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Abstract 

Background 

Bulk RNA-Seq has been extensively utilized to investigate the molecular changes 

accompanying motor neuron degeneration in Amyotrophic Lateral Sclerosis (ALS). 

However, due to the heterogeneity and degenerating phenotype of the neurons, it has 

proved difficult to assign specific changes to neuronal subtypes and identify which 

factors drive these changes. Consequently, we have utilized single cell 

transcriptomics of degenerating motor neurons derived from ALS patients to 

uncover key transcriptional drivers of dysfunctional pathways. 

Results 

Single cell analysis of spinal neuronal cultures derived from ALS and isogenic iPSC 

allowed us to classify cells into neural subtypes including motor neurons and 
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interneurons. Differential expression analysis between disease and control motor 

neurons revealed downregulation of genes involved in synaptic structure, 

neuromuscular junction, neuronal cytoskeleton and mitochondrial function. 

Interestingly, interneurons did not show similar suppression of these homeostatic 

functions. Single cell expression data enabled us to derive a context-specific 

transcriptional network relevant to ALS neurons. Master regulator analysis on this 

network identified core transcriptional factors driving the ALS disease signature. 

Specifically, we were able to correlate suppression of HOXA1 and HOXA5 to synaptic 

dysfunction in ALS motor neurons. Our results suggest that suppression of HOX 

genes may be a general phenomenon in SOD1 ALS. 

Conclusions 

Our results demonstrate the utility of single cell transcriptomics in mapping disease-

relevant gene regulatory networks driving neurodegeneration in ALS motor neurons. 

We propose that ALS-associated mutant SOD1 leads to inhibition of transcriptional 

networks driving homeostatic programs specific to motor neurons, thereby providing 

a possible explanation for the relative resistance of spinal interneurons to 

degeneration in ALS. 
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Introduction 

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is an age-

onset fatal neurodegenerative disorder that affects motor neurons in the brain and 

spinal cord(1). Patients display progressive paralysis and eventually die due to failure 

of the respiratory muscles, commonly within 3-5 years of diagnosis(2). Despite 

extensive research, the causes underlying the observed degeneration are 
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incompletely understood. Hence, so far, there is no cure for ALS. Understanding the 

molecular drivers of neurodegeneration in ALS can potentially lead to the 

development of life-saving therapies. Approximately 20% of ALS cases are familial 

with mutations identified in genes spanning diverse cellular functions including 

SOD1(3). Animal models have been extensively used to study ALS and have revealed 

important insights into disease mechanisms(4). However, species-specific 

differences and the need to overexpress the mutant proteins to generate phenotypes 

have necessitated developing human models of the disease that can complement 

existing animal models(5).  

Induced pluripotent stem cells (iPSC) derived from patients suffering with ALS 

provide a powerful model to study ALS. ALS patient-derived iPSC bear the disease-

causing mutations in a physiologically relevant background and can be readily 

differentiated into clinically relevant neurons(6). Such diseased neurons can now be 

compared to healthy neurons to model key aspects of the disease such as neuron 

survival, morphometric defects, electrophysiological dysfunctions and protein/RNA 

aggregation foci in vitro(7-12).  

Molecular characterisation of these neurons using “omics” tools has uncovered 

important insights into disease pathophysiology(8,9,13,14). However, application of 

genomic tools such as RNA-sequencing to ALS neurons in bulk has serious 

drawbacks. Current differentiation protocols generate motor neurons at efficiencies 

ranging from 50-80% with the efficiency varying depending upon the iPSC line used. 

The differentiated neurons are usually a mix of motor neurons (MN) and “non-motor 

neurons”, typically spinal interneurons (IN). Additionally, long term cultures of these 

neurons that are required for phenotypic characterization commonly display some 

degree of glial cell proliferation. Importantly, ALS motor neurons display progressive 

degeneration. This suggests that at any given time point, neurons can be expected to 
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be in different stages of degeneration and hence may display a differential expression 

of key drivers of disease pathology. Bulk RNA analysis of these cultures would not 

only average cell type expression but also the motor neuron specific degeneration 

expression signatures. To address these issues, we performed single cell 

transcriptomic analysis of degenerating ALS SOD1 mutant neurons. Our analysis 

reveals MN specific transcriptional networks regulating synaptic function and 

neuronal cytoskeleton to be downregulated in ALS MN. Importantly, single cell data 

enabled us to build a disease relevant transcriptional network that was used to 

identify key transcription factors driving the disease signature. 

Materials and Methods 

Human iPSC culture of iPSC 

ALS patient-derived iPSC bearing SOD1 E100G/+ (ND35662) mutation were 

obtained from the Coriell Institute for Medical Research. ALS iPSC and the genome 

edited isogenic control iPSC were maintained as colonies on human ES qualified 

matrigel (Corning) in mTeSR (StemCell Technologies). Colonies were routinely 

passaged in a 1:6 split using Dispase. Mycoplasma testing was conducted regularly to 

rule out mycoplasma contamination of cultures. 

Differentiation of iPSC into spinal motor neurons 

iPSC were plated as colonies onto matrigel and differentiated by treatment with 

neuronal differentiation media (N2B27: DMEM/F12, Neurobasal, N2 supplement 

1%, B27 supplement 1%, L-glutamine 1%, ascorbic acid 5uM, insulin 20ug/ml) 

supplemented with SB431542 (80uM), CHIR9921 (3uM) and LDN8312 (0.2uM) 

from day 0 till day 4. Cells were caudalized by treatment with 0.1uM retinoic acid 

starting at day 2 and ventralized with 1uM purmorphamine starting at day 4 and 

continued till day 10. At day 10, OLIG2 positive motor neuron progenitors were re-
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plated onto poly-D-lysine/laminin coated wells and differentiated by treating the 

cells with N2B27 media supplemented with BDNF 20ug/ml, GDNF 10ug/ml and 

DAPT 10uM. DAPT treatment was stopped at day 14 and neuronal cultures were 

pulsed with mitomycin at a dose of 10ug/ml for 1 hour to prevent further 

proliferation of any undifferentiated progenitors. Neuronal cultures were maintained 

till day 44 by changing media every other day. Survival of MN was assessed using 3 

independent differentiations. 

Immunofluorescence 

Cells were fixed with 4% paraformaldehyde, permeabilized with ice-cold methanol 

for 5 minutes and washed with PBS containing 10% serum for 1 hour at room 

temperature. Cells were incubated with primary antibodies (Table S1) diluted into 

PBS containing 10% serum and incubated overnight at 4oC. Next day, cells were 

washed and incubated with Alexa-fluor conjugated secondary antibodies (Molecular 

probes) for 45 minutes at room temperature and nuclei were stained with Hoechst 

33542 (Molecular probes).  

