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Abstract  1 

Genome-wide association studies (GWAS) have identified thousands of genomic regions 2 

affecting complex diseases. The next challenge is to elucidate the causal genes and mechanisms 3 

involved. One approach is to use statistical colocalization to assess shared genetic aetiology 4 

across multiple related traits (e.g. molecular traits, metabolic pathways and complex diseases) 5 

to identify causal pathways, prioritize causal variants and evaluate pleiotropy. We propose 6 

HyPrColoc (Hypothesis Prioritisation in multi-trait Colocalization), an efficient deterministic 7 

Bayesian algorithm using GWAS summary statistics that can detect colocalization across vast 8 

numbers of traits simultaneously (e.g. 100 traits can be jointly analysed in around 1 second).  9 

We performed a genome-wide multi-trait colocalization analysis of coronary heart disease 10 

(CHD) and fourteen related traits. HyPrColoc identified 43 regions in which CHD colocalized 11 

with ≥1 trait, including 5 potentially new CHD loci. Across the 43 loci, we further integrated 12 

gene and protein expression quantitative trait loci to identify candidate causal genes. 13 
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Introduction  1 

Genome wide association studies (GWAS) have identified thousands of genomic loci 2 

associated with complex traits and diseases (https://www.ebi.ac.uk/gwas/). However, 3 

identification of the causal mechanisms underlying these associations and subsequent 4 

biological insights have not been as forthcoming, due to issues such as linkage disequilibrium 5 

(LD) and incomplete genomic coverage. One approach to aid biological insight following 6 

GWAS is to make use of functional data. For example, candidate causal genes can be proposed 7 

when the overlap in association signals between a complex trait and functional data (e.g. gene 8 

expression) is a consequence of both traits sharing a causal variant, i.e. the association signals 9 

for both traits colocalize. The abundance of significant associations identified by GWAS means 10 

that chance overlap between association signals for different traits is likely1. Consequently, 11 

overlap does not by itself allow us to identify causal variants1,2. Statistical colocalization 12 

methodologies seek to resolve this. By constructing a formal statistical model, colocalization 13 

approaches have been successful in identifying whether a molecular trait (e.g. gene expression) 14 

and a disease trait share a causal variant in a genomic region3–7, and potentially prioritise a 15 

candidate causal gene. Recently it has been proposed that colocalization methodologies can be 16 

further enhanced by integrating additional information from multiple intermediate traits linked 17 

to disease, e.g. protein expression, metabolite levels8. The underlying hypothesis of multi-trait 18 

colocalization is that if a variant is associated with multiple related traits then this provides 19 

stronger evidence that the variant may be causal8. Thus, multi-trait colocalization aims to 20 

increase power to identify causal variants. We show that by using multi-level functional datasets 21 

in this way can reveal candidate causal genes and pathways underpinning complex disease. 22 

A number of statistical methods have been developed to assess whether association signals 23 

across a pair of traits colocalize3–7. These methods predominantly assess colocalization 24 

between a pair of traits using individual participant data9,10, limiting their applicability. In 25 
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contrast, the COLOC algorithm uses GWAS summary statistics2. This approach works by 1 

systematically exploring putative “causal configurations”, where each configuration locates a 2 

causal variant for one or both traits, under the assumption that there is at most one causal variant 3 

per trait. COLOC was recently extended to the multi-trait framework, MOLOC8. The authors 4 

achieved a 1.5-fold increase in candidate causal gene identification when a third relevant trait 5 

was included in colocalization analyses relative to results from two traits. However, the 6 

approach is computationally impractical beyond 4 traits due to prohibitive computational 7 

complexity arising from the exponential growth in the number of causal configurations that 8 

must be explored with each additional trait analysed.  9 

Here we present a computationally efficient method, Hypothesis Prioritisation in multi-trait 10 

Colocalization (HyPrColoc), to identify colocalized association signals using summary 11 

statistics on large numbers of traits. The approach extends the underlying methodology of 12 

