188 between two or more traits (e.g., gene expression and asthma), providing clues to causal disease 

189 pathways. We hypothesized that integrating molecular QTLs from microbial-exposed epithelial 

190 cells with results of GWASs for adult onset and childhood onset asthma would reveal genetic 
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191 variants that are associated with both disease risk and gene expression and/or DNA methylation 

192 patterns. This could reveal potential genetic and epigenetic mechanisms of childhood onset 

193 and/or adult onset asthma that are modulated by disease-relevant microbial exposures in airway 

194 epithelial cells, an asthma-relevant tissue that is the target of these microbes. 

195 To test this hypothesis, we extracted summary statistics from the largest GWASs of adult 

196 onset and childhood onset asthma to date [12], and tested each for co-localization with genetic 

197 variants associated with gene expression, DNA methylation, and asthma, using moloc, a 

198 Bayesian statistical strategy that allows the integration and co-localization of more than two 

199 molecular traits [15]. We performed a separate co-localization test in each of the four conditions 

200 using variants from the GWASs of adult onset and childhood onset asthma separately. These 

201 analyses provide three possible configurations in which a variant is shared between the GWAS 

202 and QTL traits: eQTL-GWAS pairs, meQTL-GWAS pairs, eQTL-meQTL-GWAS triplets. 

203 Using this approach, we found evidence for 72 unique multiple trait co-localizations (76 

204 total) associated with eQTLs for 11 genes (ACO2, ERBB2, FGFR4, FLG, FLG-AS1, FRK, 

205 GSTO2, IRF5, ORMDL3, PMM1, POLI) and meQTLs for 31 CpG sites (PPA>70%) for adult 

206 onset or childhood onset asthma (Table 1; S1 Table). Among the 72 unique co-localizations, 14 

207 were eQTL-meQTL-GWAS triplets associated with six genes (ACO2, ERBB2, FRK, GSTO2, 

208 IRF5, PMM1) and 11 CpG sites. There were also 25 eQTL-GWAS pairs associated with seven 

209 genes (ACO2, FGFR4, FLG, ORMDL3, PMM1, POLI) and 33 meQTL-GWAS co-localized 

210 pairs associated with 24 CpG sites. The majority of the co-localizations (88%) were identified in 

211 just one treatment condition (PPA>70%). Twenty-eight of the co-localizations were identified 

212 only in the microbial-exposed cells (RV and/or SA) and 41 were identified only in the vehicle 

213 exposed cells (RVveh and/or SAveh). These 69 treatment-specific colocalizations represent 
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214 potential response mechanisms to microbial infection that contribute to asthma risk. The 

215 remaining seven co-localizations were identified in combinations of microbe and vehicle 

216 exposed cells. Notably, over 72% of the SNPs associated with these co-localizations did not 

217 reach genome-wide significance (p-value=5x10-8) in their respective GWASs (p-valuerange = 

218 1.03x10-7 to 4.63x10-4), and all were identified only in the childhood onset asthma GWAS. These 

219 analyses therefore provided functional inferences both for variants that were significant in the 

220 GWASs at known asthma loci and for variants that did not meet strict criteria for significance in 

221 the GWASs, thereby facilitating prioritization of variants among the mid-hanging fruit.

222 Of the 76 co-localizations, only six were at adult onset asthma loci and all six were 

223 meQTL-GWAS pairs. The remaining 70 were at childhood onset asthma loci and 14 were eQTL-

224 meQTL-GWAS triplets, 25 were eQTL-GWAS pairs, and 31 meQTL-GWAS pairs) (Table 1; S1 

225 Table). Four meQTL-GWAS pairs were co-localized in both GWASs and two were specific to 

226 adult onset asthma. In contrast, 66 co-localizations were specific to childhood onset asthma, and 

227 were associated with 11 genes (ACO2, ERBB2, FGFR4, FLG, FLG-AS1, FRK, GSTO2, IRF5, 

228 ORMDL3, PMM1, POLI) and 27 CpG sites. The larger number of co-localizations for childhood 

229 onset asthma relative to adult onset asthma is consistent with the previous observation that genes 

230 at the childhood onset asthma loci were most highly expressed in skin, an epithelial cell type 

231 [12]. 

232

Table 1. Number of QTL-GWAS pairs or triplets with evidence of co-localization
GWAS eqtl-meQTL-GWAS eQTL-GWAS meQTL-GWAS

Adult onset asthma 0 0 6
Childhood onset asthma 14 25 31
Adult or childhood onset GWAS 14 25 35
PPA >= 0.70

233
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234 meCpGs associated with co-localized risk variants correlate with gene expression 

235 Methylation at CpG dinucleotides plays critical roles in the regulation of various cellular 

236 processes [22] and can potentially mediate the effects of environmental exposures on gene 

237 expression [23]. Many complex diseases, including asthma, have been associated with DNA 

238 methylation patterns, supporting the important role of epigenetics in disease processes [24-26]. A 

239 mechanism through which DNA methylation can affect phenotypic outcomes is by influencing 

240 gene expression [27]. Because of the large number of meSNPs that co-localized with asthma risk 

241 variants, we next asked whether methylation levels at the CpG sites with co-localized meSNPs 

242 were also associated with the expression of nearby genes. To address this question, we defined 

243 nearby genes as those in which the meCpG was in the 5’UTR, gene body, 3’UTR or within 1500 

244 bp of its transcriptional start site (TSS). Using these criteria, 21 of the 33 unique meQTL-GWAS 

245 pairs were assigned to 12 unique genes (EEFSEC, FLG-AS1, FRK, GSTO2, IRF1, IRF5, 

246 MAP3K14, NEK6, POLR3H, SLC22A5, SMARCE1, TSLP). We then tested for correlation 

247 between methylation and gene expression for the 22 gene-CpG pairs for each treatment condition 

248 using Spearman rank order correlation. Sixteen gene-CpG correlations (bsolute = 0.26 – 0.68) 

249 with five genes (FLG-AS1, FRK, GSTO2, IRF5, SLC22A5) and eight meCpGs were significant 

250 (FDR ≤ 0.05; Table 2; S3 Fig; S2 Table).

251

252

253

254

255

256

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593558doi: bioRxiv preprint 

https://doi.org/10.1101/593558
http://creativecommons.org/licenses/by/4.0/


Table 2. Correlation of methylation levels and expression of the nearest gene for 8 
meQTL-GWAS co-localized pairs (Spearman’s rank order correlation). See text for details 
on gene assignments. Five gene-CpG pairs were correlated in multiple conditions (gray 
shaded rows).

Gene CpG Spearman
p-value FDR Spearman

 Treatment

FLG-AS1 cg26320663 2.03E-03 2.03E-02 -0.32 rv
6.46E-03 3.71E-02 -0.28 vehrv

FLG-AS1 cg23107878 6.49E-03 3.71E-02 -0.28 rv
FRK cg20254830 2.70E-06 4.32E-05 0.45 sa

GSTO2 cg23659134 0.00E+00 0.00E+00 -0.66 sa
0.00E+00 0.00E+00 -0.68 vehsa
2.53E-05 3.37E-04 -0.42 vehrv
7.81E-03 3.95E-02 -0.27 rv

GSTO2 cg07488549 2.94E-07 7.84E-06 0.49 vehsa
5.73E-07 1.15E-05 0.48 sa

IRF5 cg26616347 4.08E-03 3.26E-02 -0.29 vehrv
4.67E-03 3.40E-02 -0.28 vehsa
7.90E-03 3.95E-02 -0.26 sa

SLC22A5 cg04774966 7.34E-05 8.39E-04 -0.39 vehsa
3.08E-03 2.74E-02 -0.29 sa

SLC22A5 cg26647941 5.88E-03 3.71E-02 -0.27 sa
257

258

259 Correlations between DNA methylation and gene expression were identified in multiple 

260 treatment conditions and after exposure to RV or SA only. For example, significant correlations 

261 between DNA methylation and GSTO2 on chromosome 10 occur in all treatment conditions 

262 (absolute = 0.27 – 0.68), suggesting that the correlation signals are robust across treatments (Fig 

263 3A). In contrast, we observed potential treatment-specific effects on correlations between an 

264 meCpG 241 bp upstream of IRF5 and expression of this gene on chromosome 7 (Fig 3B), for 

265 which correlation was observed in all conditions except after RV exposure ( = 0.11). In 

266 contrast, correlation between DNA methylation levels one meCpG and SLC22A5 on 

267 chromosome 5 were only observed after SA treatment (S3 Fig). 
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268 Taken together these data suggest that meCpGs in airway epithelial cells that co-localize 

269 with asthma GWAS variants influence the expression of nearby genes, and that these effects can 

270 be reduced or enhanced by microbial exposures. These observations suggest that environment-

271 specific epigenetic responses at meCpGs contribute to asthma pathogenesis. 