Quantitative RT-PCR 

Total RNA was extracted with the miRNeasy kit (Qiagen) and reverse transcribed 

using random hexamers and the High Capacity reverse transcription system from 

Applied Biosystems. Quantitative PCR was performed using the SYBR GREEN PCR 

Master Mix from Applied Biosystems. The target gene mRNA expression was 

normalized to the expression of RPL13 and relative mRNA fold changes were 

calculated by the ΔΔCt method. Primer sequenced are included in Table S2. 

Single-cell capture and library preparation 
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Single cells were captured using standard protocol of C1 single-cell auto prep system 

(Fluidigm). Briefly, differentiated neuronal cultures at day 44 were dissociated into 

single cells by Accutase and loaded onto the C1 chip. Post cell capture, each well of 

the chip was manually inspected to identify wells bearing single cells. Next, lysis, 

reverse transcription and PCR amplification of the cDNA was perform in an 

automated fashion within the C1 instrument. To prepare single-cell libraries, cDNA 

products from each single cell were harvested from C1 chip followed by concentration 

and quantification using PicoGreen dsDNA Assay kit. Sequencing libraries were 

generated using Illumina Nextera XT library preparation kit.  

Read processing, mapping and quality control 

Sequence data were processed and mapped to the human reference genome (hg19) 

using TopHat (v2.0.11)(15) with Bowtie2 (v2.2.1)(16). Gene expression levels were 

quantified with HTSeq-count (v0.6.1p1)(17) and converted to fragments per kilobase 

million (FPKM) for human gene annotation (GENCODE release 19)(18). This yielded 

57,241 transcripts from 365 libraries. Only libraries deemed to be single cells were 

retained for further analysis (332 cells). Additionally, libraries were qualified as low 

quality if: 1) the mapping ratio (mapped reads/total sequenced reads) was < 0.5; 2) 

total number of genes expressed were < 4000; 3) total number of mapped reads < 

0.5 million. A gene was deemed to be poorly expressed if it was found to be present 

in less than 20 cells at an FPKM expression threshold set at 0.1. The filtering process 

yielded 303 single cells and 14774 genes for further analysis. 

Weighted gene coexpression network analysis 

To identify functional modules of genes associated with ALS we used weighted gene 

coexpression network analysis (WGCNA) implemented in the R statistical language. 

FPKM values for filtered libraries and features (as described above) were log 

transformed and used to build a coexpression network. The coexpression network 
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was constructed with WGCNA using a soft thresholding power of 6 using the signed-

hybrid approach. Modules in the network were identified using the cutTreeDynamic 

function with a minimum module size of 20. Modules with similar expression 

profiles were merged if their eigengene correlation coefficients were >=0.9. To define 

modules related with ALS we used Pearson’s correlation coefficient to assess 

associations between module eigengenes and disease state. P-values were corrected 

using the method of Benjamini and Hochberg and correlations with an adjusted p-

value < 0.01 were deemed significant. Gene ontology enrichment analysis of disease 

associated modules was carried out using the anRichment R package. 

Master regulator analysis 

The master regulator analysis was performed using the RTN R package. Log 

transformed FPKM values for 211 neurons were used as input to build a 

transcriptional network for 845 TFs present in the dataset. TF annotations were 

obtained from AnimalTFDB. P-values for network edges were estimated from a 

pooled null distribution using 1000 permutations. Edges with an adjusted p-value < 

0.05 were retained for DPI filtering. Post-DPI filtering, the MRA generates a list of 

TF with predicted targets that is termed as the regulon. The regulon for each TF can 

be classed as positive or negative based on the Pearson correlations. To identify 

master regulators, the differential gene expression between ALS and control MN was 

used as a phenotype and sorted from most upregulated to most downregulated. The 

RTN package was used to conduct a GSEA like analysis to identify whether a TF 

regulon (positive or negative) was enriched towards one end of the sorted list of 

differentially expressed genes. P-values were estimated based on 1000 permutations 

of the dataset and adjusted using the Benjamini Hochberg method. At a p-value 

cutoff of 0.05, we identified 52 TFs as significant. Next, we assessed whether the 

identified TFs were differentially expressed and whether the direction of fold change 
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was concordant with the regulon of that TF. Applying this criterion generated a list of 

13 TF that were deemed as master regulators of the ALS signature. 

Overexpression of HOXA1 and HOXA5 in SH-S5Y5 cells 

HOXA1 and HOXA5 cDNA expressing plasmids driven by a CMV promoter were 

purchased from origene. A CMV driven GFP plasmid was used as control. SH-S5Y5 

cells were plated on poly-D-lysine coated 24-well plates at 1 million cells per well. 

Plasmid transfections were performed using lipofectamine 3000 according to 

manufacturer’s instruictions. Cells were induced to differentiate the next day by 

changing media to N2B27 + 10uM retinoic acid. This resulted in the cells exiting the 

cell cycle preventing plasmid loss. Cells were harvested at day 6 of differentiation. 

Analysis of HOXA1 and HOXA5 binding sites 

ChIP-Seq derived peaks for HOXA1, HOXA5, H3K4Me1 and H3K4Me3 were 

downloaded from the gene expression omnibus for datasets GSM1208634, 

GSM1239461, GSM1208810, GSM1208811 repectively. Fold enrichments were used 

as is from the peak files. Peaks were classified into 3 classes: strongly enriched (fold 

enrichment > 2.0), weakly enriched (fold enrichment >= 1.5 and <= 2.0) and not 

enriched (fold enrichment < 1.5). A gene was deemed as expressed if a H3K4Me3 or 

H3K4Me1 peak was found within 5kb of the transcriptional start site or if a 

H3K4Me1 peak was found within the gene body. A gene was deemed a HOXA1 or 

HOXA5 target if a HOXA1 or HOXA5 binding site was found within 10kb of the 

transcriptional start site, within the gene body or 2 kb from the transcriptional 

termination site. 

Analysis of mouse SOD1 G93A ALS MN 

Microarray expression values for mouse SOD1 G93A MN were downloaded from the 

gene expression omnibus for dataset GSE46298. Expression values were background 

subtracted, normlaized and log transformed using the RMA R package. Threshold for 
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low expression was set to 30 percentile of the entire dataset. P-values for individual 

genes were estimated based on a 2-tailed Student’s t-test and corrected for multiple 

hypothesis using the Benjamini Hochberg procedure. Only genes with median 

expression values above background were included in the analysis. 