COLOC and MOLOC. Our major result is that the posterior probability of colocalization at a 13 

single causal variant can be accurately approximated by enumerating only a small number of 14 

putative causal configurations.  Moreover, HyPrColoc is able to identify subsets (which we 15 

refer to as clusters) of traits which colocalize at distinct causal variants in the genomic locus by 16 

employing a novel branch and bound divisive clustering algorithm.  We applied HyPrColoc 17 

genome-wide to coronary heart disease (CHD) and many related traits11,12, to identify genetic 18 

risk loci shared across these traits.  19 

Results 20 

Overview  21 

HyPrColoc is a Bayesian method for identifying shared genetic associations between complex 22 

traits in a particular gene region using summary GWAS results. HyPrColoc provides two 23 

principal novelties: (i) Efficient computation of the posterior probability that all m traits share 24 
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a causal variant (which we refer to as the posterior probability of full colocalization, PPFC); 1 

and (ii) partitioning of traits into clusters, such that each cluster comprises traits sharing a causal 2 

variant. HyPrColoc only requires regression coefficients and their corresponding standard 3 

errors from summary GWAS (for binary traits these can be on the log-odds scale, Methods). 4 

The approach makes three key assumptions: (i) for non-independent studies, that the GWAS 5 

results are from the same underlying population, i.e. that the LD pattern is the same across 6 

studies, (ii) that there is at most one causal variant in the genomic region for each trait (we 7 

assess limitations of this assumption when there are multiple underlying variants in the 8 

Discussion/Supplementary Material), and (iii) that these causal variants are either directly 9 

typed or well imputed in all of the GWAS datasets2,8.   10 

Description of the HyPrColoc method 11 

We define a putative causal configuration matrix 𝑆 to be a binary 𝑚 × 𝑄 matrix, where 𝑚 is 12 

the number of traits and 𝑄 is the number of variants. 𝑆𝑖𝑗 is 1 if the 𝑗𝑡ℎ variant is causal for the 13 

𝑖𝑡ℎ trait and 0 otherwise (Supplementary Material). A hypothesis uniquely identifies traits 14 

which share a causal variant, traits which have distinct causal variants and traits which do not 15 

have a causal variant. Except for the null hypothesis (𝐻0) of no causal variant for any trait, 16 

hypotheses such as “ 𝐻𝑚 : all 𝑚  traits share a causal variant” correspond to multiple 17 

configuration matrices, 𝑆  (Figure 1). By considering the set of configurations to which a 18 

hypothesis corresponds, the posterior odds of the hypothesis against the null hypothesis can be 19 

computed. For example, let 𝒮𝑚  denote the set of configurations for hypothesis 𝐻𝑚  and 𝑆0 20 

denote the single configuration for 𝐻0, then the posterior odds for the hypothesis that all traits 21 

colocalize to a single causal variant is given by,     22 

𝑃(𝐻𝑚|𝐷)

𝑃(𝐻0|𝐷)
=  ∑

𝑃(𝐷|𝑆)

𝑃(𝐷|𝑆0)
𝑆∈𝒮𝑚

×
𝑝(𝑆)

𝑝(𝑆0)
 , 23 
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where 𝐷 represents the combined trait data, the first term in the summation is a Bayes factor 1 

and the second term is a prior odds2,8. To identify a candidate causal variant across the 𝑚 traits, 2 

i.e. to perform multi-trait fine-mapping, we locate the configuration 𝑆∗  satisfying 3 

max
𝑆∈𝒮𝑚

𝑃(𝑆|𝐷) = 𝑃(𝑆∗|𝐷). If the summary data for the genetic associations between traits are 4 

independent, then the Bayes factor for each configuration 𝑆 can be computed by combining 5 

