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abstract

The differentiation of dementia with Lewy bodies (DLB) from Alzheimer’s disease (AD) using brain perfusion
single photon emission tomography is important but has been a challenge because these conditions have common
features. The cingulate island sign (CIS) is the most recently identified specific feature of DLB for a differential
diagnosis. The present study aimed to examine the usefulness of deep learning-based imaging classification for
the diagnoses of DLB and AD. We also investigated whether CIS was focused by the deep convolutional neural
network (CNN) during differentiation.

Brain perfusion single photon emission tomography images were acquired from 80 patients each with DLB
and with AD and 80 individuals with normal cognition (NL). The CNN was trained on brain surface perfusion
images. Gradient-weighted class activation mapping (Grad-CAM) was applied to the CNN for visualization of
the features that the trained CNN focused on.

Binary classifications between DLB and NL, DLB and AD and AD and NL were 94.69%, 87.81% and 94.38%
accurate, respectively. The CIS ratios closely correlated with softmax output scores for DLB-AD discrimination
(DLB/AD scores). The Grad-CAM highlighted CIS in the DLB discrimination. Visualization of learning process
by guided Grad-CAM revealed that CIS became more focused by the CNN as the training progressed. DLB/AD
score was significantly associated with three core-features of DLB.

Deep learning-based imaging classification was useful not only for objective and accurate differentiation of
DLB from AD but also for predicting clinical features of DLB. The CIS was identified as a specific feature during
DLB classification. The visualization of specific features and learning process could have important implications
for the potential of deep learning to discover new imaging features.

Introduction

Neuroimaging has contributed to the classification of
neurodegenerative dementias such as dementia with
Lewy bodies (DLB) and Alzheimers disease (AD).
Early diagnoses of DLB and AD are important from
prognostic and therapeutic perspectives and to distin-
guish between them is clinically vital. Disease-specific
features have been extracted from brain perfusion
single photon emission tomography (SPECT) images
to assist with differential diagnoses of DLB and AD.
Brain surface perfusion images produced by three-
dimensional stereotactic surface projection (3D-SSP)
[1] have been widely applied to statistical analysis
that supported diagnoses of DLB and AD. A perfusion
decrease in the parietal association cortex (PAC) and
perfusion preservation in primary motor and primary
somatosensory cortex are common in patients with
DLB and AD [2, 3], which has interfered with distin-
guishing DLB from AD on perfusion SPECT images.
An imaging feature for DLB discrimination is occipital
hypoperfusion [4, 5, 6, 7]. Another finding that can

produce difference between DLB and AD is perfusion in
the posterior cingulate cortex (PCC). Hypoperfusion in
PCC is observed in the early stage of AD, whereas the
PCC is relatively preserved in DLB. The phenomenon
of sparing of the PCC relative to the precuneus plus
cuneus, which was termed the cingulate island sign
(CIS) [8] has recently received focus, because it reflects
concomitant AD pathology that impacts the clinical
symptoms of DLB[9, 10]. We found that the CIS peaks
at the stage of mild dementia and gradually disappears
as DLB progress [11]. Thus, the CIS can help to
differentiate DLB from AD especially at the early stage
[8, 12] with some exceptions including posterior cortical
atrophy[13].

Recent advances in deep learning, a main branch
of artificial intelligence that has a deep convolutional
neural network (CNN) capable of automatic feature
extraction from data, have remarkably improved the
performance of image classification and detection [14,
15]. Some algorithms based on deep learning have been
proposed to recognize or differentiate AD and mild
cognitive impairment (MCI) [16, 17]. In contrast, the
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ability of a CNN to discriminate DLB has not been
investigated in detail. Furthermore, a deep learning-
based SPECT interpretation system that could differ-
entiate DLB and AD has not been described. The
biggest disadvantage of deep learning is that the imag-
ing features used by the CNN for classification have
remained unknown. However, gradient-weighted class
activation mapping (Grad-CAM) can produce “visual
explanations” from a CNN, which allows visualization
of areas where a CNN focuses[18, 19].