Results 

Single cell RNA-Seq analysis of ALS and control neurons 

We previously developed an in vitro model of ALS MN degeneration where MN 

differentiated from mutant SOD1 iPSC display disease-specific phenotypes such as 

reduced cell survival and morphometric defects compared to their isogenic control 

counterparts(19). We differentiated iPSC derived from patients bearing the SOD1 

E100G mutation, as well as the corresponding CRISPR edited isogenic control into 

MN (Fig.1a) (19). Mature MN appeared by day 30 and expressed MN markers such 

as ISL1, CHAT and NF-H in addition to the pan-neuronal markers TUJ1 and MAP2 

(Fig. 1b). ALS and control iPSC could be differentiated into MN at similar efficiencies 

(~72% ISL1+ TUJ1+ neurons). When cultured for a further 2 weeks (day 44), ALS 

iPSC derived neurons displayed a 40% loss in survival compared to the isogenic 

control MN (Fig. 1c). To gain deeper insights into the mechanisms driving 

neurodegeneration, we performed single cell RNA-sequencing on the ALS and 

isogenic control MN at day 44 of our differentiation protocol (Fig. 1a). Neuronal 

cultures were dissociated into single cells, captured and lysed in a fully automated 

fashion using a microfluidic platform followed by library preparation and deep 

sequencing of transcripts in the individual cells (Methods). We captured a total of 

332 individual cells that included 165 cells from the ALS culture and 167 cells from 

the isogenic control.  

Single cell transcriptomes were sequenced to an average depth of 1.5e6 reads per cell 

and the overall sequencing depth was similar across the ALS and control datasets 
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(Figure S1a). The proportion of total reads mapped to the genome is an indicator of 

library quality(20). Both ALS and control cells displayed similar mapping statistics 

indicating there was no bias towards poor quality cells in any one dataset (Figure 

S1b). At a FPKM threshold of 0.1, both datasets expressed 8000 to 9000 genes 

(Figure S1c). To remove poorly amplified RNA libraries (indicated by low mapping 

ratios and low numbers of expressed genes) and lowly expressed genes, single cell 

libraries were subjected to a set of quality control criteria (Methods). After quality 

filtering, we retained a total of 303 high quality cells (153 cells for ALS and 150 cells 

for the control). These 303 cells expressed 14774 genes in total with ALS cells 

expressing on average 7170 genes while the control dataset expressed 7745 genes 

(Figure S1d) with the overall distribution of the number of genes being similar 

between the two datasets. Each gene was classified based on whether it was protein 

coding, long non-coding, pseudogene or small nuclear/nucleolar RNA. We did not 

find any systematic difference in distribution of the gene classes expressed between 

the ALS and controls datasets (Figure S1e). In summary, our single cell 

transcriptomes for the ALS and controls sets were similar in quality and character on 

a genome-wide level. 

Our differentiation protocol was designed to generate spinal MN(21). In vivo, spinal 

MN at different rostro-caudal levels of the spinal cord are demarcated by specific 

combinations of HOX gene expression (known as the HOX code)(22). To ascertain 

the rostrocaudal address of our in vitro differentiated neurons, we estimated the 

percentage of cells expressing each of the 39 HOX genes and plotted the data as a 

heatmap (Fig 1d). The heatmap showed most of the cells expressed HOXA5 and 

HOXB5 with very few cells expressing HOXB8 and HOXD8 and none expressing 

HOX genes from paralog groups 9 and higher (Fig. 1d). This clearly indicated that all 

of our cells were largely restricted to the hindbrain or brachial spinal cord identity as 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593129doi: bioRxiv preprint 

https://doi.org/10.1101/593129
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

would be expected from our differentiation protocol that employed 0.1uM retinoic 

acid without any GDF11(23). Next, we assessed expression of the classical markers of 

neuronal subtypes for motor neurons (ISL1, CHAT, VAChT or SLC18A3), 

interneurons (GAD1, GAD2, ARX) and non-neuronal cells (S100B, SOX9, MKI67) 

across all cells. As we have shown previously, our data indicates that iPSC-derived 

neuronal cultures display wide variation in expression across individual single cells 

that typically gets averaged in bulk analysis(24) (Fig.1e). To resolve this 

heterogeneity and enable differential expression between relevant classes of neurons, 

we sought to classify cells into specific neural lineages. 

Classification of single cells into neural subtypes 

Gene expression of selective markers in single cells is routinely used to classify 

neurons into distinct lineages(25,26). However, using one or two markers to classify 

single cells can lead to erroneous classification as single cell data typically has a high 

rate of dropouts, especially for lowly expressed transcripts. On the other hand, 

clustering of single cell data based on the expression of all detected transcripts might 

lead to sub-optimal clustering due to the inclusion of genes that are irrelevant to the 

classification. We sought to circumvent these problems by first identifying genes that 

can be used to classify cells into relevant cell types (neurons vs glia and MN vs IN). 

These lists of genes were termed as classifier gene sets.  Cells were classified into 

distinct neural subtypes by sequentially clustering single cells based on the relevant 

classifier gene set as described below (Fig. 2a).  

Classification of single cells into neurons and glia 

We first identified genes differentially present between neurons and glia using a 

recently published gene expression dataset on purified human neurons, astrocytes 

and oligodendrocytes from frozen brain tissue(27). Genes that displayed a fold 

change of at least 20 between neurons and astrocytes or oligodendrocytes were 
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included for future analysis. Differential gene expression analysis identified 522 

genes as upregulated and 433 genes as downregulated in neurons versus glial cells. 

Gene ontology using DAVID(28) on the differentially expressed gene set showed 

enrichment of specific functional categories related to neuronal physiology. 

Categories related to neuron development such as GABAergic synapse and 

postsynaptic cell membrane were found to be enriched in the neuron-activated genes 

while cell cycle and glial differentiation terms were deemed to be enriched in the 

downregulated genes confirming that our identified gene set was able to distinguish 

neurons and glia (Figure S2). Out of the 955 genes, 755 genes were expressed in our 

filtered single cell dataset and were further used to cluster cells into neurons and glia.  

We identified 63 cells out of the starting pool of 332 cells as mitotic as these 

expressed high levels of the proliferating cell marker MKI67 and removed them from 

further analysis. The remaining 269 single cells were clustered based on the neurons 

vs glia classifier gene set. Consensus k-means clustering using the R package SC3(29) 

identified three distinct clusters (Fig.2b). We calculated the mean expression of 

classical neuronal markers (SYP, RBFOX1, SYN1, CAMKV), neuronal lineage specific 

markers (CHAT, GAD1 and GAD2) and glial markers (SOX9, S100B, REST, PAX6, 

MKI67) in each of these 3 clusters. Expression profiles of classical markers indicated 

that clusters 2 and 3 were neuronal i.e. these cells expressed pan-neuronal and 

neuronal subtype specific markers but did not express glial markers (total 211 cells) 

while cluster 1 included neuronal progenitors and glial cells i.e. marker expression 

profiles were opposite to that of cluster 1 (58 cells) (Fig. 2c).  