Wakefield’s approximate Bayes factors13 for each trait in the configuration (Methods). If the 6 

summary data between traits are correlated because a subset of the participant data was used in 7 

at least two of the GWAS analyses, then an extension to Wakefield’s approximate Bayes 8 

factors, which jointly models the trait associations, can be employed (Methods). For a given 9 

hypothesis 𝐻 and set of corresponding configurations 𝒮𝐻, the prior probability of configuration 10 

𝑆, 𝑝(𝑆),  can either be equal for all 𝑆 ∈ 𝒮𝐻 , or can be defined as a product of variant-level priors 11 

(Methods). Our variant-level prior extends that of COLOC2 and MOLOC8 to a framework that 12 

is suitable for the analysis of large numbers of traits. This approach requires specification of 13 

only two interpretable parameters: 𝑝, the probability that a variant is causal for one trait, and 𝛾, 14 

where 1 − 𝛾 is the conditional probability that a variant is causal for a second trait given it is 15 

causal for one other trait (Methods).  16 

Efficient computation of PPFC  17 

For a pre-specified genomic region comprising 𝑄 variants, the aim is to evaluate the 𝑃𝑃𝐹𝐶, 18 

𝑃(𝐻𝑚|𝐷), that all 𝑚 traits share a causal variant within that region, given the summarized data 19 

𝐷.  According to Bayes’ rule, this is given by:  20 

𝑃𝑃𝐹𝐶 ∶       𝑃(𝐻𝑚|𝐷) =  
∑ 𝑃(𝐷|𝑆)𝑆∈𝑆𝑚

× 𝑝(𝑆)

𝑝(𝐷)
. 21 

Brute-force computation of the denominator, 𝑝(𝐷), requires the exhaustive enumeration of 22 

(𝑄 + 1)𝑚  causal configurations, which is computationally prohibitive for 𝑚 >  4 , e.g. 23 
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MOLOC8.  HyPrColoc overcomes this challenge by approximating 𝑝(𝐷) in a way that is both 1 

computationally efficient and tightly bounds the approximation error. 2 

As we show in the Methods, the PPFC can be approximated as  3 

𝑃𝑃𝐹�̂� = 𝑃𝑅𝑃𝐴, 4 

 where 𝑃𝑅, 𝑃𝐴 > 0 are rapidly computable values that quantify the probability that two criteria 5 

necessary for colocalization are satisfied (Figure 2). The first of these criteria is that all the 6 

traits must share an association with one or more variants within the region. 𝑃𝑅, which we refer 7 

to as the regional association probability, is the probability that this criterion is satisfied.  By 8 

itself, this criterion does not guarantee that there is a single causal variant shared by all traits, 9 

because it could be the case that two or more traits have distinct causal variants in strong LD 10 

with one another.   To safeguard against this, we have a second criterion that ensures the shared 11 

associations between all traits are owing to a single shared putative causal variant. 𝑃𝐴 is the 12 

probability that this second criterion is satisfied.  We refer to 𝑃𝐴 as the alignment probability as 13 

it quantifies the probability of alignment at a single causal variant between the shared 14 

associations. Both 𝑃𝑅 and 𝑃𝐴 have linear computational cost in the number of traits 𝑚, making 15 

a calculation of 𝑃𝑃𝐹�̂� possible when analysing vast numbers of traits. If the first criterion is 16 

satisfied, but the second is not, this may be because it is possible to partition the traits into 17 

clusters, such that each cluster has a distinct causal variant. HyPrColoc additionally seeks to 18 

identify these clusters. 19 

Identification of clusters of colocalized traits  20 

If 𝑃𝑃𝐹�̂� falls below a threshold value, 𝜏, we reject the hypothesis 𝐻𝑚 that all m traits colocalize 21 

to a shared causal variant.  In practice, this threshold is specified by defining separate 22 

