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Abstract: In order escape from local fitness peaks, a population must navigate across valleys of1

low fitness. How these transitions occur, and what role they play in adaptation, have been subjects2

of active interest in evolutionary genetics for almost a century. However, to our knowledge, this3

problem has never been addressed directly, by considering the evolution of a gene, or group of genes,4

as a whole, including the complex effects of fitness interactions among multiple loci. Here, we use a5

precise model of protein fitness to compute the probability P(s, ∆t) that an allele, randomly sampled6

from a population at time t, has crossed a fitness valley of depth s during an interval [t− ∆t, t] in7

the immediate past. We study populations of model genes evolving under equilibrium conditions8

consistent with those in mammalian mitochondria. From this data, we estimate that genes encoding9

small protein motifs navigate fitness valleys of depth 2Ns & 30 with probability P & 0.1 on a time10

scale of human evolution, where N is the (mitochondrial) effective population size. The results11

are consistent with recent findings for Watson–Crick switching in mammalian mitochondrial tRNA12

molecules.13
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1. Introduction15

The effect of a mutation on the fitness of an organism usually depends on the genetic background,16

or context in which it occurs, a phenomenon known as epistasis [1,2]. Because of this, the fitness17

landscape of a gene, a group of genes, or an organism will contain many isolated peaks and valleys18

[3,4], resembling the energy landscape of a physical system such as a glass. Under selection pressure, a19

population tends to evolve along a path of steepest ascent in fitness until it arrives in the neighborhood20

of a local fitness peak; In order to escape a sub–optimal fitness peak, the population, or some part of21

the population, must traverse across a valley of lower fitness. How such transitions occur [1,4–8], and22

how they relate to adaptation [9] have remained subjects of active interest in evolutionary genetics for23

almost a century.24

The most basic example of valley crossing is realized in the compensatory interaction of25

individually deleterious mutations at two genetic loci – for instance, as might result from the physical26

interaction between amino acids in a protein, or a pair of nucleotides in an RNA molecule [5]. The27

archetypal model of this situation consists of a pair of diallelic loci with initial and final states AB28

and A′B′ respectively; Mutations to A′ and B′ incur a fitness cost s relative to AB when introduced29

individually, but are neutral when introduced jointly. Kimura was the first to study this problem30

using the diffusion approach [5,10], and he found that deep fitness valleys could be crossed on a31

relatively short time scale if mutation rates are sufficiently large – specifically, when 2Nµ = 1 where N32

is the population size and µ is the mutation rate per gene per generation. In this case, fitness valleys33

are navigated by a process known as stochastic tunneling [11], in which a small fraction of genes34

Submitted to Genes, pages 1 – 10 www.mdpi.com/journal/genes

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 29, 2019. ; https://doi.org/10.1101/592444doi: bioRxiv preprint 

http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
http://www.mdpi.com/journal/genes
https://doi.org/10.1101/592444
http://creativecommons.org/licenses/by-nd/4.0/


Version March 28, 2019 submitted to Genes 2 of 10

accumulate in an intermediate state, are compensated by a second mutation, and ultimately proceed to35

fixation – the intermediate acting as a kind of stepping stone [12]. The situation studied by Kimura36

closely resembles the process of Watson–Crick switching between favorably paired nucleotides in37

RNA stem sites, and in particular, switching in mammalian mitochondrial (mt) tRNA molecules where38

stochastic tunneling is significant. Meer et al. investigated this problem somewhat recently [13], and,39

using Kimura’s model, they found that mammalian mt tRNA switches may navigate valleys of depth40

even as large as 2Ns ' 50 (here, we assume that, for equal numbers of males and females, the effective41

population size for mitochondrial genes is one fourth the effective population size for nuclear genes42

[14,15]). In support of this result, Meer et al. obtain essentially the same estimate for 2Ns from the43

frequency (p) of disrupted Watson–Crick pairs using the relation p = µ/s for mutation–selection44

balance [16]. To put this number into context, it is at least ten times larger than would be expected if45

the same model had evolved by sequential fixation of deleterious and compensatory mutations (i.e., as46

would be expected when µN � 1 [17]).47

While these estimates may be accurate, it is difficult to reconcile the evolutionary dynamics of48

folded biomolecules with two–locus models. Naturally evolving genes encoding proteins and RNA49

molecules are always faced with a complex spectrum of possible routes on their fitness landscapes,50

and it is these spectra that ultimately determine the rate for crossing valleys of a given depth. Even for51

tRNA molecules, compensation of disrupted Watson–Crick pairs seems to occur more often through52

complex, indirect mechanisms than through direct compensation to restore Watson–Crick pairing [18].53