272

273 meCpGs at TSLP co-localize with an asthma risk variant

274 To more deeply characterize associations between an meQTL-GWAS pair and better understand 

275 shared disease mechanisms between adult onset and childhood onset asthma, we focused on the 

276 four meQTL-GWAS pairs that co-localized in both the adult onset and childhood onset asthma 

277 GWASs (S3 Table). These pairs all included an intergenic SNP (rs1837253) located 5.7 kb 

278 upstream from the TSS of the TSLP gene on 5q22, encoding an epithelial cell cytokine that plays 

279 a key role in the inflammatory response in asthma and other allergic diseases [28]. rs1837253 co-

280 localized with four meCpGs (cg15557878, cg10931190, cg15089387, cg25328184) in both the 

281 adult onset (pGWAS = 2.77x10-13) and childhood onset (pGWAS = 2.33x10-27) asthma GWASs. The 

282 four meCpGs are located in the first (untranslated) exon (5’ UTR) of the TSLP gene (Fig 4), a 

283 region characterized as a promoter in keratinocyte primary cells (NHEK; ROADMAP). In fact, 

284 rs1837253 was the lead SNP within previous asthma GWASs (e.g. [12, 29]). The rs1837253-C 

285 asthma risk allele is associated with decreased methylation at each of the four meCpGs (Fig 4). 

286 Because the meQTL for each of the four meCpGs were observed in each treatment condition, we 

287 suggest that the first untranslated exon of TSLP is epigenetically poised for genotype-specific 

288 expression in epithelial cells.

289 Although this is the first study to annotate the asthma-associated rs1837253 as an 

290 meQTL, previous studies have shown TSLP to be a methylation-sensitive gene and that 
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291 hypomethylation at its promoter is associated with atopic dermatitis (AD) and prenatal tobacco 

292 smoke exposure [30, 31]. Another study showed that increased excretion of TSLP in primary 

293 cultured nasal epithelial cells after exposure to polyI:C (a dsRNA surrogate used to simulate viral 

294 infection) was associated with the CC genotype [32]. Our co-localization studies further suggest 

295 that the C allele is associated both with hypomethylation at CpG sites in an untranslated exon of 

296 TSLP, and with adult onset and childhood onset asthma. Furthermore, the lack of LD of SNPs 

297 with rs1837253 (± 50 kb) in European (r2 < 0.12) and African American (r2 <  0.12) 

298 1000Genomes reference panels suggests that this SNP may indeed be causal for variation in 

299 DNA methylation levels at TSLP and its association with asthma.

300

301 Multi-trait co-localizations of molecular QTLs and asthma risk at the 17q12-21 asthma 

302 locus

303 Identifying regulatory effects at GWAS risk loci through co-localization with QTLs can help to 

304 understand molecular mechanisms of disease, including those that are modulated by 

305 environmental exposures. To further explore this, we focused on the co-localizations of eQTLs 

306 and meQTLs with asthma GWAS loci at 17q12-21 (17q), the most significant and most 

307 replicated locus for childhood onset asthma (reviewed in [33]). This locus is characterized by 

308 high LD across a 206.5 kb region encoding at least 10 genes (including ORMDL3 and GSDMB). 

309 SNPs extending both proximal (including PGAP3 and ERBB2) and distal (including GSDMA) to 

310 the core region show less LD with those in the core region but have been implicated as 

311 potentially independent asthma risk loci. Previous studies have shown that SNPs at this extended 

312 locus are eQTLs for at least four genes (ORMDL3, GSDMB, GSDMA, PGAP3) in blood cells 
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313 and/or lung cells [33] and that genetic risk at this locus is mediated through early life wheezing 

314 illness [34], particularly RV-associated wheezing [35]. 

315 We identified six co-localizations at the extended 17q locus of molecular QTLs with 

316 childhood onset asthma GWAS SNPs (Fig 5A). As expected at this childhood onset locus [36, 

317 37], we did not find co-localizations with variants from the adult onset asthma GWAS. Among 

318 the co-localizations, one eQTL-GWAS pair was with rs12603332 on the 17q core haplotype and 

319 expression of ORMDL3 (PPA>0.70; S4 Fig). The co-localized SNP (rs12603332) is in LD 

320 (r2>0.65; 1000 Genomes European reference panel) with other previously reported asthma-

321 associated GWAS SNPs in this region , including some that were reported as eQTLs for 

322 ORMDL3 and GSDMB, primarily in immune cells. However, in our model none of the SNPs 

323 were eQTLs for GSDMB, which is typically co-regulated with ORMDL3, at least in blood cells 

324 [33]. In contrast to other studies, the asthma-associated allele (rs12603332-??) was associated 

325 with deceased expression of ORMDL3 in our cell model. Moreover, the co-localizations with 

326 rs12603332 were only significant in vehicle treated cells, suggesting that exposure to RV or SA 

327 weakens the effects of rs12603332 genotype on ORMDL3 expression in epithelial cells. 

328 We also detected four meQTL-GWAS pairs among the six co-localizations at 17q that 

329 were associated with three meCpGs (cg24910161, cg21230266, cg17401724) and four SNPs at 

330 the distal end of (rs3902025, rs4239225, rs3859191) and beyond (rs66826786) the extended 17q 

331 haplotype where there is a breakdown of LD with SNPs in the core region. Two of these CpGs 

332 were each located 27 bp upstream (cg24910161) and in an intron (cg21230266) of GSDMA in 

333 regions characterized by ROADMAP as enhancers in NHEK cells. SNPs in modest to perfect 

334 LD (r2
range=0.46 - 1.00; 1000 Genomes European panel) with these co-localizations (rs3902025, 

335 rs4239225, rs3859191) were described in previous studies as independent GWAS signals for 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593558doi: bioRxiv preprint 

https://doi.org/10.1101/593558
http://creativecommons.org/licenses/by/4.0/


336 asthma (rs3894194) or as an eQTL for GSDMA (rs3859192) [4, 38, 39]. The meQTL-GWAS co-

337 localization associated with cg24910161 was specific to the SAveh treatment, while those 

338 associated with cg21230266 were present in three conditions (RV, SA, and SAveh).

339 The one eQTL-meQTL-GWAS triplet in this region was associated with expression of 

340 ERBB2 (Fig 5B), more than 361 Kb proximal to the co-localized asthma risk variant in an intron 

341 of MED2 (rs66826786) and to the co-localized meCpG (cg17401724), distal to rs66826786 and 

342 8.6 kb downstream of MED2. This is beyond the extended 17q locus as previously defined  [33] 

343 in a region characterized by ROADMAP as both an enhancer and transcriptional start site (TSS) 

344 in NHEKs. Although the meQTL associated with this triplet was present in all four conditions, 

345 the eQTL for ERBB2 is observed only after exposure to RV. The asthma risk allele at 

346 rs66826786-C was associated with both decreased ERBB2 transcript in RV-treated cells and 

347 decreased DNA methylation of cg17401724 in all conditions (Fig 5). The 8.6 kb distance 

348 between the promoter of ERBB2 and its eSNP (rs66826786) is highly suggestive of a long-range 

349 interaction between ERBB2 and the region harboring cg17401724 and rs66826786. The fact that 

350 the eQTL is observed only after RV infection, further suggests that infection with RV triggers 

351 this long-range interaction in airway epithelial cells, likely via chromatin looping between these 

352 loci. The fact that the meQTL for cg17401724 is observed in all conditions suggests an 

353 epigenetically poised chromatin state at the distal end of the locus that directly affects 

354 transcription of ERBB2 at the proximal end of the locus after exposure to RV, and possibly to 

355 other viral exposures. 