thresholds, 𝑃𝑅
∗  and 𝑃𝐴

∗ , for 𝑃𝑅  and 𝑃𝐴 , such that 𝜏 = 𝑃𝑅
∗𝑃𝐴

∗  (Methods). If 𝐻𝑚  is rejected, 23 

HyPrColoc seeks to determine if there are values ℓ < 𝑚 such that 𝐻ℓ cannot be rejected; i.e. if 24 
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there exist subsets of the traits such that all traits within the same subset colocalize to a shared 1 

causal variant.  Starting with a single cluster containing all 𝑚 traits, our branch and bound 2 

divisive clustering algorithm (Figure 3) iteratively partitions the traits into larger numbers of 3 

clusters, stopping the process of partitioning a cluster of two or more traits when all traits in a 4 

cluster satisfy both 𝑃𝑅 > 𝑃𝑅
∗ and 𝑃𝐴 > 𝑃𝐴

∗. The process of partitioning a cluster into two smaller 5 

clusters is performed using one of two criteria: (i) regional (𝑃𝑅) or (ii) alignment (𝑃𝐴) selection 6 

(Methods and Supplementary Note). For 𝑘 ≤ 𝑚  traits in a cluster, the regional selection 7 

criterion has 𝒪(𝑘𝑄) computational cost and is computed from a collection of hypotheses that 8 

assume not all traits in a cluster colocalize because one of the traits does not have a causal 9 

variant in the region. The alignment selection criterion has 𝒪(𝑘𝑄2) computational cost and is 10 

computed from hypotheses that assume not all traits in a cluster colocalize because one of the 11 

traits has a causal variant elsewhere in the region (Supplementary Note). By default, the 12 

HyPrColoc software uses the more computationally efficient regional selection criterion to 13 

partition a cluster.  14 

Model validation using simulations  15 

We created simulated datasets by resampling phased haplotypes from the European samples in 16 

1000 Genomes14 and for each dataset we randomly selected one of the first 50 regions 17 

confirmed to be associated with CHD15 (Methods). For each simulation scenario, 1,000 18 

replicates were performed. 19 

Computational efficiency 20 

The posterior probability of colocalization, across 𝑚 traits and in a region of 𝑄 variants, can be 21 

accurately approximated by computing 𝒪(𝑚𝑄2) causal configurations. Figure 4 illustrates this 22 

for varying numbers of independent studies and variants, demonstrating a close linear 23 

relationship between computation time and the number of traits. Consequently, HyPrColoc is 24 
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able to assess 100 traits, in a region of 1,000 SNPs, in under 1 second compared to MOLOC 1 

which takes approximately one hour to analyse five traits. For 𝑚 ≤ 4, traits the median absolute 2 

relative difference between the HyPrColoc and MOLOC8 posterior probabilities was found to 3 

be ≲ 0.5% (Figure 4). 4 

Performance of HyPrColoc to detect multi-trait colocalization 5 

We used simulated datasets in which all traits colocalize to assess the accuracy of HyPrColoc 6 

in detecting colocalization across varying numbers of traits and study sample sizes.  We 7 

simulated independent datasets with sample sizes of 5,000, 10,000, and 20,000 individuals for 8 

up to 100 quantitative traits and for which all traits share a single causal variant explaining 9 

either 0.5%, 1% or 2% of trait variance. For each simulated dataset, we used HyPrColoc to 10 

approximate the PPFC.  The distribution of PPFC across the simulated datasets was narrower 11 

in the analysis of two traits relative to a larger number of traits, as the probability of random 12 

misalignment of the lead variant between traits increases as the number of traits increases (top 13 

Figure 5). However, the estimated PPFC is always close to 1 for 5, 10 and 20 traits illustrating 14 

that the distribution of the estimate is stable across a broad number of traits and sample sizes. 15 