Proteins are more connected objects than RNA molecules (i.e., with more opportunities for epistatic54

interactions between loci), and the greater complexity of protein sequences is almost certain to present55

a more complex spectrum of possible routes to a protein gene in which valleys (ravines, etc.) are56

entered and exited in multiple steps (Figure A1).57

Are the large effects predicted by Meer et al. common in biomolecular evolution? To our58

knowledge, this kind of question has never been asked directly, by considering the problem of valley59

crossing for a protein or RNA molecule as a whole, including the complex effects of fitness interactions60

between multiple loci. Here, we simulate the evolution of a small protein motif using an exact fitness61

model that is simple enough to allow for adequate sampling of valley crossing statistics. We evolve62

populations of model genes by haploid Wright–Fisher dynamics across a range of mutation rates63

spanning the sequential fixation (µN � 1) and stochastic tunneling (µN ≥ 1) regimes, and we record64

the mutational paths of all alleles in our populations. Using this data, we compute the probability65

P(s, ∆t) that an allele, randomly sampled from a population at time t, has crossed a fitness valley of66

depth s during a time interval [t− ∆t, t] in the immediate past. Surprisingly, we find that, even on67

the time scale of human evolution, genes encoding small protein motifs evolving under conditions68

consistent with mammalian mitochondria already navigate fitness valleys of depth 2Ns & 30 with69

probability P & 0.1, in rough agreement with the estimate for Watson–Crick switching in mt tRNAs70

provided by Meer et al.71

2. Methods72

Epistatic effects play an essential part in protein evolution [19–24], and because these effects73

depend on the relative probabilities of conformations in protein ensembles [25–27], it is important to74

select a model in which the salient properties of protein ensembles are retained as much as possible.75

Ultimately, we found that we could obtain sufficient data for valley crossing statistics in a reasonable76

period of time using small lattice proteins. Lattice models have been used extensively in studies of77

protein folding and evolution, and the model we employ here is similar to one recently used to explore78

the effects of epistasis on the predictability of protein evolutionary pathways [25].79

Below, we evolve lattice proteins under equilibrium conditions to maintain marginal stability in80

a specific folded (native) conformation. The stability of a protein is measured, as usual, by the free81

energy difference between the native conformation and the rest of the conformational ensemble,82
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∆GN = EN + ln

[
−e−EN + ∑

γ

e−Eγ

]
, (1)

where Eγ is the energy of conformation γ, the subscript N denotes the native conformation, and factors83

of temperature are absorbed into the definition of energy; The energy of a conformation is determined84

from its amino acid contacts by empirical amino acid contact potentials [28] (as a result, energies are85

defined in units of RT ' 0.6 kcal / mol).86

We assume that mis–folded proteins are non–functional, and otherwise toxic to an organism87

[29–31]. In this case, protein fitness can be defined by the probability of finding an individual protein88

folded in its native conformation [25,32],89

PN = 1 /
[
1 + e∆GN

]
. (2)

However, since most naturally occurring proteins are only marginally (as opposed to maximally) stable90

[24], we decided to model fitness using a logistic function91

w = 1 /
[
1 + e−k(PN − 1/2)

]
(3)

where k = 15 (Figure S1). Under this condition, evolved genes in our simulations typically encode92

proteins with PN > 0.75 or, equivalently, ∆GN < −1 [33].93

We evolve populations of protein genes by plain Wright–Fisher dynamics, with discrete94

generations, fixed population size, and no recombination [34]. In each generation, a Poisson random95

number of nucleotide sites with mean µN are selected at random; The sites are subjected to random96

mutation, the fitness values of mutant alleles are computed, and N offspring are selected from the97

population to form the next generation. The probability that an allele i survives to the next generation98

is p′i = wi pi / ∑j wj pj, where pi is the frequency of allele i in the current generation [35].99

In the absence of recombination, each allele in a population has a unique mutational history100

extending back to the origin of a simulation. To describe the statistics of valley crossing, we record101

the histories of all alleles, and we compute P(s, ∆t), the probability that an allele, randomly sampled102

from the population at time t, has crossed a fitness valley of depth s during the time interval [t− ∆t, t],103

where time is measured in generations. Depending on its length, an interval [t− ∆t, t] along the fitness104

history of an allele may contain a number of (perhaps nested) valleys of varying depth (Figure A1).105