356

357

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593558doi: bioRxiv preprint 

https://doi.org/10.1101/593558
http://creativecommons.org/licenses/by/4.0/


358 Mendelian randomization of multi-trait co-localized triplets

359 Co-localization analyses reveal genetic variants that are associated with asthma and molecular 

360 traits (gene expression and/or DNA methylation) but the question of causality between the 

361 molecular traits remains unanswered. To infer causal relationships between DNA methylation 

362 and gene expression, we performed Mendelian randomization (MR), a method in which genetic 

363 variation associated with modifiable exposure patterns (i.e. DNA methylation) can be used as an 

364 instrumental variable to estimate directionality of effects between correlated traits (i.e. DNA 

365 methylation and gene expression) [40]. Specifically, we applied a 2-stage least squares 

366 regression (2SLS) to estimate the causal effects of DNA methylation (exposure) on gene 

367 expression (outcome) using the QTL SNP as the genetic instrument for each of the 14 co-

368 localized triplets in each of the four conditions (see Materials and Methods). In this way, we are 

369 able to estimate whether the asthma risk variant has an effect on gene expression levels, 

370 mediated by DNA methylation.

371 Using MR, we detected a causal relationship between methylation and gene expression 

372 for each of the 14 triplets, indicating that DNA methylation at the meCpG mediates the genotype 

373 effects (eQTL) on gene expression (FDR < 0.10; Table 3). Specifically, for 12 of the triplets, we 

374 detected a causal relationship between methylation and gene expression in all four treatment 

375 conditions. These triplets were associated with four genes (ACO2, GSTO2, IRF5, PMM1) and 

376 nine meCpGs. For one triplet, the association with FRK was significant in the SA and SAveh 

377 treatments only, suggesting the methylation effects on this gene is specific to the culture 

378 conditions used for the SA experiment (SA+SAveh). For the remaining triplet, meCpG effects on 

379 ERBB2 gene expression was only detected in RV-treated cells (FDR < 0.02, lfsrRV = 1.6x10-4), 

380 suggesting a long-range interaction after exposure to RV, as discussed above.
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381

Table 3. Mendelian randomization results for 14 co-localized eQTL-meQTL-GWAS triplets
 P-value FDR

Condition-Specificity Gene CpG rsID SNP Position RV RVveh SA SAveh RV RVveh SA SAveh
ACO2 cg19274703 rs132905 22:41799106 2.00E-03 1.00E-03 0.00E+00 4.00E-03 3.61E-03 2.07E-03 0.00E+00 6.59E-03
ACO2 cg07830128 rs4822038 22:41958495 2.80E-02 2.00E-03 0.00E+00 2.00E-03 3.34E-02 3.61E-03 0.00E+00 3.61E-03
ACO2 cg10386501 rs5758461 22:42162189 7.00E-02 0.00E+00 0.00E+00 7.00E-03 7.69E-02 0.00E+00 0.00E+00 1.03E-02
GSTO2 cg23659134 rs156697 10:106039185 2.50E-02 3.00E-03 0.00E+00 0.00E+00 3.04E-02 5.25E-03 0.00E+00 0.00E+00
GSTO2 cg07488549 rs276210 10:106046403 1.30E-02 0.00E+00 0.00E+00 0.00E+00 1.69E-02 0.00E+00 0.00E+00 0.00E+00

IRF5 cg26616347 rs3778754 7:128575552 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
PMM1 cg04809988 rs12483998 22:41935362 6.00E-03 4.20E-02 1.00E-03 0.00E+00 9.33E-03 4.70E-02 2.07E-03 0.00E+00
PMM1 cg02738086 rs9607812 22:41941243 5.00E-03 3.80E-02 1.00E-03 0.00E+00 8.00E-03 4.34E-02 2.07E-03 0.00E+00
PMM1 cg07830128 rs4822038 22:41958495 1.10E-02 1.00E-02 1.00E-03 0.00E+00 1.50E-02 1.40E-02 2.07E-03 0.00E+00
PMM1 cg07830128 rs9607819 22:41958862 7.00E-03 4.00E-03 0.00E+00 1.00E-03 1.03E-02 6.59E-03 0.00E+00 2.07E-03
PMM1 cg12016267 rs715498 22:42148467 1.30E-02 2.00E-03 0.00E+00 0.00E+00 1.69E-02 3.61E-03 0.00E+00 0.00E+00

A
ll 

C
on

di
tio

ns

PMM1 cg10386501 rs5758461 22:42162189 2.90E-02 1.50E-02 9.00E-03 0.00E+00 3.38E-02 1.91E-02 1.29E-02 0.00E+00
Treatment (microbe)-specific ERBB2 cg17401724 rs66826786 17:38206092 0.00E+00 8.05E-01 1.44E-01 2.36E-01 0.00E+00 8.05E-01 1.52E-01 2.45E-01

Culture condition-specific FRK cg20254830 rs10456902 6:116333742 8.04E-01 1.43E-01 0.00E+00 2.40E-02 8.05E-01 1.52E-01 0.00E+00 2.99E-02
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383 Overall, the MR results provide additional, orthogonal evidence for co-localized triplets 

384 and novel evidence for causal inference with respect to the co-localized traits (DNA methylation, 

385 gene expression). These results reinforce arguments for epigenetic mechanisms of disease that 

386 occur not only independent of exposures but also for epigenetic mechanisms that modify gene 

387 expression in response to environmental exposures.

388

389 Discussion

390 One of the major challenges of genetic research is to uncover molecular mechanisms of disease 

391 and to understand how genetic and environmental factors interact to influence these mechanisms 

392 and individuals’ risk for disease. Genome-wide association studies have identified thousands of 

393 SNPs associated with complex diseases; however, the functions of non-coding SNPs identified in 

394 GWASs, and therefore the molecular mechanisms in which they result in disease, is difficult to 

395 infer from GWAS alone. Furthermore, other important contributors to disease pathophysiology 

396 are not readily informed by GWAS, including epigenetic, environmental, and tissue- or cell type-

397 specific effects. Cell models address these limitations and advance our understanding of disease 

398 pathobiology through experimental testing of disease mechanisms in controlled environments. In 

399 this multi-omics study, we leveraged an airway epithelial cell model of microbial response to 

400 identify functional variants that may have context-specific effects on transcriptional and 

401 epigenetic responses and participate in molecular mechanisms that lead to a disease with an 

402 underlying airway epithelial etiology. SNPs that were molecular QTLs in these models were co-

403 localized with adult onset and childhood onset asthma GWAS SNPs to identify 72 unique co-

404 localizations in at least one treatment condition. Integrating this information using Mendelian 
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405 randomization provided inferences into causality and insight into the molecular basis of 

406 childhood onset asthma.

407 It is notable that we identified only six co-localizations with adult onset asthma GWAS 

408 SNPs, compared to 70 with childhood onset asthma GWAS SNPs. None of the colocalizations in 

409 the adult onset GWAS included an eQTL compared to 39 childhood onset co-localizations with 

410 eQTLs, and only four meQTL-GWAS pairs were shared between adult and childhood onset 

411 asthma, despite the fact the participants in our cell culture studies were all adults. Moreover, 

412 even though there were 2.5-times the number of loci associated with childhood onset asthma 

413 compared to adult onset asthma in the GWASs [12], we identified more than 11-times more co-

414 localizations using the childhood onset compared to the adult onset GWAS results (70 vs. 6, 

415 respectively). These observations likely reflect the more important role of gene regulation and 

416 dysregulation in airway epithelium in the etiology of childhood onset asthma compared to adult 

417 onset asthma [41]. Focusing on other tissues (e.g., lung tissue) or cell types (e.g., immune cells) 

418 might yield more co-localizations with adult onset GWAS SNPs or more shared co-localizations 

419 between adult onset and childhood onset asthma. 

420 Our study provides mechanistic evidence for associations between GWAS SNPs and 

421 asthma at two important asthma loci: the TSLP locus at 5q22.1 and the 17q12-21 locus. Co-

422 localizations of the asthma associated SNP rs1837253 with DNA methylation levels in the TSLP 

423 gene suggest an epigenetic mechanism of disease that contributes to both adult and childhood 

424 onset asthma. Associations of this SNP with asthma have been highly replicated in GWASs and 

425 TSLP is recognized as an important regulator in asthma pathogenesis through its broad effects on 

426 innate and adaptive immune cells promoting Th2 inflammation [42]. Our data further show that 

427 the effect of rs1837253 genotype on risk for both adult and childhood onset asthma is mediated 
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428 through DNA methylation levels at CpG sites in the untranslated first exon of the TSLP gene in 

429 airway epithelial cells. Finally, the lack of LD with other SNPs in a 100 kb window suggests that 

430 rs1837253 may indeed be the causal asthma SNP at this important locus. 