The present study aimed to objectively and auto-
matically classify brain surface perfusion images via
3D-SSP of DLB, AD and individuals with normal
cognition (NL) using deep 2D-CNN. We also investi-
gated whether a trained CNN can identify the CIS,
which is the most recently recognized imaging feature
of DLB. Furthermore, visualization of learning process
was performed during training of the CNN.

Results

Deep CNN could accurately classify
brain surface perfusion images

Table 1 summarizes the demographic and cognitive
findings of 80 persons each with AD, DLB and NL. The
deep CNN was applied to images (n = 160) including
right-left flipped images from each group of 80 patients
for binary classification (Figure 4). The accuracy of the
classification was calculated by 10-fold cross validation.
The binary differentiations between DLB and NL
(DLB-NL) and DLB and AD (DLB-AD) and AD and
NL (AD-NL) were 94.69±4.90%, 87.81±7.85% and
94.38±5.47% accurate (mean ± standard deviation),
respectively. The AUCs of the ROC for differentiating
DLB-NL, DLB-AD and AD-NL were 98.5%, 93.9% and
97.6% accurate, respectively.

Table 1: Demographic features of study participants
DLB NL AD

Participants (n) 80 80 80
Age (y) 77.7±6.3 77.1±6.8 78.0±4.9

Sex (M/F) 44/36 40/40 36/44
MMSE score 22.8±1.3∗ 29.5±0.6 22.4±1.9∗

SPECT images (n) 160 160 160

Data are shown as numbers or means ± standard deviation. ∗p < 0.05: Tukey-Kramer test compared with NL
(two-sided). DLB, dementia with Lewy bodies; NL, normal cognition; AD, Alzheimer’s disease; MMSE,
mini-mental state examination; SPECT, single photon emission computed tomography.

The CIS ratios significantly correlated
with DLB/AD and DLB/NL scores

Close and weakly significant correlations were found
between CIS ratios and scores for DLB/AD (r = 0.546,

p < 0.001; Figure 1a) and DLB/NL (r = 0.267,
p < 0.05; Figure 1b) in patients with DLB. Thus,
the CIS ratio contributed more to the differentiation
of DLB-AD than of DLB-NL.

Trained CNN identified CIS for DLB
detection

Grad-CAM was applied to the trained CNN to produce
heatmaps and guided Grad-CAM images for DLB-AD
and DLB-NL discrimination. Heatmap clearly high-
lighted CIS in DLB to discriminate DLB and AD
(Figure 2a). Guided Grad-CAM also had a limited
range on image that focused on CIS. Brain perfusion
images with obvious occipital hypoperfusion without

CIS were also correctly labeled as DLB. In such
images, Grad-CAM mostly highlighted cerebellum but
not cortex. Heatmap and guided Grad-CAM for
AD highlighted occipital lobe and cerebellum, but
not PCC (Figure 2b). The CIS was highlighted less
intensely in DLB-NL, than in DLB-AD discrimination
(Figure 2c). Heatmap and guided Grad-CAM for NL
diffusely highlighted occipital lobe, middle cingulate
cortex, PCC and cerebellum (Figure 2d).

Visualization of feature extraction in the
learning process of CNN

Grad-CAM visualized learning process to extract fea-
tures that were useful for differentiation by showing al-
tered images (Figure 3). In CNN trained for DLB-AD

discrimination with 20 epochs, guided Grad-CAM and
original images remained similar, indicating that CNN
could not yet detect specific features. After 60 training
epochs, guided Grad-CAM images became narrower
and contrast became more obvious. After training
with 100 epochs, CNN focused more tightly on CIS in
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Figure 1: Association of CIS ratios with (a) DLB/AD and (b) DLB/NL scores. CIS ratio, DLB/AD score and
DLB/NL score in patients with DLB were 1.11 ± 0.14, 0.809 ± 0.223 and 0.859 ± 0.160, respectively (mean ±
standard deviation). CIS ratios correlated closely with (a) DLB/AD scores (r = 0.546, p < 0.001) and weakly
with (b) DLB/NL scores (r = 0.267, p < 0.05). CIS, cingulate island sign; DLB, dementia with Lewy bodies;
AD, Alzheimer’s disease; NL, normal congition.