Classification of neurons into MN and IN 

We sought to further classify the neuronal cells in clusters 2 and 3 into MN and IN by 

clustering the cells based on established MN and IN markers that were expressed in 

our dataset (MN markers: CHAT, SLC18A3 or VACHT, ISL1, ONECUT1, PRPH, IN 
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markers: GAD1, GAD2, ARX, DLX1, DLX6).  To avoid confounding the classification 

due to the SOD1 mutation, the ALS and isogenic control datasets were clustered 

separately.  Consensus clustering of the control neuronal cells using the MN/IN 

marker gene set identified three clusters (Figure S3a). Analysis of mean expression of 

hallmark MN and IN markers indicated that cluster c1 comprised of IN i.e. these 

neurons expressed high levels of IN markers but not MN markers (49 cells) while 

clusters c2 and c3 were MN i.e. these cells expressed high levels of MN markers but 

not IN markers (total 74 cells) (Figure S3b). However, we observed a subset of IN 

that expressed ISL1 (Figure S3b). ISL1 expression in interneurons has been observed 

in the mouse spinal cord within lamine V, VI and VII(30). However, to avoid the 

possibility that these were cell doublets that had escaped detection, this subset (28 

cells) was removed. Re-clustering the remaining neurons identified three clusters 

with expected marker expression: cluster c1 (21 cells) displayed IN markers and  

clusters c2 and c3 (total 74 cells) displayed MN markers (Fig. 2d and 2e). We used a 

similar clustering workflow on the SOD1 neuronal cells to identify MN and IN 

clusters (Fig. 2a, 2f, 2g). For the SOD1 ALS dataset, marker expression levels clearly 

indicated that cluster a1 comprised of IN while cluster a2 comprised of MN. Cluster 

a3 displayed expression of both MN and IN markers (possible doublets) and was 

removed from further analysis. In summary, our clustering approach identified 74 

MN (c2 plus c3 clusters in Fig. 2d,e) and 21 IN (c1 cluster in Fig. 2d,e) in the control 

dataset, while 24 MN (a2 cluster in Fig. 2f,g) and 33 IN (a1 cluster in Fig. 2f,g) were 

identified in the SOD1 ALS dataset. 

Differential expression analysis of ALS and control neurons 

To gain deeper insights into the transcriptional changes within ALS neurons, we 

compared gene expression in SOD1 ALS MN with the isogenic control MN using 

Monocle(31). Differential expression analysis identified 84 upregulated genes and 
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332 downregulated genes in ALS MN at a FDR < 0.05. Gene ontology (GO) 

enrichment analysis of the differentially expressed genes identified several pathways 

dysregulated in ALS MN. The downregulated gene ontology terms were distributed 

across 2 main categories, 1) synaptic function and 2) mitochondrial structure and 

function. Terms enriched related to synaptic function included “synapse 

organization”, “synapse assembly”, “axon”, “trans-synaptic signalling”, and 

“neuromuscular junction” while mitochondria related terms included “mitochondrial 

outer membrane “, “NADH:ubiquinone oxidoreductase, mitochondria” and 

“oxidative phosphorylation” (Fig. 2h). On the other hand, GO terms enriched in the 

upregulated genes included terms related to the cell cycle and protein targeting to the 

endoplasmic reticulum (ER) (Fig. 2i). Deficiency in the mitochondrial oxidative 

phosphorylation pathway as well as suppression of translation secondary to ER 

stress with concomitant increase in cell cycle related genes has been identified 

previously in bulk analysis of ALS SOD1 MN(19), which was recapitulated in our 

single cell expression analysis. Importantly, dysregulation of synaptic signalling and 

structure in our ALS model supports the dying back hypothesis of ALS that posits 

neuronal degeneration is secondary to pathology initiated at the distal end of the 

axon and neuromuscular junction(32). Next, we asked whether mutant SOD1 

induces similar changes in the IN gene expression program. Strikingly, comparative 

analysis between ALS and control IN revealed far fewer genes dysregulated in ALS 

IN compared to ALS MN (24 genes upregulated while 48 genes downregulated). 

Additionally, there was minimal, though significant, overlap in the gene expression 

programs perturbed between the two classes of neurons with 4 genes shared in the 

upregulated set and 9 genes shared in the downregulated set (Figure S4). Given the 

small number of genes identified as dysregulated in ALS IN, GO enrichment analysis 

was unable to find significant enrichment of any functional categories. Overall, our 
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data indicates that mutant SOD1 causes significant changes in the transcriptional 

program of MN compared to IN.  

Network analysis of single neurons using WGCNA 

To gain a systems level understanding of the observed transcriptional changes, we 

performed weighted gene co-expression network analysis (WGCNA)(33,34) to 

identify modules of co-regulated genes dysregulated in ALS MN and IN. Since co-

expression analysis works on identifying co-regulated sets of genes, we postulated 

that a large sample set with high variability per gene across the samples would 

improve performance of the network analysis. Hence, we included the entire set of 

neurons for both SOD1 and isogenic control datasets (a total of 211 cells). WGCNA 

identified a total of thirteen co-regulated modules of which three (modules blue, 

purple and black) were significantly downregulated in ALS MN compared to isogenic 

control MN (adjusted p-value < 0.01) (Fig. 3a). GO enrichment analysis of these 

modules revealed association of each module with specific functional categories (Fig. 

3b). Synaptic function and structure terms were enriched in the blue module, 

microtubule and cytoskeleton terms were enriched in the purple module, while 

oxidative phosphorylation and mitochondrial membrane terms were enriched in the 

black module. These observations were in accordance with the downregulation of 

these functional categories observed in the differential gene expression analysis of 

ALS MN. Interestingly, the blue module (enriched for synaptic terms) associated 

significantly  

with MN compared to IN in both the ALS and control samples but was observed to be 

strongly downregulated in ALS MN (Fig. 3a). This indicates that genes mediating 

synaptic signalling are highly expressed in MN compared to IN. Downregulation of 

these genes specifically in ALS MN suggests a possible mechanism that can explain 

the relative susceptibility of ALS MN to degeneration.  
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We hypothesized that downregulation of the observed gene modules may be driven 

by concomitant dysregulation of specific transcription factors (TFs). To test this 

hypothesis, the expression of ~1000 TFs in our dataset was correlated to the module 

eigengenes estimated by WGCNA. Correlation analysis identified sequence-specific 

TFs that correlated both positively and negatively with the modules. Given a module 

that is downregulated in ALS MN, a TF that correlates positively with this module is 

expected to be inhibited in ALS MN while a TF that correlates negatively is expected 

to be activated in ALS MN. TFs that matched these expectations were deemed as 

concordant. Application of the criterion of concordance to our correlation analysis 

identified TFs associated with specific modules (Fig. 3c). For example, HOXA5 

displayed greater than 4-fold suppression in ALS MN compared to isogenic controls 

while its expression correlated positively with the blue module that was identified as 

downregulated in ALS MN (Fig. 3c). This strongly indicates that HOXA5 is involved 

in regulating synaptic functions in MN. In addition, we observed SOX4 and HMGB2 

activated in ALS MN and negatively correlated with the blue module (Fig. 3c), 

indicating that these TFs act in an opposite fashion to HOXA5. Additionally, we 

observed positive correlations between HOXA5 and ATF2 with the purple module 

(cytoskeleton organization) while ATF2 also correlated positively with the black 

module (oxidative phosphorylation) (Fig. 3c). The WGCNA analysis strongly 

suggested that downregulation of specific pathways by mutant SOD1 is accompanied 

by corresponding de-regulation of TFs and such factors are readily identified from 

our single cell dataset. 