For 100 traits there is a small decrease in power due to the growth in the number of hypotheses 16 

in which only a subset of the traits colocalize. This is expected when sample size is fixed and 17 

the shared causal variant explains only a small fraction of trait variation for each trait, as 18 

combined evidence supporting hypotheses in which a subset of the traits colocalize are 19 

eventually greater than evidence supporting full colocalization.  20 

When at least one trait did not have a causal variant in the region the false detection rate was 21 

negligible. For example, we generated 100 quantitative traits, each from a study with sample 22 

size 10,000, in which 99 traits share a causal variant and the remaining trait had either: (i) a 23 

distinct causal variant or (ii) no causal variant in the region. In each scenario a causal variant 24 

explained 1%  of trait variation. The 1st, 5th (median) and 9th deciles of the PPFC were 25 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/592238doi: bioRxiv preprint 

https://doi.org/10.1101/592238
http://creativecommons.org/licenses/by-nd/4.0/


10 

 

(4 × 10−24, 1 × 10−17, 5 × 10−8) in scenario (i) and (0.02, 0.05, 0.10) in scenario (ii). There 1 

is a considerable difference between the results from each scenario, but the PPFC is small in 2 

both situations. 3 

Fine mapping the causal variant with HyPrColoc 4 

If HyPrColoc identified a variant that was not the true causal variant, we computed the LD 5 

between the true causal variant and the identified variant. The proportion which HyPrColoc 6 

correctly identified the true causal variant increased as the number of colocalized traits included 7 

in the analyses increased up to 2-fold, irrespective of sample size and variance explained by the 8 

causal variant (middle Figure 5), highlighting a major benefit of performing multi-trait fine-9 

mapping. In cases where the identified variant was not the causal variant, the variant was 10 

typically in very strong LD (median 𝑟2 ≥ 0.99) with the true causal variant and for large 11 

numbers of traits, i.e. 𝑚 ≥ 20, with sample size 20,000, the two variants were in perfect LD, 12 

i.e. 𝑟2 = 1 (bottom Figure 5).  13 

Branch and bound divisive clustering algorithm 14 

Here we assess the performance of the branch and bound (BB) divisive clustering algorithm to 15 

identify clusters of colocalized traits over a range of scenarios. We simulated 100 traits from 16 

non-overlapping datasets with 10,000 individuals under three situations: in all scenarios there 17 

exists a cluster of 10 traits sharing a single causal variant, 80 traits do not have a causal variant 18 

(reflecting “hypothesis free” colocalization searches) and the remaining traits either (i) do not 19 

have a causal variant (Figure 6a); (ii) form a separate cluster of 10 traits sharing a distinct 20 

causal variant (Figure 6b) or; (iii) separately have distinct causal variants (Figure 6c). In all 21 

scenarios, the causal variant for each trait explained 1% of trait variance and the probability 22 

parameters were set to 𝑃𝑅
∗ = 𝑃𝐴

∗ = 0.6 (Methods). HyPrColoc correctly identified the cluster 23 

or clusters of colocalized traits with probability ≈ 0.95 in all simulation scenarios. However, 24 
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owing to the large number of traits analysed and strong LD between distinct causal variants 1 

these clusters occasionally wrongly included one additional trait. To provide insight into when 2 

this happens, in each scenario we stratified results into two categories: (a) 𝑃𝑅𝑃𝐴 > 0.6 and (b) 3 

𝑃𝑅𝑃𝐴 > 0.7, where 𝑃𝑅𝑃𝐴 denotes the posterior probability that a cluster of traits are identified 4 

as colocalizing. In scenario (iii) we additionally stratified according to LD between causal 5 

variants: (a) 𝑟2 ≤ 1 and (b) 𝑟2 < 0.95. Across all scenarios, the probability of identifying the 6 

true cluster(s) of colocalized traits was higher for larger 𝑃𝑅𝑃𝐴. For example, in scenarios (i) and 7 

(ii) when 𝑃𝑅𝑃𝐴 > 0.7 the BB algorithm identifies the true cluster(s) of colocalized traits with 8 

probability ≳ 0.9, whereas for 𝑃𝑅𝑃𝐴 > 0.6 the true detection probability was lower but still >9 