DLB (Figure 3ab) and occipital lobe, cerebellum and
sensorimotor area in AD (Figure 3cd).

DLB/AD score was associated with core-
features of DLB

Association between neuroimaging indices (i.e., CIS
ratio, DLB/AD and DLB/NL score) and clinical symp-

toms (i.e., four core-features and verbal memory) were
analyzed. DLB/AD score was significantly correlated
with hallucination, parkinsonism and RBD, but not
with fluctuation (Table 2). In contrast, DLB/NL score
was not correlated with any of them. The CIS ratio
was correlated with hallucination and RBD. DLB/AD
score and CIS ratio were also significantly correlated
with verbal memory.

Table 2: Association between neuroimaging indices and clinical symptoms of DLB
Correlation coefficient

CIS ratio DLB/AD score DLB/NL score
Hallucination 0.307∗ 0.235∗ 0.203
Fluctuation 0.148 0.117 0.078
Parkinsonism 0.104 0.319∗ 0.212
RBD 0.450∗∗ 0.268∗ 0.091
Verbal memory 0.611∗∗ 0.487∗∗ 0.201

∗p < 0.05; ∗∗p < 0.01: Spearman rank correlation coefficients (two-tailed). CIS, cingulate island sign; DLB,
dementia with Lewy bodies; AD, Alzheimer’s disease; NL, normal cognition; RBD, REM sleep behavioral
disorder.

Discussion

Our CNN identified the CIS as an imaging feature
during DLB-AD discrimination. The CIS ratios
closely correlated with DLB/AD scores. Furthermore,
heatmaps generated by the Grad-CAM highlighted the
CIS in DLB. The guided Grad-CAM also focused on
the CIS and became restricted to the CIS as the

learning process progressed. The indirect evidence
of the correlation coefficients might show that typical
DLB has a higher CIS ratio. However, the trained
CNN automatically and objectively identified the CIS
as an important feature of DLB prediction, considering
that the Grad-CAM could visualize the target of CNN
for the classification. The present findings defined the
potential of deep learning to discover new features in
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Figure 2: Visualization of features that the trained CNN recognized. Grad-CAM was applied to CNN trained
with 100 epochs and produced heatmap, heatmap overlay and guided Grad-CAM. Original and Grad-CAM
images from one patient with DLB in the DLB-AD (a) and DLB-NL (c) discrimination, respectively. Original
and Grad-CAM images from a patient with AD in the DLB-AD discrimination (b). Original and Grad-CAM
images from an individual with NL in the DLB-NL discrimination (d). Original images of (a), (b), (c) and
(d) were correctly predicted. CNN, convolutional neural network; DLB, dementia with Lewy bodies; AD,
Alzheimer’s disease; NL, normal congition; Grad-CAM, gradient-weighted class activation mapping.

the field of image diagnosis.

Deep CNN could accurately classify brain surface
perfusion images. The classification accuracies of
DLB-NL, DLB-AD and AD-NL were 94.69%, 87.81%
and 94.38%, respectively. Most previous studies using
deep learning-based classification aimed to diagnose
AD and MCI but not DLB using 3D-CNN, and the
CNN diagnosis of DLB using FDG PET or perfusion
SPECT has never been reported. Suk et al.[17]
showed that the mean accuracies of MRI, FDG PET
and MRI+PET with 3D-CNN were 92.38%, 92.20%
and 95.35%, respectively. Liu et al.[16] generated
accuracies of 90.18% (MRI), 89.13% (PET) and 90.27%
(MRI+PET). Our 2D-CNN with brain surface per-
fusion images extracted from whole brain perfusion
SPECT data reached comparable discriminative accu-

racy. The distribution on brain perfusion and glucose
metabolism images was similar [20]. Brain surface
perfusion images represent extracted features that are
useful for discriminating neurodegenerative dementia.
It provides us a bird’s-eye view. Furthermore, 3D-
CNN needs much more calculation to converge more
parameters than 2D-CNN. Thus, 2D-CNN with brain
surface perfusion images classified more efficiently than
3D-CNN with whole brain images; our method, which
can be operated in a standard computer has potential
to prevail in clinical settings.