431 Mendelian randomization of the childhood onset asthma 17q locus eQTL-meQTL-

432 GWAS triplets revealed a novel epigenetic mechanism through which a SNP at the17q locus was 

433 associated with expression of ERBB2 only after exposure to RV. This eQTL was mediated 

434 through differential methylation that was present in all treatment conditions. Previous studies 

435 have shown that variation at the 17q core locus confers risk to asthma only among children who 

436 experience wheezing illness in early life [36, 37], particularly with RV-associated wheezing [35]. 

437 Our study further connects RV infection and genotype at this locus but implicates for the first 

438 time interaction effects between genetic and methylation variation at the distal end of the locus 

439 and the expression of ERBB2 at the proximal end of the locus only in RV infected epithelial 

440 cells. The SNP that is the eQTL for ERBB2 in RV infected epithelial cells was also associated 

441 with asthma in the childhood onset asthma GWAS (pGWAS = 6.43x10-26), directly connecting the 

442 eQTL for ERBB2 in RV-treated cells to asthma risk. The asthma associated allele, rs66826786-

443 C, which was associated with decreased expression of ERBB2 in our study (Fig 5B), is consistent 

444 with results of a study of 155 asthma cases and controls that reported an inverse correlation 

445 between ERBB2 expression in ex vivo lower airway epithelial cells and asthma severity [43]. 

446 These combined data suggest that the low expression of ERBB2 associated with asthma severity 

447 may be modulated by RV, the most common trigger of asthma exacerbations, via epigenetic 

448 mechanisms involving DNA methylation and long-range chromatin looping between the 

449 proximal and distal ends of this important locus. Our findings further highlight the importance of 
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450 RV exposure at this prominent asthma risk locus and provide mechanistic evidence for this 

451 genotype-exposure interaction.

452 Many associations in GWASs have small p-values that do not reach genome-wide 

453 significance (p<5x10-8) but may be true signals.  Distinguishing true positive from false signals 

454 for variants among these mid-hanging fruit can be challenging. Cell culture models provide a 

455 way to identify functional variants that regulate gene expression and/or epigenetic marks, 

456 establishing a framework for distinguishing true from false positive associations. In our study, 

457 over 72% of the co-localizations (52 total co-localizations; 22 eQTL-GWAS pairs; 17 meQTL-

458 GWAS pairs; 13 triplets) were with a GWAS SNP that did not meet genome-wide significance 

459 in the GWAS for childhood onset asthma (GWAS p-value range 1.0x10-7 - 4.6x10-4; S1 Table). 

460 These co-localizations were associated with eight eGenes (ACO2, FGFR4, FRK, GSTO2, IRF5, 

461 PMM1, POLI) and 20 meCpGs. Notably, the majority of the co-localized triplets (13 of 14) were 

462 associated with SNPs that did not reach genome-wide significance, perhaps because the variants 

463 have exposure-specific or endotype-specific effects that are heterogeneous among subjects 

464 included in asthma GWASs. Annotating SNPs among the mid-hanging fruit for functionality 

465 provides a more complete picture of the genetic architecture of asthma and a paradigm for 

466 selecting loci for further studies. 

467 Our study has several limitations. First, the sample sizes for the eQTL and meQTL 

468 studies were smaller than the minimum recommended by moloc (nmin=300) [15]. In such cases, 

469 moloc can miss true co-localizations in QTL datasets. For example, an eQTL-GWAS pair with 

470 supporting evidence may, in reality, be an eQTL-meQTL-GWAS triplet. As a result, the eQTL-

471 GWAS and meQTL-GWAS pairs that we identified could be eQTL-meQTL-GWAS triplets that 

472 we were not powered to detect, or we may have missed other co-localizations entirely. 
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473 Nonetheless, the 72 unique co-localization detected in our study are likely to be real although 

474 replication studies in larger samples will increase the confidence in our findings. Second, we 

475 focused our studies on one cell type (upper airway sinonasal epithelium), four exposures (RV, 

476 SA, RVveh, SAveh), and one epigenetic mark (DNA methylation). It is likely that many of the 

477 co-localizations are not specific to airway epithelium or to these four conditions, and that 

478 additional epigenetic marks, such as those associated with chromatin accessibility, are involved 

479 in these or other co-localizations. Studies in other cell types and evaluation of additional 

480 exposures and epigenetic marks in larger sample sizes will be necessary to validate the cell- and 

481 condition-specific colocalizations identified here and extend these studies to additional 

482 conditions and molecular traits. Finally, characterizing chromatin conformational changes in 

483 airway epithelial cells before and after exposure to RV will allow a direct assessment of the 

484 chromatin looping at 17q that may occur in response to viral infection and potentially identify 

485 other context-specific interactions. 

486 In summary, we identified cis-eQTLs and cis-meQTLs in an airway epithelial cell model 

487 of microbial response to RV and SA and integrated these data with asthma GWASs to assign 

488 potential molecular mechanisms for variants associated with asthma in two large GWASs. By 

489 combining co-localization analysis with Mendelian randomization, we provide robust statistical 

490 evidence of epigenetic mechanisms that contribute to childhood onset asthma, at least one of 

491 which is modulated by exposure to RV. We demonstrate that a multi-omics approach using 

492 disease-relevant cell types and exposures allows prioritization of disease-associated variants and 

493 provides insight into potential epigenetic mechanisms of asthma pathogenesis.

494

495
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496 Materials and Methods

497 Ethics statement

498 Study participants were recruited between March 2012 and August 2015. Nasal specimens were 

499 collected as part of routine endoscopic endonasal surgeries. Informed written consent was 

500 obtained from each study participant and randomly generated ID codes were assigned to all 

501 samples thereby preserving the participant’s anonymity and privacy. This study was approved by 

502 the institutional review boards of Northwestern University Feinberg School of Medicine and the 

503 University of Chicago.

504

505 Sample collection and composition

506 Sinonasal epithelial cells were obtained by brushing the uncinate process collected at elective 

507 surgery at Northwestern University from 68 males, 47 females, ages 18 – 73 years old (mean age 

508 44), and self-reported ethnicities as Caucasian (67%), Black (16%),  Hispanic (9%), and “other” 

509 (8%). Blood samples for genotyping were collected from study participants. A summary of the 

510 study design is shown in S1 Fig.

511

512 Upper airway epithelial cell culture and microbial treatments

513 After isolation, nasal airway epithelial cells were cultured in bronchial epithelial cell growth 

514 medium (Lonza, BEGM BulletKit, catalog number CC-3170) to near confluence, then frozen at -

515 80°C and stored in Liquid Nitrogen. Cells were subsequently thawed and cultured in collagen-

516 coated (PureCol, INAMED BioMaterials, catalog number 5,409, 3 mg/mL, 1:15 dilution) tissue 

517 culture plates (6 wells of 2x 12 well plates) using BEGM overnight at 37°C and 5% CO2. In 

518 preparation for rhinovirus (HRV-16; RV) RV infection/stimulation, plates at 50-60% confluency 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593558doi: bioRxiv preprint 

https://doi.org/10.1101/593558
http://creativecommons.org/licenses/by/4.0/


519 were incubated overnight in BEGM without hydrocortisone (HC) followed by a two-hour RV 

520 infection at a multiplicity of infection (MOI) of 2 and vehicle treatment (Bronchial epithelial cell 

521 basal medium (BEBM) + Gentamicin/Amphotericin) at 33°C (low speed rocking, ~15 RPM). 

522 RV- and vehicle-treated cells were washed and then were cultured at 33°C for 46 hours (48 hours 

523 total) in BEGM without HC. Prior to heat-killed Staphylococcus aureus (SA, Life Technologies, 

524 catalog number S-2859)-stimulation, cells were cultured to near 100% confluency in BEGM and 

525 were further incubated without HC overnight at 37°C. Cells were then stimulated with SA (5e8 

526 particles/mL) and vehicle control (sterile 1x dPBS) for 24 hours at 37 °C in 5% CO2. 