Master regulator analysis to identify TFs driving ALS disease signature 

Genes differentially expressed in ALS MN can be considered as a molecular 

phenotype that drives the cellular phenotype of neuronal degeneration. We wanted 

to identify TFs that regulated this disease signature. Identification of such master 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/593129doi: bioRxiv preprint 

https://doi.org/10.1101/593129
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

regulators requires a context-specific transcriptional network(35). Our single cell 

RNA-Seq data offered a unique opportunity to build such a network relevant to ALS 

and MN. 

The gene interactions detected by WGCNA include both direct and indirect 

interactions. We postulated that removal of indirect interactions would significantly 

enhance our power to identify dysregulated TFs driving ALS MN degeneration. To 

this end, we deployed the ARACNE algorithm that uses an information theoretic 

approach to prune indirect regulations in transcriptional networks(36). Though the 

pruning procedure does not necessarily remove all indirect interactions, it 

significantly enriches the network for direct interactions. 

ARACNE was implemented on the gene expression matrix derived from all 211 

neurons using the RTN package(37), and downstream targets were identified for 845 

TFs expressed in the neuronal cells. Key TF drivers were identified using master 

regulator analysis (Figure S5). The predicted targets of a TF (termed as the regulon of 

that TF) were classified as activated or repressed based on the direction of the 

correlation between the TF and the target gene. Next, an ALS signature was defined 

as genes that were differentially expressed between ALS MN and isogenic control 

MN. Master regulators were identified based on whether there was a statistically 

significant overlap between the activated or repressed regulon of a TF and the ALS 

disease signature (Figure S5, Methods). The master regulator analysis (MRA) 

identified 51 TFs at a FDR < 0.05. We filtered out TFs that were not found to be 

differentially expressed in the ALS MN compared to control. Next, we checked for 

concordance between the expression change of a TF and its regulon and filtered out 

non-concordant TFs (Figure S5). This identified a core set of 13 TFs that satisfied the 

following criteria: 1) the TFs were differentially expressed in ALS MN compared to 

control, 2) the regulons of these TFs showed a significant overlap with the ALS gene 
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expression signature, 3) the TF and its regulon expression was concordant (Fig. 4a). 

Interestingly, HOXA5 was amongst the TFs identified by this analysis, where the 

positive regulon of HOXA5 was downregulated in ALS MN while the negative 

regulon was upregulated in ALS MN (Figure S6). Additionally, HOXA5 itself was 

downregulated in ALS MN (Fig. 4a). To gain further insights into the functions of the 

identified master regulators, we performed gene ontology enrichment analysis on the 

regulons of these TFs (Figure. S7). Strikingly, HOXA1, HOXA5 and HOXD1 regulons 

were enriched in genes related to synaptic structure and signalling as well as 

maintaining the axon cytoskeleton organization (Figure S7). This indicated a direct 

link between inhibition of synaptic functions in ALS MN and 

HOXA1/HOXA5/HOXD1 downregulation. Additionally, the GO enrichment analysis 

linked downregulation of ATF2 to autophagy and PRDM2 to mitochondrial 

structural defects. Thus, our master regulator analysis linked functional deficits in 

ALS MN to downregulation of specific TFs. We asked whether the identified TFs 

regulated each other. Extracting a sub-network comprising only of the master 

regulators revealed that HOX TFs closely interacted within themselves as compared 

to the remaining TFs with HOXA1, HOXA5 and HOXD1 displaying the maximum 

number of connections to other TFs (Fig. 4b). This suggested that synaptic 

dysregulation driven by altered HOX gene expression is a major driver of the disease 

signature in ALS. 

Next, we asked whether these TFs were dysregulated in ALS IN as well. Comparison 

of the gene expression profiles of the identified TFs across MN and IN in both the 

ALS and isogenic cells revealed distinct patterns of expression across the 4 subsets 

(Fig. 4c). Group 1 TFs were expressed at higher levels in control MN compared to IN 

and were significantly downregulated in ALS MN. HOXA1, HOXA5, HOXD1 and 

MAFG belonged to this group where the average expression levels of these TFs were 
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2-10 fold higher in MN but were strongly downregulated (> 5 fold) in ALS MN.  

Group 2 and 3 TF expression levels were similar in control MN and IN, however 

Group 2 TFs were dysregulated specifically in ALS MN (ATF2, PRDM2, TSC22D2, 

ZMIZ1, ZNF134) while Group 3 TFs were dysregulated in both ALS MN and IN 

(HMGB2, HOXD8, ZBTB6) (Fig. 4c). Finally, Group 4 included just SOX4 where the 

expression was lower in control MN compared to IN but significantly elevated in 

both ALS MN and IN (Fig. 4c). The expression pattern of Group 1 TFs suggested that 

these genes could be involved in MN homeostatic networks and downregulation of 

these TFs in ALS MN could, at least in part, explain the relative susceptibility of MN 

compared to IN in ALS. Group 2 TFs regulated core cellular functions such as 

autophagy and mitochondrial respiration, and downregulation of these TFs could 

result in cellular stress due to dysregulation of core cellular pathways. Group 3 and 4 

TFs expression dysregulation was observed in both MN and IN. This suggested that 

these TFs may play an ancillary role in accelerating the degeneration process but may 

not be major drivers of degeneration on their own.  