The CIS was more involved in the discrimination
of DLB-AD rather than of DLB-NL, considering the
higher correlation coefficients of the CIS ratios and
DLB/AD scores than the CIS ratios and DLB/NL
scores. The Grad-CAM supported this notion by
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Figure 3: Alteration of guided Grad-CAM images in the learning process. Original and guided Grad-CAM
images are from two patients each with DLB and AD. Two patients each with DLB (a) and (b), and AD (c)
and (d). Training accuracies at 20, 60 and 100 epochs were 0.7682, 0.8922 and 0.9850, respectively. Validation
accuracies at 20, 60 and 100 epochs were 0.6250, 0.7500 and 0.8750, respectively. Thus, 100 epochs was regarded
as appropriate for training. The guided Grad-CAM images of both DLB and AD became reduced with increasing
number of epochs. Original images of (a), (b), (c) and (d) were correctly predicted. CIS, cingulate island sign;
DLB, dementia with Lewy bodies; AD, Alzheimer’s disease; Grad-CAM, gradient-weighted class activation
mapping.

focusing on the CIS as an imaging feature of DLB in the
DLB-AD and DLB-NL discrimination. Heatmap and
guided Grad-CAM highlighted the CIS in the DLB-
AD discrimination, while CIS was less highlighted in
the DLB-NL discrimination. As DLB and AD have
common features such as rCBF decreases in the PAC,
classification is usually more difficult for DLB-AD than
DLB-NL. Most patients with DLB have concomitant
AD pathology[21], which reportedly affects the CIS of
patients with DLB. Specifically, the CIS is not obvious
in DLB with abundant AD pathology. Similar to the
CIS ratios, DLB/AD scores in DLB also reflect the
degree of imaging features of AD that are presumably

produced by concomitant AD pathology. Therefore,
low CIS ratios and DLB/AD scores represent a high
degree of concomitant AD pathology. Conversely, high
CIS ratios and DLB/AD scores represent “pure” DLB.
This explains why the CIS ratios had a good correlation
with DLB/AD scores.

The Grad-CAM revealed that the CNN classified
SPECT images in a manner unlike that of humans.
Nuclear medicine physicians simultaneously evaluate
these hypoperfused areas and preserved regions to
differentiate DLB from AD and often consider con-
trast of preserved and decreased areas. In contrast,
heatmaps generated by the Grad-CAM were placed
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only on regions with preserved rCBF in both AD
and DLB in the appropriately trained CNN. Guided
Grad-CAM images became narrower and restricted
to more preserved regions as learning progresses. In
line with these findings, the CNN focused only on
preserved regions to classify brain surface perfusion
images of both DLB and AD. Regardless of the manner
of classification, the CNN still identified the CIS as an
important imaging feature of DLB.

DLB/AD score was significantly correlated with
scores of three core-features, namely hallucination,
parkinsonism and RBD. In contrast, DLB/NL score
was not correlated with any of them. The finding
suggested that DLB/AD scores closely represented
various symptoms of DLB. Similar to DLB/AD score,
CIS ratio was also correlated with hallucination and
RBD. As CIS is reportedly reflects AD pathology, close
correlation of CIS ratio with DLB/AD score indicated
that DLB/AD score also reflects comorbid AD pathol-
ogy. Hallucination was frequently observed in DLB
without AD pathology [22]. Manifestation of RBD
was reportedly associated with less severe concomitant
AD pathology[23]. Our finding was consistent with the
previous reports showing the association between core-
features and AD pathology. Furthermore, DLB/AD
score was also correlated with verbal memory score,
which reflects the fact that memory impairment is
prominent in patients with AD rather than those with
DLB. Thus, DLB/AD score was useful not only for the
discrimination but also for predicting clinical features
of DLB.