527

528 Genotyping and imputation

529 DNA was extracted from whole blood or sinus tissue (if no blood was available) with the 

530 Macherey-Nagel NucleoSpin Blood L or NucleoSpin Tissue L Extraction kits, respectively, and 

531 quantified with the NanoDrop ND1000. Genotyping of all study participants was performed 

532 using the Illumina Infinium HumanCore Exome+Custom Array (550,224 SNPs). After quality 

533 control (QC) (excluding SNPs with HWE < 0.0001 by race/ethnicity, call rate < 0.95, MAF < 

534 0.05 and individuals with genotype call rates < 0.05), 529,993 markers for 115 individuals were 

535 available for analysis. Ancestral principal component analysis (PCA) was performed using 676 

536 ancestral informative markers included on the array that overlap with the HapMap release 3 (S5 

537 Fig). 

538 Phasing and imputation were performed using the ShapeIt2 [44] and Impute2 [45] 

539 software packages, respectively. Variants were imputed in 5 Mb windows across the genome 

540 against the 1000 Genomes Phase 3 haplotypes (Build 37; October 2014). Individuals were 

541 categorized into two groups based on the k-means clustering of ancestral PCs, using the 
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542 kmeans() function in R; individuals were grouped as European or African American based on 

543 how they related to the HapMap reference panel and means clustering of their ancestral PCs (S5 

544 Fig). After imputation, both groups were merged and QC was performed with gtool [46]. X and 

545 Y chromosome-linked SNPs and SNPs that did not meet the QC criteria (info score < 0.8, MAF 

546 < 0.05, missingness > 0.05 and a probability score < 0.9) were excluded from analyses. 

547 Probability scores were converted to dosages for 6,665,552 of the remaining sites used in 

548 downstream analyses.

549

550 RNA extraction and sequencing

551 Following RV and SA treatments, RNA from cells underwent extraction and purification using 

552 the QIAGEN AllPrep DNA/RNA Kit. RNA quality and quantity were measured at the 

553 University of Chicago Functional Genomics Core using the Agilent RNA 6000 Pico assay and 

554 the Agilent 2100 Bioanalyzer. RNA integrity numbers (RIN) were greater than 7.7 for all 

555 samples. cDNA libraries were constructed using the Illumina TruSeq RNA Library Prep Kit v2 

556 and sequenced on the Illumina HiSeq 2500 System (50 bp, single-end); RNA sequencing was 

557 completed at the University of Chicago Genomics Core. Subsequently, we checked for potential 

558 sample contamination and sample swaps using the publicly available software VerifyBamID 

559 (http://genome.sph.umich.edu/wiki/VerifyBamID) [47] for cells from all 115 individuals 

560 included in each treatment condition. We did not detect any cross-contamination between 

561 samples but we did identify one sample swap between individuals, which we subsequently 

562 corrected. 

563 Sequences were mapped to the human reference genome (hg19) and reads per gene were 

564 quantified using the Spliced Transcripts Alignment to a Reference (STAR) [48] software. X,Y, 
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565 and mitochondrial chromosome genes, and low count data (genes < 1CPM) were removed prior 

566 to normalization via the trimmed mean of M-values method (TMM) and variance modeling 

567 (voom) [49]; samples contain > 8M mapped reads. Principle components analysis (PCA) 

568 identified biological and technical sources of variation in the voom-normalized RNA-seq reads. 

569 We identified contributors to batch and other technical effects in the RV experiment (days in 

570 liquid nitrogen, experimental culture days, cell culture batches, RNA concentration, RNA 

571 fragment length, technician, sequencing pool) and SA experiment (day in liquid nitrogen, 

572 experimental culture days, cell culture batches, RNA concentration, RIN score, cDNA library 

573 concentration). Sex was a significant variable in the PCA for the RV experiment. Additionally, 

574 unknown sources of variation were predicted with the Surrogate Variable Analysis (SVA) [50] 

575 package in R where 15 and 21 surrogate variables (SVs) were estimated for the RV and SA 

576 experiments, respectively. Voom-normalized RNA-seq data were then adjusted for technical 

577 effects, SVs, sex, and ancestral PCs (1-3) using the function removeBatchEffect() from the R 

578 package limma [51].

579

580 DNA extraction and methylation profiling

581 Following RV and SA treatments, DNA was extracted from cells and purified using the 

582 QIAGEN AllPrep DNA/RNA Kit. DNA methylation profiles for cells from each treatment were 

583 measured on the Illumina Infinium MethylationEPIC BeadChip at the University of Chicago 

584 Functional Genomics Core. Methylation data were preprocessed using the minfi package [52]. 

585 Probes located on sex chromosomes and with detection p-values greater than 0.01 in more than 

586 10% of samples were removed from the analysis; samples with more than 5% missing probes 

587 were also removed. A preprocessing control normalization function was applied to correct for 
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588 raw probe values or background and a Subset-quantile Within Array Normalization (SWAN) 

589 [53] was used to correct for technical differences between the Infinium type I and type II probes. 

590 Additionally, we removed cross-reactive probes and probes within two nucleotides of a SNP 

591 with an MAF greater than 0.05 using the function rmSNPandCH() from the R package DMRcate 

592 [54].

593 PCA identified technical and biological sources of variation in the normalized DNA 

594 methylation datasets. We identified contributors to batch and technical effects in the RV 

595 experiment (array, cell harvest date) and SA experiment (day in liquid nitrogen, array, cell 

596 harvest date, DNA concentration). Sex, age, and smoking were significant variables in the PCA 

597 across each treatment condition. Unknown sources of variation were predicted with the SVA 

598 package where 37 SVs were estimated for both the RV and SA experiments. SWAN and 

599 quantile-normalized M-values were then adjusted for batch and technical effects, SVs, sex, age, 

600 smoking and steroid use (for the SA dataset) using the function removeBatchEffect() in R.

601

602 eQTL and meQTL analyses

603 Prior to e/meQTL analysis, voom-transformed gene expression values and normalized 

604 methylation M-values were adjusted for potential batch, technical, and biological variables as 

605 described above. Linear regression between the permuted genotypes and molecular phenotypes 

606 (gene expression and methylation residuals) from each treatment condition was performed with 

607 the FastQTL [55] software package within cis-window sizes of 1 Mb and 10 Kb for eQTL and 

608 meQTL analyses, respectively. Nominal passes were conducted for each eQTL and meQTL 

609 analysis within FastQTL, and an FDR threshold of 0.10 was applied to adjust for multiple testing 

610 within each experimental dataset with the p.adjust() function in R. 
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611

612 Multivariate adaptive shrinkage analysis (mash)

613 An Empirical Bayes method of multivariate adaptive shrinkage was applied separately to the 

614 eQTL and meQTL data sets as implemented in the R statistical package, mashr 

615 (https://github.com/stephenslab/mashr) [20], to produce improved estimates of QTL effects and 

616 corresponding significance values in each treatment condition. Mashr implements this in two 

617 general steps: 1) identification of pattern sharing, sparsity, and correlation among QTL effects, 

618 and 2) integration of these learned patterns to produce improved effects estimates and measures 

619 of significance for eQTLs or meQTLs in each treatment condition. To fit the mash model, we 

620 identified eQTLs and meQTLs at an FDR < 20% in at least one treatment condition to generate a 

621 list of covariance matrices, constructed to represent patterns of effects in the data which included 

622 both ‘data-driven’ and ‘canonical’ estimates (see [20]). The instructions found in the mashr data-

623 driven vignette were followed to run mash.

624

625 Co-localization analysis

626 To estimate the posterior probability that a variant was contributing to the signal of a genetic 

627 variant was also associated with asthma, gene expression, and/or DNA methylation, we applied a 

628 Bayesian statistical framework implemented in the R package multiple-trait-coloc (moloc) [15]. 

629 Summary data from adult onset and childhood onset asthma GWAS from [12], along with eQTL 

630 and meQTL summary data from cells within each treatment condition (described above), were 

631 included in the moloc analysis. Each co-localization analysis included summary data from a 

632 GWAS and epithelial cell eQTLs and meQTLs from corresponding treatment conditions. 

633 Because a genome-wide co-localization analysis was computationally untenable, genomic 
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634 regions for co-localization were defined using the GWAS Analysis of Regulatory of Functional 

635 Information Enrichment with LD correction (GARFIELD) package implemented in R [56] . 

636 First, we analyzed the enrichment pattern of e/meSNPs from all four treatment conditions in 

637 adult onset and childhood onset GWASs using the default package settings. Second, we 

638 extracted variants driving the enrichment signals at a GWAS p-value threshold of 1x10-4. 

639 Regions were defined as 2 Mb windows centered around these variants. Only regions with at 

640 least 10 SNPs in common between all three datasets or ‘traits’ (GWAS, eQTL, and meQTL) 

641 were assessed by moloc and 15 ‘configurations’ of possible variant sharing was computed across 

642 these three traits (see [15] for more details). PPAs ≧ 70% were considered as evidence for co-

643 localization. Prior probabilities of 1x10-4, 1x10-6, and 1x10-7 were chosen for the association of 

644 one, two, or three traits, respectively, as recommended by the authors of moloc.