However, rather than attempt to record each valley as an individual event, we simply define s as106

the maximum valley depth traversed along an interval (see Appendix). A peculiar feature of this107

approach is that, for small values of s, we can choose an interval length ∆t long enough that P(s, ∆t) is108

a decreasing function of ∆t (i.e., since larger values of s are more likely to occur on longer time scales).109

However, below we will be concerned mainly with large values of s and time scales ∆t that are far110

from this sort of turnover region.111

3. Results112

To obtain data for P(s, ∆t) in a reasonable period of time, we limit our study to chains with at113

most 16 amino acids (802, 075 conformations unrelated by symmetry [36]). The fitness landscapes of114

longer chains will clearly differ, however, we expect that, within reason, results for somewhat longer115

chains (e.g., 32 amino acids) will be similar, given proper adjustments to the mutation rate per gene µ116

(see below).117

We simulate protein evolution for different chain lengths (L ≤ 16), native folds (Figures S2 and118

S5), population sizes (N ≤ 103), and mutation rates (µN ≤ 2). In each situation, we conduct replicate119

simulations in parallel on multiple processors of a high performance computer [37]. Each processor120
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begins with a monomorphic population constructed from N copies of a gene encoding a randomly121

selected amino acid sequence. Each population is then equilibrated until an allele reaches fixation with122

PN > 0.75. After this point, alleles are sampled at random from a population every 64N generations123

and their histories are recorded. For the most computationally intensive problems (i.e., for the largest124

chain lengths and mutation rates), we are able to generate 105 samples in about ten days using 128125

processors. For chains with 12 amino acids (15,037 conformations), samples can be obtained much126

more rapidly, and results for chains of 12 and 16 amino acids are actually very similar (computer code127

and sample data are available from the authors on request).128
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Figure 1. Distribution of beneficial fitness effects, P(∆w > x). The distribution of deleterious fitness
effects, P(−∆w > x), is partially included in the upper right corner of the figure for reference. The
plots are generated by randomly mutating evolved sequences sampled from simulations with N = 100,
200, 500, and 1000 (the width of a plot increases with decreasing N). If the data for ∆w in each plot
is rescaled by the appropriate factor of N, the distributions P(N∆w > x) roughly collapse to a single
curve. For N = 1000, about 47 percent of the mutations are strongly deleterious (N∆w < −5), about
28 percent are nearly neutral (−1 < N∆w < 1), and about 0.7 percent are beneficial (N∆w > 1),
consistent with results obtained by Tamuri et al. [38] for mammalian mitochondrial proteins (Tamuri et
al. use logarithmic fitness differences in their work, however, this distinction can be neglected when
ln(1 + x) ' x [39]).

Since effective population size varies substantially across mammalian species, it is important to129

ask whether simulations conducted for a particular population size can be used to estimate P(s, ∆t) for130

larger (or smaller) populations evolving at the same overall rate µN, as expected from diffusion theory131

[40]. To answer this question, we compared the scaled distributions P(Ns > x, ∆t) for population132

sizes N = 100, 200, 500 and 1000. For a fixed mutation rate µN, we find that plots of P(Ns > x, ∆t)133

roughly collapse to the same curve. As a result, we can estimate P(s, ∆t) for realistic populations using134

a much smaller population size, which greatly reduces the amount of time spent on the simulations.135

The reason for this is fairly simple – the local structure of the fitness landscape, as measured by e.g.136

the distribution of fitness effects or the probability of compensatory neutral mutations, scales in a137

similar way with population size; As population size increases, the landscape in the neighborhood of138

an evolved sequence becomes less rugged in proportion to N.139

Results of this exploration are described in Figures 1–2. In Figure 1, we plot the distributions140

of beneficial and deleterious fitness effects, P(∆w > x) and P(−∆w > x), respectively. Each pair of141

plots corresponds to a simulation for one of the population sizes listed above (the width of a plot142
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increases with decreasing N). The results describe proteins with 12 amino acids folding to the native143

conformation in Figure S2, and the overall mutation rate in each simulation is µN = 1.144

To generate data for Figure 1, we sampled the landscape around evolved genes using a simple145

procedure that mimics error–prone polymerase chain reactions [41]; The procedure begins from a large146

number of copies of an evolved gene. A Poisson random number of random mutations are applied147

to each copy, and the results are sorted by the number of mis–sense mutations (i.e., neglecting back148

mutations). For each simulation, we randomly selected 102 evolved sequences. Each evolved sequence149

was then used to generate 104 random single amino acid mutants, for a total of 106 mutants per plot.150