Dysregulation of TFs in the SOD1 mouse model of ALS 

Since our observations regarding dysregulated TFs in SOD1 ALS were based on 

analyzing iPSC derived from a single patient, we decided to confirm our findings in a 

mouse model of SOD1 ALS. The SOD1 G93A mouse is a well-established animal 

model of ALS that displays degeneration of MN over time accompanied by disruption 

of synaptic functions. A recent study had analyzed gene expression changes in MN 

isolated from the lumbar spinal cord of G93A mice via laser capture microdissection 

and analysed gene expression changes via microarrays (38). The study had used two 

different mouse strains, 129Sv and C57, each expressing the mutant G93A hSOD1 

gene and analysed gene expression changes at various stages over the course of MN 

degeneration. The 129Sv strain  displays fast disease progression while the C57 strain 
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displays slow disease progression. We first analysed gene expression of all candidate 

TFs in this dataset except HOXA1 and HOXA5 as these were not expressed in lumbar 

MN. We did not observe significant differences in TF expression at the pre-

symptomatic stages in either strain (Fig. 5a,5c). However, both Sox4 and Hmgb2 

displayed strong activation in ALS MN at later stages in both strains, in concordance 

to our data (Fig. 5a, 5c). Further, Atf2 dislayed downregulation in the 129Sv strain at 

the endstage of the disease (Fig. 5a). Surprisingly, Prdm2, Zbtb6 and Zmiz1 displayed 

activation in ALS MN in contrast to our observation in iPSC derived MN. Since 

HOXA1 and HOXA5 were not expressed in lumbar MN, we analysed expression of 

other Hox genes relevant to the mouse lumbar spinal region (Fig. 5b, 5d). We 

observed significant downregulation of multiple Hox genes in ALS MN derived from 

both the 129Sv and the C57 strains (Fig. 5b, 5d).  The expression changes in the slow 

progressing C57 strain, though milder, were largely in concordance with changes 

observed in 129Sv (Fig. 5b).  Overall, our analysis indicated the involvement of ATF2, 

SOX4, HMGB2 as well as HOX genes in SOD1 ALS. 

Early drivers of MN degeneration 

We next asked whether any of these TFs displayed dysregulation in the early stages 

of the degeneration process using our iPSC-based model. The expression levels of the 

13 master regulators were assessed in MN differentiated from ALS and control iPSC 

at D30 of differentiation. At this stage, ALS MN did not display any significant 

differences in survival compared to the control MN. Strikingly, HOXA1 and HOXA5 

but not HOXD1 showed significant downregulation in ALS neuronal cultures in spite 

of the assay being performed in bulk (Fig. 6a). HOXD8, PRDM2 and ZBTB6 were 

also downregulated in ALS albeit to a lesser extent (Fig. 6a). We did not observe 

significant upregulation of SOX4 or HMGB2 at this stage. This indicated that HOXA1 

and HOXA5 could be early drivers of neurodegeneration in ALS. Since HOX genes 
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were also observed to be downregulated in the mouse model dataset and our network 

analysis had linked HOX genes to synaptic function, we decided to investigate the 

role of HOX genes in ALS. We next assessed whether the targets of HOXA1 and 

HOXA5, as predicted by the MRA, were downregulated in ALS. In concordance with 

our expectation, several HOXA1/HOXA5 synaptic targets were significantly 

downregulated, although modestly, in ALS neurons at D30 compared to the control 

(Fig. 6b). To confirm a direct role of HOXA1/HOXA5 in regulating synaptic gene 

expression, we exogenously expressed HOXA1 and HOXA5 in the neuronal cell line 

SH-SY5Y and induced these cells to differentiate. Overexpression of HOXA1 and 

HOXA5 significantly upregulated several synaptic genes confirming that HOXA1 and 

HOXA5 activate synaptic gene expression in neurons (Fig. 6c). Next, we asked 

whether synaptic genes are direct targets of these TFs. To answer this question, we 

analysed ChIP-seq data mapping HOXA1 and HOXA5 binding sites in colon 

carcinoma cells(39). For most synaptic genes expressed in the carcinoma cells 

(assessed by the proximal localization of H3K4Me3 or H3K4Me1 signal), the ChIP-

Seq analysis identified either a HOXA1 or HOXA5 site proximal to the promoter or 

within the gene body, thereby indicating that at least a subset of synaptic genes are 

direct targets of these TFs (Fig. 6d). Interestingly, the ChIP-Seq data revealed 

HOXA1 binding sites in close proximity to the HOXA5 promoter and vice versa 

(Figure S8a) suggesting that HOXA1 and HOXA5 display reciprocal regulation. 

Further, we found HOXA1 binding sites proximal to the promoters in 9 out of 13 TFs 

identified by the MRA (Figure S8b). This observation indicated that HOXA1 might 

regulate other master regulators including HOXA5 and suggests the possibility that 

downregulation of HOXA1 could be an early event triggering synaptic breakdown in 

SOD1 ALS MN. 

Discussion 
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ALS patient-derived iPSC have provided unprecedented access to human diseased 

motor neurons enabling researchers to follow the course of degeneration in dish(6). 

Investigation of these models using genomics has uncovered key pathways 

dysregulated in ALS neurons. However, so far, iPSC derived neuronal cultures have 

been typically analysed in bulk. Hence, it has been difficult to assign observed 

pathway aberrations specifically to MN or other neuronal subsets present in the in 

vitro culture. The advent of single cell genomics has now allowed the analysis of 

individual neurons in mixed cultures(24,40). This game-changing technology now 

allows identification of genome-wide gene expression in individual neurons thereby 

enabling neuronal classification into subtypes. We have applied this technology to 

analyse RNA expression in individual neurons derived from ALS iPSC. This not only 

allowed us to distinguish gene expression changes in MN and IN, but also enabled us 

to construct context-specific gene regulatory networks. Network analysis is a 

powerful way to understand how genes interact with each other to bring about 

cellular phenotypes(41,42), in the current context case: neuronal degeneration. By 

building a transcriptional network specific to the ALS landscape, we were able to 

uncover network modules specifically downregulated in ALS MN. Further, by using 

master regulator analysis, we were able to identify TFs that drive these disease-

associated network modules. Significantly, our analysis uncovered a hitherto 

unknown link between HOXA1/HOXA5 downregulation and synaptic dysfunction in 

ALS MN. 

The dying back hypothesis posits that neuropathology is initiated in the distal axons 

and synapses of motor neurons subsequently leading to axon retraction and 

degeneration of the soma proximally(32). In support of this hypothesis, defects in the 

neuromuscular junction and distal axons were identified in mouse models of ALS 

before onset of symptoms(43). Similarly, defects in synaptic activity have been 
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observed in MN derived from ALS associated C9ORF72 repeat expansion and mutant 

TDP43 patient derived iPSC(9,10). Interestingly, these defects were observed on 

prolonged in vitro culture of the MN correlating with onset of degenerative 

phenotypes(9). These observations strongly indicate that synaptic dysfunction is a 

major driver of neurodegeneration in ALS. Synaptic collapse can be a downstream 

effect of either impaired delivery or production of synaptic proteins and mRNAs. 

Impaired delivery can occur secondary to defects in the cytoskeleton leading to 

inefficient axonal transport. Accordingly, neurofilament protein inclusions have been 

observed in mutant SOD1 MN that correlated with onset of neurite collapse(7). On 

the other hand, our data reveals inhibition of the synaptic genes at the 

transcriptional level thereby impairing production. Further, we find direct links 

between transcriptional suppression of the synaptic program and downregulation of 

HOXA1 and HOXA5 transcription factors. 