645

646 Mendelian randomization

647 Mendelian Randomization was performed using the ivreg2 function in R (https://www.r-

648 bloggers.com/an-ivreg2-function-for-r/) which applies 2SLS regression, as implemented in [24]. 

649 We co-localized triplets (eQTL-meQTL-GWAS) to assess the causal effects of DNA 

650 methylation on gene expression, using genotypes as the instrumental variable. P-values were 

651 adjusted using the FDR method in the p.adjust() function in R. An FDR of less than 0.05 was 

652 considered to be significant.

653

654 Acknowledgments

655 The authors acknowledge Christine Billstrand and Raluca Nicolae for sample processing 

656 and library preparation, and study subjects for their participation.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593558doi: bioRxiv preprint 

https://doi.org/10.1101/593558
http://creativecommons.org/licenses/by/4.0/


657

658 References

659 1. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI 
660 Catalog of published genome-wide association studies (GWAS Catalog). Nucleic acids 
661 research. 2017;45(D1). doi: 10.1093/nar/gkw1133.

662 2. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic 
663 localization of common disease-associated variation in regulatory DNA. Science. 
664 2012:1222794. doi: 10.1126/science.1222794.

665 3. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are 
666 more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 
667 2010;6(4):e1000888. Epub 2010/04/07. doi: 10.1371/journal.pgen.1000888. PubMed PMID: 
668 20369019; PubMed Central PMCID: PMCPMC2848547.

669 4. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: 
670 multitissue gene regulation in humans. Science. 2015;348(6235):648-60. Epub 2015/05/09. 
671 doi: 10.1126/science.1262110. PubMed PMID: 25954001; PubMed Central PMCID: 
672 PMCPMC4547484.

673 5. Ober C. Asthma Genetics in the Post-GWAS Era. Annals of the American Thoracic Society. 
674 2016;13 Suppl 1(Supplement 1):90. doi: 10.1513/AnnalsATS.201507-459MG.

675 6. McCarthy MI, Hirschhorn JN. Genome-wide association studies: potential next steps on a 
676 genetic journey. Human molecular genetics. 2008;17(R2):65. doi: 10.1093/hmg/ddn289.

677 7. Bonnelykke K, Ober C. Leveraging gene-environment interactions and endotypes for 
678 asthma gene discovery. J Allergy Clin Immunol. 2016;137(3):667-79. Epub 2016/03/08. 
679 doi: 10.1016/j.jaci.2016.01.006. PubMed PMID: 26947980; PubMed Central PMCID: 
680 PMCPMC5004762.

681 8. Consortium EP. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science. 
682 2004;306(5696):636-40. Epub 2004/10/23. doi: 10.1126/science.1105136. PubMed PMID: 
683 15499007.

684 9. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. 
685 Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317-30. 
686 Epub 2015/02/20. doi: 10.1038/nature14248. PubMed PMID: 25693563; PubMed Central 
687 PMCID: PMCPMC4530010.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593558doi: bioRxiv preprint 

https://doi.org/10.1101/593558
http://creativecommons.org/licenses/by/4.0/


688 10. Ferreira MA, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, et al. Shared genetic 
689 origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet. 
690 2017;49(12):1752-7. Epub 2017/10/31. doi: 10.1038/ng.3985. PubMed PMID: 29083406; 
691 PubMed Central PMCID: PMCPMC5989923.

692 11. Demenais F, Margaritte-Jeannin P, Barnes KC, Cookson WOC, Altmuller J, Ang W, et al. 
693 Multiancestry association study identifies new asthma risk loci that colocalize with immune-
694 cell enhancer marks. Nat Genet. 2018;50(1):42-53. Epub 2017/12/24. doi: 10.1038/s41588-
695 017-0014-7. PubMed PMID: 29273806; PubMed Central PMCID: PMCPMC5901974.

696 12. Pividori M, Schoettler N, Nicolae DL, Ober C, Im HK. Shared and distinct genetic risk 
697 factors for childhood onset and adult onset asthma: Genome- and Transcriptome-wide 
698 Studies. The Lancet Respiratory Medicine, in press. 2018. 
699 https://www.biorxiv.org/content/10.1101/427427v1. 

700 13. Barreiro LB, Tailleux L, Pai AA, Gicquel B, Marioni JC, Gilad Y. Deciphering the genetic 
701 architecture of variation in the immune response to Mycobacterium tuberculosis infection. 
702 Proc Natl Acad Sci U S A. 2012;109(4):1204-9. Epub 2012/01/12. doi: 
703 10.1073/pnas.1115761109. PubMed PMID: 22233810; PubMed Central PMCID: 
704 PMC3268270.

705 14. Kim-Hellmuth S, Bechheim M, Putz B, Mohammadi P, Nedelec Y, Giangreco N, et al. 
706 Genetic regulatory effects modified by immune activation contribute to autoimmune disease 
707 associations. Nat Commun. 2017;8(1):266. Epub 2017/08/18. doi: 10.1038/s41467-017-
708 00366-1. PubMed PMID: 28814792; PubMed Central PMCID: PMCPMC5559603.

709 15. Giambartolomei C, Zhenli Liu J, Zhang W, Hauberg M, Shi H, Boocock J, et al. A Bayesian 
710 Framework for Multiple Trait Colo-calization from Summary Association Statistics. 
711 Bioinformatics. 2018. Epub 2018/03/27. doi: 10.1093/bioinformatics/bty147. PubMed 
712 PMID: 29579179.

713 16. Jackson DJ, Gangnon RE, Evans MD, Roberg KA, Anderson EL, Pappas TE, et al. 
714 Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. 
715 Am J Respir Crit Care Med. 2008;178(7):667-72. Epub 2008/06/21. doi: 
716 10.1164/rccm.200802-309OC. PubMed PMID: 18565953; PubMed Central PMCID: 
717 PMCPMC2556448.

718 17. Johnston SL, Pattemore PK, Sanderson G, Smith S, Lampe F, Josephs L, et al. Community 
719 study of role of viral infections in exacerbations of asthma in 9-11 year old children. BMJ. 
720 1995;310(6989):1225-9. Epub 1995/05/13. PubMed PMID: 7767192; PubMed Central 
721 PMCID: PMCPMC2549614.

722 18. Busse WW, Lemanske RF, Jr., Gern JE. Role of viral respiratory infections in asthma and 
723 asthma exacerbations. Lancet. 2010;376(9743):826-34. Epub 2010/09/08. doi: 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593558doi: bioRxiv preprint 

https://doi.org/10.1101/593558
http://creativecommons.org/licenses/by/4.0/


724 10.1016/S0140-6736(10)61380-3. PubMed PMID: 20816549; PubMed Central PMCID: 
725 PMCPMC2972660.

726 19. Davis MF, Peng RD, McCormack MC, Matsui EC. Staphylococcus aureus colonization is 
727 associated with wheeze and asthma among US children and young adults. The Journal of 
728 allergy and clinical immunology. 2015;135(3):811-3.e5. Epub 2014/12/20. doi: 
729 10.1016/j.jaci.2014.10.052. PubMed PMID: 25533526.

730 20. Urbut SM, Wang G, Carbonetto P, Stephens M. Flexible statistical methods for estimating 
731 and testing effects in genomic studies with multiple conditions. Nat Genet. 2019;51(1):187-
732 95. Epub 2018/11/28. doi: 10.1038/s41588-018-0268-8. PubMed PMID: 30478440; 
733 PubMed Central PMCID: PMCPMC6309609.

734 21. Stephens M. False discovery rates: a new deal. Biostatistics. 2017;18(2):275-94. Epub 
735 2016/10/21. doi: 10.1093/biostatistics/kxw041. PubMed PMID: 27756721; PubMed Central 
736 PMCID: PMCPMC5379932.

737 22. Schubeler D. Function and information content of DNA methylation. Nature. 
738 2015;517(7534):321-6. Epub 2015/01/17. doi: 10.1038/nature14192. PubMed PMID: 
739 25592537.

740 23. Martin EM, Fry RC. Environmental Influences on the Epigenome: Exposure- Associated 
741 DNA Methylation in Human Populations. Annu Rev Public Health. 2018;39:309-33. Epub 
742 2018/01/13. doi: 10.1146/annurev-publhealth-040617-014629. PubMed PMID: 29328878.