0.8. When many traits have a distinct causal variant, scenario (iii), the probability of detecting 10 

the true cluster of colocalized traits dropped markedly (≈  0.7). This was due to the increased 11 

chance that the causal variant from a non-colocalized trait is in strong LD with the colocalized 12 

causal variant, i.e. 𝑟2 ≥ 0.95, a scenario in which no algorithm is likely to perform well. In 13 

scenarios where 𝑟2 < 0.95, for all causal variants, the true detection probability was ≳ 0.9. We 14 

found an increase in the true detection probabilities of the BB algorithm when analysing 20 15 

traits under a similar simulation framework (Supplementary Material, Figure S2), indicating 16 

that the performance of the algorithm is somewhat dependent upon the number of traits under 17 

consideration. Overall, across the range of scenarios considered the selection algorithm 18 

performs well in terms of sensitivity and specificity. 19 

We further tested the algorithm using a variety of thresholds {𝑃𝑅
∗, 𝑃𝐴

∗}, two different prior 20 

frameworks and accounting for overlapping samples in analyses (Figures S4-5). We 21 

demonstrated that treating studies as independent, even when there is complete sample overlap 22 

(i.e. participants are the same in all studies) gives reasonable results (Figure S3). We discuss 23 

the theoretical reasons for this in Supplementary Material. We also assessed the reliability of 24 

the BB algorithm when a secondary causal variant was added to one or more traits in the region. 25 
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Our results indicate continued good performance when a secondary causal variant explains less 1 

trait variation than the shared causal variant (Supplementary Material and Table S5).    2 

Map of genetic risk shared across CHD and related traits 3 

We used HyPrColoc to investigate genetic associations shared across CHD16 and 14 related 4 

traits: 12 CHD risk factors17–21, a comorbidity22 and a social factor23 (Supplementary Table 5 

S1 for details). We performed colocalization analyses in pre-defined disjoint LD blocks 6 

spanning the entire genome24. To highlight that multi-trait colocalization analyses can aid 7 

discovery of new disease-associated loci, we used the CARDIoGRAMplusC4D 2015 data for 8 

CHD16, which brought the total number of CHD associated regions to 58, and contrasted our 9 

findings with the current total of ~160 CHD associated regions25. For each region in which 10 

CHD and at least one related trait colocalized, we integrated whole blood gene expression26 11 

quantitative trait loci (eQTL) and protein expression27 quantitative trait loci (pQTL) 12 

information into our analyses to prioritise candidate causal genes (Methods). 13 

Multi-trait colocalization 14 

Our genome-wide analysis identified 43 regions in which CHD colocalized with one or more 15 

related traits (Figure 7 and Table 1). Twenty-three of the 43 colocalizations involved blood 16 

pressure, consistent with blood pressure being an important risk factor for CHD28. Other traits 17 

colocalizing with CHD across multiple genomic regions were cholesterol measures (16 18 

regions); adiposity measures (9 regions); type 2 diabetes (T2D; 4 regions) and; rheumatoid 19 

arthritis (2 regions). Moreover, by colocalizing CHD and related traits, our analyses suggest 20 

these traits share some biological pathways. 21 

In thirty-eight of the 43 (88%) colocalized regions15,16,25,29–34, the candidate causal SNP 22 

proposed by HyPrColoc and/or its nearest gene, have been previously identified. Importantly, 23 

20 of these were reported after the CARDIoGRAMplusC4D study16. For example, FGF5 was 24 
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sub-genome-wide significant (P>5x10-8) with CHD in the 2015 data, but through colocalization 1 

with blood pressure, we highlight it as a CHD locus and it is genome-wide significant in the 2 

most recent CHD GWAS25. The remaining 18 regions were reported previously, but one, 3 

APOA1-C3-A4-A5, was sub-genome-wide significant in the CARDIoGRAMplusC4D study16 4 

despite having been reported previously34. However, we used HyPrColoc to show that the 5 

association of major lipids colocalize with a CHD signal, highlighting this as a CHD locus in 6 

these data (Table 1 and Figure S6). The locus has subsequently been replicated25,30 and we 7 

show below that the signal also colocalizes with circulating apolipoprotein A-V protein levels 8 