As is evident by closer inspection of Figure 1, the probability of a beneficial (or deleterious)151

mutation with effect ∆w > x decreases almost linearly with increasing population size; The scaled152

distributions P(N∆w > x) for different population sizes roughly collapse onto a single curve. A153

similar result is obtained for the distribution of compensatory neutral double mutants P(s > x) (Figure154

S3). The collapse is shown explicitly for the valley crossing probability P(s > x, ∆t) in Figure 2.155
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Figure 2. Probability, P(S > x, ∆t), that an allele, randomly sampled at time t, has crossed a valley of
depth S = 2Ns in the interval [t− ∆t, t] for ∆t = 128N and µN = 1. The data describe the same model
as in Figure 1. Plots for population sizes N = 100, 200, 500, and 1000 are colored red, blue, green, and
orange, respectively.

Given this result, we now restrict our attention to populations with N = 200 and proteins with156

16 amino acids. To compare our results to those of Meer et al., we require the site mutation rate in157

our model to agree with the pedigree rate for the control region in human mitochondria used in their158

estimate for mammalian mt tRNA molecules – about 1× 10−6 per site per year. Assuming a typical159

length of about 80 nucleotides for tRNA molecules, a generation time of 20 years, and a (mitochondrial)160

effective population size of N = 2, 500, we arrive at an overall mutation rate of µN ' 4 for human mt161

tRNA genes. To obtain the same site mutation rate for protein genes with 48 nucleotides (16 amino162

acids), we need an overall mutation rate of about µN ' 2.163

We plot P(S > x, ∆t) versus ∆t for this situation in Figure 3, where S = 2Ns. The range of the164

plot, ∆t ≤ 128N, roughly corresponds to the time scale of human evolution (about six million years).165

Over this time scale, P(S > x, ∆) is roughly linear in ∆t for x & 10. The time scale for mammalian166

evolution is much longer (on the order of tens of millions of years), however, on human time scales, the167

frequencies of large events in our model are already approaching the ten percent levels observed for168

Watson–Crick switching events in mammalian mt tRNA phylogenies [13]. For example, the probability169
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of sampling an allele that has crossed a fitness valley of depth S > 9.1 for ∆t = 128N is about 0.36, the170

probability for S > 17.8 is about 0.07, and the probability for S > 27.8 is already about 0.03.171
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Figure 3. P(S > x, ∆t) versus ∆t for x ' 9.1 (circles), 17.8 (squares) and 27.8 (crosses). The results
describe proteins with 16 amino acids folding to the native conformation in Figure S5. Each data point
is determined from over 105 allele histories. The range of the plot, ∆t ≤ 128N, corresponds to the time
scale of human evolution (about six million years). The dashed lines (power law fits to the data) are
very close to linear, increasingly so for larger values of x (see Appendix for more details).

Clearly, these numbers will continue to increase for larger values of ∆t and larger mutation rates172

µN (Figure 4). In addition, P(S > x, ∆) will also increase with chain length since, for a constant site173

mutation rate, the mutation rate per gene µ is proportional to chain length. If we assume that the174

fitness landscapes of proteins with 16 amino acids can be used to represent the landscapes of larger175

chains, then e.g. doubling the mutation rate per gene will have the same effect as doubling the chain176

length to obtain a protein encoded by the same amount of genetic material as a tRNA molecule or177

small protein motif [42]. This is not an unreasonable assumption, since, as we have noted earlier (see178

the captions to Figures 1 and S3), the local structures of fitness landscapes in the model, as measured179

by the scaled distribution functions P(N∆w > x) and P(Ns > x), are already similar to those inferred180

from real proteins with much longer sequences. In this case, extrapolating from the data in Figure 4,181

we find that the probability of sampling an allele that has crossed a valley of depth S > 27.8 over a182

time interval ∆t = 128N increases to about P ' 0.1. Thus, even neglecting the anticipated increase in183

P(S > x, ∆) for ∆t > 128N, the results for small protein motifs are already consistent with those of184

Meer et al.185

As a final note, it is important to remark that the deepest valleys navigated by alleles in our186

simulations actually correspond to events in which a deleterious mutation is, to a major extent,187

compensated by a mutation back to a similar amino acid type at the same site (see Figure S6). It is also188

worth noting that local fitness peaks sampled at various points in our simulations (by steepest ascent189

in fitness, starting from a randomly sampled sequence) are often separated by deep fitness valleys, or190

ravines.191

4. Discussion192

Does the model provide an accurate picture of fitness valley crossing for small protein motifs?193