743 24. Nicodemus-Johnson J, Myers RA, Sakabe NJ, Sobreira DR, Hogarth DK, Naureckas ET, et 
744 al. DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI 
745 Insight. 2016;1(20):e90151. Epub 2016/12/13. doi: 10.1172/jci.insight.90151. PubMed 
746 PMID: 27942592; PubMed Central PMCID: PMCPMC5139904.

747 25. DeVries A, Wlasiuk G, Miller SJ, Bosco A, Stern DA, Lohman IC, et al. Epigenome-wide 
748 analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers. J 
749 Allergy Clin Immunol. 2017;140(2):534-42. Epub 2016/12/25. doi: 
750 10.1016/j.jaci.2016.10.041. PubMed PMID: 28011059; PubMed Central PMCID: 
751 PMCPMC5479765.

752 26. Yang IV, Pedersen BS, Liu A, O'Connor GT, Teach SJ, Kattan M, et al. DNA methylation 
753 and childhood asthma in the inner city. J Allergy Clin Immunol. 2015;136(1):69-80. Epub 
754 2015/03/15. doi: 10.1016/j.jaci.2015.01.025. PubMed PMID: 25769910; PubMed Central 
755 PMCID: PMCPMC4494877.

756 27. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. 
757 Nat Rev Genet. 2008;9(6):465-76. Epub 2008/05/09. doi: 10.1038/nrg2341. PubMed PMID: 
758 18463664.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593558doi: bioRxiv preprint 

https://doi.org/10.1101/593558
http://creativecommons.org/licenses/by/4.0/


759 28. Ying S, O'Connor B, Ratoff J, Meng Q, Mallett K, Cousins D, et al. Thymic stromal 
760 lymphopoietin expression is increased in asthmatic airways and correlates with expression 
761 of Th2-attracting chemokines and disease severity. J Immunol. 2005;174(12):8183-90. Epub 
762 2005/06/10. PubMed PMID: 15944327.

763 29. Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, Graves PE, et al. 
764 Meta-analysis of genome-wide association studies of asthma in ethnically diverse North 
765 American populations. Nat Genet. 2011;43(9):887-92. Epub 2011/08/02. doi: 
766 10.1038/ng.888. PubMed PMID: 21804549; PubMed Central PMCID: PMCPMC3445408.

767 30. Wang IJ, Chen SL, Lu TP, Chuang EY, Chen PC. Prenatal smoke exposure, DNA 
768 methylation, and childhood atopic dermatitis. Clin Exp Allergy. 2013;43(5):535-43. Epub 
769 2013/04/23. doi: 10.1111/cea.12108. PubMed PMID: 23600544.

770 31. Luo Y, Zhou B, Zhao M, Tang J, Lu Q. Promoter demethylation contributes to TSLP 
771 overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol. 
772 2014;39(1):48-53. Epub 2013/12/18. doi: 10.1111/ced.12206. PubMed PMID: 24341479.

773 32. Hui CC, Yu A, Heroux D, Akhabir L, Sandford AJ, Neighbour H, et al. Thymic stromal 
774 lymphopoietin (TSLP) secretion from human nasal epithelium is a function of TSLP 
775 genotype. Mucosal Immunol. 2015;8(5):993-9. Epub 2014/12/18. doi: 
776 10.1038/mi.2014.126. PubMed PMID: 25515628.

777 33. Stein MM, Thompson EE, Schoettler N, Helling BA, Magnaye KM, Stanhope C, et al. A 
778 decade of research on the 17q12-21 asthma locus: Piecing together the puzzle. J Allergy 
779 Clin Immunol. 2018. Epub 2018/01/09. doi: 10.1016/j.jaci.2017.12.974. PubMed PMID: 
780 29307657.

781 34. Smit LA, Bouzigon E, Pin I, Siroux V, Monier F, Aschard H, et al. 17q21 variants modify 
782 the association between early respiratory infections and asthma. Eur Respir J. 
783 2010;36(1):57-64. Epub 2009/12/25. doi: 10.1183/09031936.00154509. PubMed PMID: 
784 20032010.

785 35. Caliskan M, Bochkov YA, Kreiner-Moller E, Bonnelykke K, Stein MM, Du G, et al. 
786 Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N Engl J Med. 
787 2013;368(15):1398-407. Epub 2013/03/29. doi: 10.1056/NEJMoa1211592. PubMed PMID: 
788 23534543; PubMed Central PMCID: PMCPMC3755952.

789 36. Bouzigon E, Corda E, journal … A-H. Effect of 17q21 variants and smoking exposure in 
790 early-onset asthma. New England journal …. 2008. doi: 10.1056/NEJMoa0806604.

791 37. Loss GJ, Depner M, Hose AJ, Genuneit J, Karvonen AM, Hyvarinen A, et al. The Early 
792 Development of Wheeze. Environmental Determinants and Genetic Susceptibility at 17q21. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593558doi: bioRxiv preprint 

https://doi.org/10.1101/593558
http://creativecommons.org/licenses/by/4.0/


793 Am J Respir Crit Care Med. 2016;193(8):889-97. Epub 2015/11/18. doi: 
794 10.1164/rccm.201507-1493OC. PubMed PMID: 26575599.

795 38. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, 
796 consortium-based genomewide association study of asthma. N Engl J Med. 
797 2010;363(13):1211-21. Epub 2010/09/24. doi: 10.1056/NEJMoa0906312. PubMed PMID: 
798 20860503; PubMed Central PMCID: PMCPMC4260321.

799 39. Marinho S, Custovic A, Marsden P, Smith JA, Simpson A. 17q12-21 variants are associated 
800 with asthma and interact with active smoking in an adult population from the United 
801 Kingdom. Ann Allergy Asthma Immunol. 2012;108(6):402-11 e9. Epub 2012/05/26. doi: 
802 10.1016/j.anai.2012.03.002. PubMed PMID: 22626592.

803 40. Smith GD. Mendelian Randomization for Strengthening Causal Inference in Observational 
804 Studies: Application to Gene x Environment Interactions. Perspect Psychol Sci. 
805 2010;5(5):527-45. Epub 2010/09/01. doi: 10.1177/1745691610383505. PubMed PMID: 
806 26162196.

807 41. Busse WW. The atopic march: Fact or folklore? Ann Allergy Asthma Immunol. 
808 2018;120(2):116-8. Epub 2018/02/08. doi: 10.1016/j.anai.2017.10.029. PubMed PMID: 
809 29413332.

810 42. West EE, Kashyap M, Leonard WJ. TSLP: A Key Regulator of Asthma Pathogenesis. Drug 
811 Discov Today Dis Mech. 2012;9(3-4). Epub 2013/12/19. doi: 10.1016/j.ddmec.2012.09.003. 
812 PubMed PMID: 24348685; PubMed Central PMCID: PMCPMC3859144.

813 43. Modena BD, Bleecker ER, Busse WW, Erzurum SC, Gaston BM, Jarjour NN, et al. Gene 
814 expression correlated with severe asthma characteristics reveals heterogeneous mechanisms 
815 of severe disease. American journal of respiratory and critical care medicine. 
816 2017;195(11):1449-63. doi: 10.1164/rccm.201607-1407OC.

817 44. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and 
818 population genetic studies. Nat Methods. 2013;10(1):5-6. Epub 2012/12/28. doi: 
819 10.1038/nmeth.2307. PubMed PMID: 23269371.

820 45. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 
821 (Bethesda). 2011;1(6):457-70. Epub 2012/03/03. doi: 10.1534/g3.111.001198. PubMed 
822 PMID: 22384356; PubMed Central PMCID: PMCPMC3276165.

823 46. Freeman C, Marchini J. GTOOL: A program for transforming sets of genotype data for use 
824 with the programs SNPTEST and IMPUTE, Oxford, UK. GTOOL: A program for 
825 transforming sets of genotype data for use with the programs SNPTEST and IMPUTE, 
826 Oxford, UK.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593558doi: bioRxiv preprint 

https://doi.org/10.1101/593558
http://creativecommons.org/licenses/by/4.0/


827 47. Jun G, Flickinger M, Hetrick KN, Romm JM, Doheny KF, Abecasis GR, et al. Detecting 
828 and estimating contamination of human DNA samples in sequencing and array-based 
829 genotype data. Am J Hum Genet. 2012;91(5):839-48. Epub 2012/10/30. doi: 
830 10.1016/j.ajhg.2012.09.004. PubMed PMID: 23103226; PubMed Central PMCID: 
831 PMCPMC3487130.