(Table 1). This demonstrates that joint colocalization analyses of diseases and related traits can 9 

improve power to detect new associations (an approach which is advocated outside of 10 

colocalization studies35). Our results also illustrate that multi-trait colocalization analyses can 11 

provide further insights into well-known risk-loci of complex disease. For example, at the well-12 

studied SH2B3-ATXN2 region25,34, HyPrColoc detected two cholesterol measures (LDL, HDL), 13 

two blood pressure measures (SBP, DBP) and rheumatoid arthritis (RA) colocalizing with CHD 14 

at the previously reported CHD associated SNP25 rs7137828 (PPFC=0.909 of which 76.8% is 15 

explained by the variant rs7137828; Figure 7). In addition, we newly implicated a candidate 16 

SNP and locus in a further 5 CHD regions not previously associated with CHD risk (Table 1). 17 

In one of the 5 regions, CYP26A1, CHD colocalized with tri-glycerides (TG) and HyPrColoc 18 

identified a single variant that explained over 75% of the posterior probability of colocalization, 19 

supporting this SNP as a candidate shared CHD/TG variant.  20 

For each of the 43 regions that shared genetic associations across CHD and related traits, we 21 

further integrated whole blood gene26 and protein27 expression into the colocalization analyses. 22 

We tested cis eQTL for 1,828 genes and cis pQTL from the 854 published proteins across the 23 

43 loci for colocalization with CHD and the related traits. Of the 43 listed variants (Table 1), 24 

27 were associated with expression of at least one gene (P<5x10-8) and a total of 125 such genes 25 
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were identified. HyPrColoc refined this, identifying six regions colocalizing with eQTL for one 1 

expressed gene and one region, the FHL3 locus, colocalizing with expression of three genes 2 

(SF3A3, UTP11L, RNU6-510P) (Table 1). The GUCY1A3 locus has previously been associated 3 

with BP36 and with CHD15. Here we show that these associations are likely to be due to the 4 

same variant, rs72689147 (PPFC=0.93), with the G allele increasing DBP and risk of CHD. We 5 

furthermore show that the association colocalizes with expression of GUCY1A1 in whole blood, 6 

with the G allele reducing GUCY1A1 expression (PPFC=0.77; Table 1). The GUCY1A1 gene 7 

is ubiquitously expressed in heart tissues, including in the coronary and aortic arteries37. In the 8 

mouse, higher expression of GUCY1A1 has been correlated with less atherosclerosis in the 9 

aorta38. GUCY1A1 is a likely candidate gene in this locus39, illustrating the utility of HyPrColoc 10 

to help prioritise candidate causal genes. The CTRB2-BCAR1 locus was not known at the time 11 

of the release of the 2015 CARDIoGRAMplusC4D data, however we find the association at 12 

this locus is shared with T2D (PPFC=0.83) and that BCAR1 expression colocalized with the 13 

CHD association (PPFC=0.86). Other studies have implicated the locus in CHD33 and suggested 14 

BCAR1 as the causal gene in carotid intimal thickening40,41. We note that two CHD loci also 15 

colocalize with circulating plasma proteins, APOA1-C3-A4-A5, with apolipoprotein A-V and 16 

the APOE locus with apolipoprotein E (Table 1). 17 

Of the 38 known CHD loci that colocalized with a related trait, 8 are reported to have a single 18 

causal variant25, of these we identified the same CHD-associated  variant (or one in LD with 19 

either r2>0.8 or |D’|>0.8)14 at seven loci (SORT1, PHACTR1, ZC3HC1, CDKN2B-AS1, KCNE2, 20 

CDH13, APOE).  Despite the possible presence of multiple causal associations at other loci, 21 