Our deep learning system would be beneficial to
health care finance. Dopamine transporter (DaT)
imaging[24] and [123I] MIBG cardiac sympathetic nerve
scintigraphy[25] are authentic in clinically discriminat-
ing DLB from AD and the DLB guidelines treat DaT
imaging and [123I] MIBG scintigraphy as indicative
biomarkers[26]. However, to assess all amnestic pa-
tients using two more nuclear medicine examinations
might be too costly. Brain perfusion SPECT is
more commonly used to detect AD, especially when
a diagnosis is uncertain. Consequently, we suggest
that our diagnostic system and perfusion SPECT could
be initially applied to investigate DLB in patients
with suspected AD before using DaT and cardiac
sympathetic nerve imaging.

This study has several limitations. Each group
comprised only 160 augmented images from 80 in-
dividuals because this study proceeded at a single
institution. However, our brain surface perfusion
images were normalized by 3D-SSP and applied only to
binary classification. Therefore, we considered that the
accuracy was sufficient regardless of the limited number
of patients. The accuracy of FDG PET might be
better, but perfusion SPECT is more accessible, and it
has been proven as a valid alternative in the absence of
FDG PET [27] and images with [123I] IMP shows good
contrast due to its high first-pass extraction[11, 28].
Recent CNN studies have attempted to enhance accu-
racy using various combinations of imaging modalities

[16, 17]. Although the ability of a 2D-CNN with brain
surface perfusion images was comparable to previous
findings with such combinations, future studies should
examine combinations of perfusion SPECT with other
imaging modalities to enhance accuracy.

Conclusions

Deep learning-based imaging classification was useful
not only for objective and accurate differentiation of
DLB from AD but also for predicting clinical features
of DLB. The CIS was identified as a specific feature
during DLB classification. The visualization of specific
features and learning process could have important
implications for the potential of deep learning to
discover new imaging features.

Methods

Participants

Brain perfusion SPECT images of 80 persons each
with DLB, AD and NL were included for diagnostic
classification and CNN learning. Cognitive function
was evaluated using the Clinical Dementia Rating and
the Mini-Metal Status Examination (MMSE). Proba-
ble DLB and probable AD were diagnosed according
to the McKeith criteria[26] and the criteria of the
National Institute for Neurological and Communicative
Diseases Alzheimer’s Disease and Related Disorders
Association [29], respectively. Hallucination, fluctu-
ation of consciousness, parkinsonism and REM sleep
behavioral disorder (RBD) were assessed by Neu-
ropsychiatric Inventory (NPI), Clinician Assessment
of Fluctuation[30], United Parkinson’s Disease Rating
Scale-Motor Score (UPDRS-MS) and Japanese version
of the REM sleep behavior disorder screening ques-
tionnaire (RBDSQ-J)[31], respectively. Verbal memory
was evaluated using sum of the five recall trials (1-5)
of Ray Auditory Verbal Learning Test (RAVLT).

All procedures were approved by the Ethical Re-
view Board at Fukujuji Hospital. We followed the
clinical study guidelines of Fukujuji Hospital, which
conformed to the Declaration of Helsinki (2013). We
provided the healthy volunteers, patients and their
families with detailed information about the study, and
all provided written informed consent to participate.