This question is very difficult to answer due to the extreme complexity of protein fitness landscapes,194

and the unknown effects of varying host genetic backgrounds experienced by protein genes. However,195
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from basic principles, it appears that the model is roughly accurate: Local features of protein fitness196

landscapes, such as the distribution of fitness effects, can be inferred from protein sequences by fitting197

a population dynamics model to branches of a phylogenetic tree [38] such that background effects are198

accounted for by allowing the parameters of the model to vary among branches. Tamuri et al. have199

used this type of approach to estimate the distribution of fitness effects for mammalian mitochondrial200

proteins [38], and our results for P(N∆w > x) are in good agreement with their data (Figure 1). Given201

the similar nature of fitness conditions in each system (i.e., that proteins are also polymers required to202

fold into a specific shape in order to function), it is seems reasonable to expect that the topographies of203

model fitness landscapes resemble those of small protein motifs.204

0.1 1

0.0001

0.01
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Δ
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µN

Δt = 128N

Figure 4. P(S > x, ∆t) versus µN for x ' 9.1 (circles), 17.8 (squares) and 27.8 (crosses). The results
describe the same simulation data as Figure 3.

Longer chains with more developed core structures, and more restrictive fitness conditions such205

as binding to proteins within a larger domain, may lead to qualitatively different results due to the206

potential for larger compensatory effects [27], and the suppression of substitution rates in the core and207

binding interface regions. In addition, much larger mutation rates can occur in micro–organisms such208

as viruses [43], and our results suggest that, under these conditions, fitness valley crossing will be more209

pronounced. RNA viruses such as HIV–1 are also subject to high rates of recombination [44,45], which210

may interfere with valley crossing [5,6]. Because the computational cost of our simulations increases211

in proportion to the number of mutations (i.e., the number of fitness calculations), a full study of the212

model for virus proteins may be challenging. However, we hope to address these problems in future213

work.214

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/xx/1/5/s1,215

Figure S1: Plot of the logistic fitness function defined in Equation (3); Figure S2: Native fold studied in Figures 1–2;216

Figure S3 : Plot of P(s > x) for the native fold studied in Figures 1–2; Figure S4: Plot of P(S > x) for an inferred217

Potts model of cytochrome c oxidase subunit 2; Figure S5: Native fold studied in Figures 3–4; Figure S6: Plot of218

P(S > x, ∆t) for the subset of deleterious mutations compensated by a mutation back to a similar amino acid type219

at the same site.220
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Appendix227
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Figure A1. Fitness history of an allele between adjacent fixation events (solid line) sampled from a
simulation with N = 103 and µN = 1. Circles and dashed lines indicate the configuration of points
which maximize the valley depth s = min{wi − wj, wk − wj}.

To compute the maximum valley depth traversed along an interval (Figure A1), we consider all228

possible placements of three points, wi, wj and wk, where i < j < k denote the occurrence times of229

mutations. For a given placement of points, valley depth s is defined as the smaller of the two fitness230

differences wi − wj or wk − wj. The maximum valley depth can then be expressed as,231

max s = maxi<j<k
[
min{wi − wj, wk − wj}

]
. (A1)

To avoid complicating our expressions, we use the plain symbols s and S = 2Ns to denote maximum232

valley depth in P(s > x, ∆t) and P(S > x, ∆t).233

The structure of P(S > x, ∆t) can be explained roughly as follows: As we noted earlier, an interval234

[t− ∆t, t] along a fitness trace may contain a number of distinct valleys of varying depth. Valleys235

of large depth are rare on the time scale of human evolution and short lived. As a result, when x is236

large, doubling ∆t doubles the probability that a valley with depth greater than x will occur within an237

interval [t− ∆t, t], and P(S > x, ∆t) increases linearly with ∆t. This will be true as long as ∆t is not238

too large or too small; For large enough ∆t, P(S > x, ∆t) will begin to saturate (i.e., P→ 1), at which239

point the slope of the curve, ∂P(S > x, ∆t)/∂∆t, tends to zero, and linearity is lost. Conversely, for240

small enough ∆t, the typical duration of an event (valley of depth greater than x) will begin to exceed241

∆t, and again ∂P(S > x, ∆t)/∂∆t will begin to change. This change will depend both on x and the242

topography of valleys with depth greater than x, however, we have not explored this issue in detail.243
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