HOX genes encode homeobox containing transcription factors that play a role in 

spinal cord development(44). Specifically, HOX genes are involved in spinal cord 

patterning along the rostro-caudal axis(22,45). Mutational analyses on mouse Hox 

genes have revealed roles of these factors in defining regional boundaries, MN 

development and axon guidance(22). However, little is known about the expression 

and role of these genes subsequent to MN-specification. Our data indicates that 

mature MN display high levels of HOX gene expression under normal physiological 

conditions. We considered the possibility that the observed expression of HOX genes 

may be due to the fact that iPSC derived MN display a foetal transcriptome. 

However, this is not the case as HOX genes including HOXA5 were found to be 

expressed in adult MN micro-dissected from human spinal cords(46). Additionally, 

both HOXA1 and HOXA5 were found to be expressed in micro-dissected postnatal 

mouse and rat cervical spinal MN(46,47). This strongly suggests that HOX genes 
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have a role beyond MN specification. Our data indicates that HOXA1 and HOXA5 

activate genes involved in synaptic structure and assembly. Additionally, ChIP-Seq 

mapping of binding sites indicates that most of the identified synaptic genes are 

direct downstream targets of these transcription factors. Accordingly, deletion of 

Hoxa5 in post-natal mice was shown to downregulate genes involved in synaptic 

functions(48). Strikingly, we find that expression of these two transcription factors is 

specifically high in MN compared to IN but is strongly downregulated in ALS. This 

suggests one possible mechanism via which mutant SOD1 targets MN homeostatic 

TFs thereby explaining the relative susceptibility of MN to degeneration. The fact 

that these factors are also downregulated in D30 ALS MN cultures before the onset 

of any degenerative phenotypes suggests that these may be the early drivers of 

degeneration. We also find downregulation of ATF2 and PRDM2, TFs that were 

linked to core cellular processes such as oxidative phosphorylation, mitochondrial 

structure and autophagy. It must be noted that inhibition of mitochondrial function 

and autophagy have been directly linked to defects in axonal transport and 

neuromuscular synaptic function(49,50). On the other hand, SOX4 and HMGB2 

were found to be upregulated in our dataset as well as in ALS mouse models. 

However, whether these factors drive degeneration in parallel to or downstream of 

HOXA1/A5, is unclear. The observation that these TFs were not as strongly 

dysregulated in D30 MN indicates their subsequent downregulation or upregulation 

may cause exacerbation of the degenerative cycle set in motion earlier by HOXA1 and 

HOXA5 suppression. Accordingly, knockdown of Hmgb2 has been shown to increase 

viability while replating mouse MN suggesting that Hmgb2 may be a generic stress-

related factor(35). Is HOX gene suppression observed in other regions of the spinal 

cord? We analysed Hox gene expression in microarray expression data from adult 

lumbar MN that were microdissected from the SOD1 G93A mouse model of ALS and 
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observed downregulation of Hox genes relevant to the lumbar rostro-caudal address 

of the spinal cord.  This strongly suggests that mutant SOD1 suppresses HOX gene 

expression across other spinal segments. 

The underlying cause of MN degeneration in ALS is very likely to be multi-factorial 

with multiple drivers collaborating to cause MN demise. Our data indicates that one 

of these drivers could be the inhibition of HOXA1 and HOXA5 that leads to 

suppression of genes required for axonal cytoskeleton and synaptic function, thereby 

resulting in lower availability of synaptic proteins at the neuromuscular junction.  

Conclusions 

Using in-depth analysis of degenerating MN, we have demostrated that TFs 

regulating MN homeostasis are affected in ALS, which may explain why MN are 

highly susceptible to degeneration. Our results display the power of applying single 

cell analysis to iPSC based neurodegenerative models to uncover core transcriptional 

drivers of specific pathways involved in motor neuron degeneration.  We expect that 

wider use of single cell genomics especially multi-omics technologies to measure 

different molecular entities from the same cell (51) combined with network biology 

will help uncover novel regulators that can be targeted using small molecules or gene 

therapy.  
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Figure 1. Single cell RNA-seq of iPSC-derived MN. 

a) Schematic depicting the differentiation protocol used to derive MN from human 

iPSC. The horizontal line depicts the timeline of differentiation with the numbers 

indicating days. Day 0 indicates the first media change to induce differentiation. RA: 

retinoic acid, Pur: Purmorphamine. b) MN at day 30 stain positive for the MN 

markers ISL1, CHAT and NF-H as well as the pan-neuronal markers TUJ1 and 

MAP2. Representative images were derived from differentiation of the isogenic 

control iPSC. c) MN (ISL1+, TUJ1+) were counted at d30 and d44 of the 

differentiation protocol. D44 MN counts were normalized to d30 counts. SOD1 

E100G indicates the MN derived from mutant SOD1 iPSC. SOD1 E100E indicates the 

isogenic corrected control MN. Error bars shown are s.e.m. n=3 independent 

biological replicates. * indicates p-value < 0.01. n.s. indicates not significant.  d) 

Heatmap displaying % of cells expressing specific HOX genes. FPKM threshold was 

set at 0.1. White space indicates that the corresponding HOX paralog is not 

expressed in humans. Coloured solid arrows indicate the HOX code for specific 

spinal segments along the rostro-caudal axis. e) Boxplots displaying distribution of 

expression levels of MN markers (ISL1, CHAT, SLC18A3 or VaCHT), interneuron 
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markers (GAD1, GAD2, ARX) and non-neuronal markers (S100B, SOX9, MKI67) 

across all cells.  

Figure 2. Clustering and classification of single cells into neural 

subtypes. 

a) Flow chart displaying the steps taken to classify single cells into neurons and glia, 

and further classify the neurons into MN and IN. Numbers in brackets denote the 

number of cells retained after each filtering step. b) Heat map displaying clustering 

of all cells based on neurons vs glia classifier gene set. SC3 clustered cells into three 

distinct clusters. The heatmap colours indicate a similarity score between the cells 

based on how frequently they were clustered together using various SC3 clustering 

parameters. Red indicates high, while blue indicates low similarity score. c) 

Expression profiles for neuronal markers (SYP, RBFOX1, SYN1, CHAT, GAD1, GAD2, 

CAMKV) and non-neuronal markers (S100B, SOX9, REST, PAX6 and MKI67) across 

the 3 clusters. We estimated the median expression of each marker gene for each 

cluster and then scaled the values by the highest expression such that they range 

from 0 (not expressed) to 1 (highest expression). Comparison of the neuronal and 

non-neuronal marker profiles indicates that cluster 1 comprises of non-neuronal cells 

while clusters 2 and 3 comprise of neurons. Red represents a value of 1 while blue 

represents 0. d) Heatmap displaying clustering of neurons in the control dataset 

using MN and IN markers into 3 clusters. Red indicates high, while blue indicates 

low cell similarity score as described for panel b. e) Expression profiles for MN 

markers (CHAT, ISL1, SLC18A3, ONECUT1 and PRPH) and IN markers (GAD1, 

GAD2, ARX, DLX1 and DLX6) across the identified clusters in panel d. Scaled FPKM 

values were estimated as described for panel c. Cluster c1 expresses IN markers while 

clusters c2 and c3 express MN markers. f) Heatmap displaying clustering of neurons 

in the ALS dataset using MN and IN markers into 3 clusters. Red indicates high while 
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blue indicates low cell similarity score as described for panel b.  g) Expression 

profiles for MN and IN markers across ALS neuronal clusters in panel f indicate that 

cluster a1 comprises of IN while cluster a2 is comprised of MN. Cluster a3 expressed 

both PRPH and GAD2 but clustered with MN. Hence, this cluster was removed from 

further analysis as it likely represented doublets. h) GO enrichment analysis of genes 

downregulated in ALS MN compared to control MN. i) GO enrichment analysis of 

genes upregulated in ALS MN compared to control MN. 