Brain perfusion SPECT imaging

Persons resting with their eyes closed and ears un-
plugged were assessed by SPECT using a Symbia
Evo Excel with [123I] IMP, a gamma camera (Siemens
Medical Solutions, Malvern, PA, USA) and fan beam
collimators. Fifteen minutes after an intravenous
infusion of [123I] IMP (167 MBq), SPECT images were
acquired in a 128 × 128 matrix with a slice thickness
of 1.95 mm (1 pixel) over a period of 30-40 min. The
images were reconstructed by filtered back projection
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using a Butterworth filter, attenuation was corrected
using the Chang method (attenuation coefficient = 0.1
cm−1) and scatter was corrected using a triple energy
window. Brain surface perfusion images produced
using 3D-SSP[1] were augmented by flipping from left
to right. The regional cerebral blood flow (rCBF) in
regions of interest (ROI) on the PCC, precuneus and
cuneus was measured as described[11]. The mean value
in the bilateral PCC ROI was divided by the mean
value in the bilateral precuneus plus cuneus ROI to
derive CIS ratios from [123I] IMP SPECT images.

Preparation for deep convolutional neu-
ral network

Figure 4 summarizes the architecture of our deep
CNN. The network was built with TensorFlow (Google,
Mountain View, CA, USA), a deep learning framework.
We did not use transfer learning to visualize the process
of learning. After the convolution operation, rectified
linear unit (ReLU) and max-pooling operations pro-
ceeded on the output of convolution. The ReLU kept
positive input values whereas negative input values
were changed to zeros. The max-pooling operation
selected the maximum value and input this value into
a smaller feature map. Input data were extracted from
brain perfusion SPECT images. The input image had
a matrix of 200 × 200 pixels, which is a composite of
2 lateral and 2 medial surface images. Input values
of voxels were rescaled within a range of 0 to 255, and
then the mean scalar value of each SPECT volume was
subtracted. The images were passed through the first
convolutional layer which produced 193 × 193 × 32
output images after the 8 × 8 × 32 convolutional filter.

Thereafter, ReLU activation and max pooling of a 2 ×
2 pool proceeded. The second convolutional layer with
a 5 × 5 × 32 filter and 92 × 92 × 32 output was followed
by the ReLU activation and max-pooling layers. The
third convolutional layer with a 3 × 3 × 64 filter and 44
× 44 × 64 output was followed by the ReLU activation
and max-pooling layers. The last convolutional layer
with a 5 × 5 × 32 filter and 18 × 18 × 32 output
was followed by the ReLU activation and max pooling
layers that produced a 9 × 9 × 32 output. Thereafter, a
fully connected layer generated output, then a softmax
function was applied to discriminate two labels. The
softmax produces two numerical values of which the
sum becomes 1.0. The output values for the binary
differentiation of DLB-NL, DLB-AD and AD-NL are
expressed as DLB/NL, DLB/AD and AD/NL scores,
respectively. We employed binary discrimination to
know if CNN recognizes CIS differently in discriminat-
ing DLB-AD and DLB-NL. The network was trained
to minimize cross entropy losses between the predicted
and true diagnoses based on the images. The CNN was
trained for 100 epochs. The momentum parameter was
0.9 and the learning rate was 0.0001. To visualize the
decision made by the CNN, Grad-CAM was applied
to the CNN. The Grad-CAM uses the gradients of
any target flowing into the final convolutional network
to produce heatmaps that highlight important regions
upon which the CNN focuses. A guided Grad-CAM
was created by fusing existing pixel-space gradient
visualizations with the Grad-CAM to achieve both
high-resolution and class-discrimination. We also used
Grad-CAM to visualize learning process of the CNN
trained with perfusion images.
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Figure 4: Architecture of deep convolutional neural network
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Statistics

The diagnostic and predictive accuracy of the CNN
was calculated from 10.0% data from the train-
ing/validation set and 10-fold cross validation. An
original images and its right-left flip image were in a
same set of training or validation. Binary classification
scores were evaluated using the receiver operating
characteristic (ROC) curve analysis and area under
the curve (AUC). Correlations between CIS ratios
and DLB/AD or DLB/NL scores were assessed using
Spearman rank correlation coefficients. All statistical
analyses were performed with EZR (Saitama Medical
Center, Jichi Medical University, Saitama, Japan),
which is a graphical user interface for R (The R Foun-
dation for Statistical Computing, Vienna, Austria).
More precisely, it is a modified version of R commander
designed to add statistical functions frequently used in
biostatistics.
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