832 48. Dobin A, Gingeras TR. Mapping RNA-seq Reads with STAR. Curr Protoc Bioinformatics. 
833 2015;51:11 4 1-9. Epub 2015/09/04. doi: 10.1002/0471250953.bi1114s51. PubMed PMID: 
834 26334920; PubMed Central PMCID: PMCPMC4631051.

835 49. Law CW, Chen Y, Genome … SW. Voom: precision weights unlock linear model analysis 
836 tools for RNA-seq read counts. Voom: precision weights unlock linear model analysis tools 
837 for RNA-seq read counts. 2014.

838 50. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch 
839 effects and other unwanted variation in high-throughput experiments. Bioinformatics. 
840 2012;28(6):882-3. Epub 2012/01/20. doi: 10.1093/bioinformatics/bts034. PubMed PMID: 
841 22257669; PubMed Central PMCID: PMCPMC3307112.

842 51. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential 
843 expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 
844 2015;43(7):e47. Epub 2015/01/22. doi: 10.1093/nar/gkv007. PubMed PMID: 25605792; 
845 PubMed Central PMCID: PMCPMC4402510.

846 52. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. 
847 Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium 
848 DNA methylation microarrays. Bioinformatics. 2014;30(10):1363-9. Epub 2014/01/31. doi: 
849 10.1093/bioinformatics/btu049. PubMed PMID: 24478339; PubMed Central PMCID: 
850 PMCPMC4016708.

851 53. Maksimovic J, Gordon L. SWAN: Subset-quantile within array normalization for illumina 
852 infinium HumanMethylation450 BeadChips. SWAN: Subset-quantile within array 
853 normalization for illumina infinium HumanMethylation450 BeadChips. 2012.

854 54. Peters TJ, Buckley MJ. De novo identification of differentially methylated regions in the 
855 human genome. De novo identification of differentially methylated regions in the human 
856 genome. 2015.

857 55. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient QTL mapper 
858 for thousands of molecular phenotypes. Bioinformatics. 2016;32(10):1479-85. Epub 
859 2015/12/29. doi: 10.1093/bioinformatics/btv722. PubMed PMID: 26708335; PubMed 
860 Central PMCID: PMCPMC4866519.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593558doi: bioRxiv preprint 

https://doi.org/10.1101/593558
http://creativecommons.org/licenses/by/4.0/


861 56. Iotchkova V, Ritchie GRS, Geihs M, Morganella S, Min JL, Walter K, et al. GARFIELD 
862 classifies disease-relevant genomic features through integration of functional annotations 
863 with association signals. Nat Genet. 2019;51(2):343-53. Epub 2019/01/30. doi: 
864 10.1038/s41588-018-0322-6. PubMed PMID: 30692680.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593558doi: bioRxiv preprint 

https://doi.org/10.1101/593558
http://creativecommons.org/licenses/by/4.0/


866 Fig 1. Summary of eQTL and meQTL mapping results. Venn diagrams of overlapping 

867 eQTLs (A) and meQTLs (B) in each condition (FDR<0.10). (C) Summary of eQTL and meQTL 

868 mapping results for each treatment condition.

869

870 Fig 2. Molecular QTL effects sharing across treatment conditions (lfsr<0.05). Heatmaps 

871 showing pairwise comparison of eQTL (A) and meQTL (B) pairwise sharing between treatment 

872 conditions. (C) Examples of RV- (left) and SA-specific (right) eQTLs. (D)  Examples of vehicle- 

873 (left) and SA-specific (right) meQTLs.

874

875 Fig 3. Spearman correlation plots showing correlations between co-localized meCpGs and 

876 nearby genes in each treatment condition. Scatterplots showing the correlation of DNA 

877 methylation levels and gene expression in each treatment condition. (A) cg23659134 and 

878 GSTO2. (B) cg26616347 and IRF5 expression. In all panels, the y-axis shows methylation levels 

879 and x-axis shows gene expression levels. See text for details.

880

881 Fig 4. Co-localization of rs1837253 with DNA methylation levels of four meCpGs at TSLP. 

882 rs1837253 (red vertical bar) is associated with DNA methylation levels at four meCpGs (yellow 

883 vertical bars). Box plots show DNA methylation levels (y-axes) for each meCpGs by rs1837253 

884 genotype (x-axes) in each treatment condition.

885

886 Fig 5. Co-localizations at the 17q asthma susceptibility locus. (A) e/meSNPs and CpGs 

887 included in each of the six co-localizations are shown by vertical colored lines.  Solid lines 

888 indicate the location of the SNPs; dashed lines show the location of CpGs. SNP-CpG co-
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889 localizations are indicated by vertical lines of the same color. A single eQTL-GWAS pair 

890 (rs12603332) for ORDML3 is shown in orange. The three meQTL-GWAS pairs are shown in 

891 green (rs66826786; cg1740124), purple (rs4239225; cg21230266), and turquoise (rs2859191; 

892 cg21230266); cg21230266, shown in purple and turquoise, co-localizes with both rs4239225 and 

893 rs2859191. The SNP (rs66828786) and meCpG (cg17401724) associated with the triplet 

894 containing ERBB2 is shown in red. (B) Box plots for eQTLs (top row) and meQTLs (bottom 

895 row) associated with the eQTL-meQTL-GWAS triplet. The SNP in this triplet is associated with 

896 ERBB2 expression only in the RV-treated cells, but with  DNA methylation levels (cg17401724) 

897 in all treatments.

898

899

900

901

902

903
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905 Supporting information

906 S1 Fig. Overview of the e/meQTL and colocalization studies in upper airway epithelial cells 

907 treated with RV and SA. (A) Step-wise experimental design to identify treatment-specific 

908 e/meQTLs in airway epithelial cells from 115 individuals: 1. Nasal epithelial cells collected from 

909 study participants were cultured and treated with either RV or SA for 48 and 24 hours, 

910 respectively. 2. Gene expression and DNA methylation measured in nasal epithelial cells from 

911 each treatment condition. 3. Genotype profiling to identify genetic variation influencing gene 

912 expression and DNA methylation to RV- and SA-treatment. 4. QC and analyses including 

913 e/meQTL mapping, multi-trait co-localization analysis, and Mendelian randomization. (B) Venn 

914 diagram of asthma and atopy status for study subjects. (C) Breakdown of the number of subjects 

915 for each experiment (RV and SA) and molecular QTL mapping.

916

917 S2 Fig. Summary of molecular QTL effects sharing across treatment conditions (lfsr<0.05). 

918 (A) Number of eQTLs and corresponding eGenes and eSNPs shared between treatment 

919 conditions. (B) Number of meQTLs and corresponding meCpGs and meSNPs shared between 

920 treatment conditions.

921

922 S3 Fig. Scatterplots showing the Spearman correlation of DNA methylation levels for 

923 meCpGs of co-localized meQTLs and gene expression of nearby genes for each treatment 

924 condition. Examples of treatment and culture effects on DNA methylation and gene expression 

925 correlations. (A) Correlations for DNA methylation and FRK gene expression suggest culture-

926 specific effects. (B and C) Correlations for DNA methylation and GSTO2 do not show 

927 preference to any treatment condition. Although the meCpGs (cg23659134, cg07488549) that 
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928 are correlated with GSTO2 gene expression are both located intergenically and within the same 

929 intron as GSTO2, the direction of their effects on GSTO2 expression are in opposing directions. 

930 (D-F) DNA methylation and gene expression correlations suggestive of RV-specific effects in 

931 which the correlation is reduced after treatment with RV. 

932

933 S4 Fig. Association of ORMDL3 expression and genotype. Box plots of an eQTL for 

934 ORMDL3 and rs12603332 for RV, RVveh, SA, and SAveh treatment conditions (A-D, 

935 respectively).

936

937 S5 Fig. PCA and k-means clustering of genotypes. (A) PCA plot of study participant's 

938 genotypes (circles) projected on HapMap genotypes (squares). (B) Scree plot of k-means 

939 clustering of ancestral PCs in which the within groups sum of squares (y-axis) is plotted against 

940 the number of potential group clusters (x-axis); using the ‘elbow criterion’, it is determined that 

941 two clusters are best representative of how many clusters we can group the study samples. (C) 

942 PCA plot of study participants grouped into two cluster for genotype imputation, European (red), 

943 and African American (Blue), according to the k-means clustering criterion. 

944

945 S1 Table. moloc results indicating molecular QTL-GWAS pars and triplets.

946 S2 Table. Gene expression and meCpG Spearman correlations.

947 S3 Table. Shared meQTL-GWAS pairs between adult onset and childood onset asthma. 
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