Figure 3. Network analysis of all neurons using WGCNA 

a) WGCNA identified 13 modules of co-regulated genes across the neuronal dataset. 

Module eigengenes for each module were compared across 4 groups: ALS MN vs 

Control MN, ALS IN vs Control IN, ALS MN vs ALS IN and Control MN vs Control 

IN. Association of a given module with a specific group was estimated using Pearson 

correlations. For each A vs B comparison, a correlation of 1 (red) indicates that the 

module eigengenes were higher in group A compared to group B. A correlation of -1 

(blue) indicates that the module eigengenes were lower in group A compared to 

group B. Correlations with an adjusted p-value < 0.01 were considered significant 

(indicated by red *). b) GO enrichment analysis of modules significantly associated 

with ALS MN. The blue, purple and black modules were found to be negatively 

associated with ALS MN. c) Correlations between TF expression and module 

eigengenes for the blue, purple and black modules. Correlation with an adjusted p-

value of < 0.01 were considered significant. 

Figure 4. Master regulator analysis (MRA) of ALS disease signature. 

a) TFs identified by the MRA as the most significant drivers of the ALS disease 

signature. The red/green heatmap indicates the fold upregulation or downregulation 

of the TF in ALS MN compared to control MN. Red indicates upregulation while 

green indicates downregulation. The grey panel shows the distribution of the targets 
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of each TF (regulon of the TF) amongst the top 500 upregulated and downregulated 

genes in ALS MN. Though the analysis was performed across the entire dataset, only 

the top 500 genes are shown for visualization purposes. TF targets were further 

classified as activated or repressed based on correlation. Yellow vertical ticks indicate 

genes activated by the TF while blue vertical ticks indicate genes repressed by the TF. 

If a TF is downregulated in ALS MN, then it follows that genes activated by the TF 

(yellow vertical ticks) are downregulated in ALS MN (right side of the grey panel). 

Similar logic applies for TFs that are upregulated. Such TFs were deemed to be 

concordant with their regulons. b) Sub-network displaying the interactions between 

the master regulators identified in panel 4a. Only interactions with a FDR < 0.1 were 

used to build this network. The edges denote the significance of the interaction: 

thicker the edge, higher the significance or strength of the interaction between the 

TFs. Node colour indicates whether the TF was upregulated (red) or downregulated 

(green) in ALS MN compared to control MN. Legend displays log2(fold change). c) 

Boxplots displaying the expression profiles of the identified master regulators across 

ALS MN, ALS IN, Control MN and Control IN. TFs were grouped into 4 groups 

(colour coded red, blue, yellow and green) based on their expression profiles. Group 

red showed high expression in control MN compared to control IN and was 

downregulated in ALS MN. Group blue showed similar expression in control MN and 

IN but was lower in ALS MN. Group yellow showed similar expression in control MN 

and IN, but was dysregulated in both ALS MN and IN. Group green was lower in 

control MN compared to IN but increased in both ALS MN and IN compared to 

control. 

Figure 5. Analysis of master regulator TFs in the mouse model of ALS. 

a) Candidate TF and c) Lumbar Hox gene expression changes in ALS vs control MN 

in the 129Sv strain. b) Candidate TF and d) Lumbar Hox gene expression changes in 
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ALS vs control MN in the C57 strain. preSym: pre-symptomatic, Sym: symptomatic. 

Yellow indicates upregulation while cyan indicates downregulation in ALS MN 

compared to control MN. P-values were estimates using Student’s two-tailed t-test. 

P-values were corrected by the Benjamini Hochberg procedure to yield false discover 

rates (FDR). The heatmap displays the FDR for each comparison. 

Figure 6. Inhibition of synaptic genes in ALS MN maybe due to inhibition 

of HOXA1 and HOXA5. 

a) Quantitative RT-PCR to measure expression levels of master regulators in bulk 

ALS MN cultures compared to control at day 30 of differentiation i.e. before onset of 

any degenerative phenotypes. HOXA1, HOXA5, HOXD8, PRDM2 and ZBTB6 were 

downregulated in ALS compared to control. ** indicates p-value < 0.01, * indicates 

p-value < 0.05. Error bars shown are s.e.m. n=3 independent differentiations. P-

values were estimated using Student’s 2-tailed t-test. b) Quantitative RT-PCR to 

measure expression levels of synaptic targets of HOXA1 and HOXA5 in bulk ALS MN 

cultures compared to control at day 30 of differentiation. * indicates p-value < 0.05. 

Error bars shown are s.e.m. n=3 independent differentiations. P-values were 

estimated using Student’s 1-tailed t-test as we expected the synaptic genes to be 

downregulated in ALS MN. c)  Quantitative RT-PCR to measure expression levels of 

synaptic targets of HOXA1 and HOXA5 after exogenously expressing HOXA1 and 

HOXA5 in SH-Sy5Y neuronal cells. Exogenous expression of GFP was used as a 

control and fold changes were estimated relative to control. * indicates p-value < 

0.05. Error bars shown are s.e.m. n=3 independent transfections. P-values were 

estimated using Student’s 1-tailed t-test as we expected the synaptic genes to be 

upregulated after HOXA1/A5 expression. d) Heatmap displays HOXA1 and HOXA5 

binding sites on the genome proximal to synaptic targets as measured by ChIP-Seq 

analysis in colon carcinoma cell lines. Binding sites were classified as not enriched 
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(white), weakly enriched (light blue) and strongly enriched (sky blue). A gene was 

considered a target if an enriched TF binding site was observed within the gene body 

or 10kb upstream from the transcriptional start site or 2.0 kb downstream from the 

transcriptional stop site. A gene was considered expressed if a H3K4Me3 signal was 

observed in the promoter (5 kb from the start site) of that gene or H3K4Me1 signal 

was observed either in the promoter or within the gene body. 
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