HyPrColoc was still able to pick out single shared associations across traits: a result supported 22 

by our simulation study when additional distinct causal variants explain less trait variation than 23 

that explained by a shared causal variant between colocalized traits (Supplementary Material). 24 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/592238doi: bioRxiv preprint 

https://doi.org/10.1101/592238
http://creativecommons.org/licenses/by-nd/4.0/


15 

 

Discussion 1 

We have developed and applied a deterministic Bayesian colocalization algorithm, HyPrColoc, 2 

for multi-trait statistical colocalization analyses. HyPrColoc is based on the same underlying 3 

statistical model as COLOC2, but for the first time enables colocalization analyses to be 4 

performed across massive numbers of traits, owing to the novel insight that the posterior 5 

probability of colocalization at a single causal variant can be accurately approximated by 6 

enumerating only a small number of putative causal configurations. The HyPrColoc algorithm 7 

was validated using simulations and used to assess genetic risk shared across CHD and related 8 

traits. Using CHD data from 201516, in which 46 regions were genome-wide significant 9 

(P<5x10-8), our multi-trait colocalization analysis identified 43 regions in which CHD 10 

colocalized with ≥1 related trait. With this approach, we were able to identify CHD loci that 11 

were not known at the time of the data release (2015), demonstrating the benefit of synthesising 12 

data on related traits to uncover potential new disease-associated loci8,35. A further five regions, 13 

we postulate, may be identified as CHD loci in the future. Others have considered pleiotropic 14 

effects of CHD loci previously42, but our formal colocalization analyses are more robust, e.g. 15 

in the ABO region we show colocalization of T2D and DBP in addition to the previously 16 

reported pleiotropic effect with LDL. We integrated eQTL and pQTL data to prioritise 17 

candidate genes at some loci, e.g. GUCY1A1, BCAR1 and APOE. 18 

The HyPrColoc algorithm identifies regions of the genome where there is evidence of a shared 19 

causal variant (by dissecting the genome into distinct regions) and also allows for a targeted 20 

analysis of a specific genomic locus of primary interest, e.g. when aiming to identify the 21 

perturbation of a biological pathway through the influence of a particular gene. Moreover, these 22 

region-specific analyses can highlight candidate causal genes, which will help improve 23 

biological understanding and may indicate potential drug targets to inform medicines 24 

development43.  25 
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We have described HyPrColoc under the assumption of at most one causal variant per trait. 1 

Future work is required to extend this methodology and algorithm to multiple-causal variants. 2 

However, we note that the reliability of results under the single causal variant assumption only 3 

break down when secondary causal variants explain as much trait variation as the shared variant 4 

(Supplementary Material). An example of which is the expression of SH2B3, where multiple 5 

causal variants for the expression of this gene masks colocalization with the CHD signal. We 6 

note that misspecification of LD between causal variants has a major impact on correct 7 

detection of multiple causal variants in a region44, making a single causal variant assessment 8 

the most reliable when accurate study-level LD information is not available. To overcome 9 

challenges when specifying the prior probability of a causal configuration, we have suggested 10 

two different parsimonious configuration priors that allow a sensitivity analysis to the type of 11 

prior and the choice of hyper-parameters to be performed (Methods). Nevertheless, other priors 12 

may be more appropriate for particular applications. 13 

In summary, we have developed a computationally efficient method that can perform multi-14 

trait colocalization on a large scale. As the size and scale of available data on genetic 15 

associations with traits increase, computationally scalable methods such as HyPrColoc will be 16 

increasingly valuable in prioritizing causal genes and revealing causal pathways. 17 

Software availability 18 

We developed an R package for performing the HyPrColoc analyses 19 

(https://github.com/jrs95/hyprcoloc). The regional association plots (as seen in Figure 7) were 20 

created using gassocplot (https://github.com/jrs95/gassocplot) and LD information from 1000 21 

Genomes14.  22 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/592238doi: bioRxiv preprint 

https://github.com/jrs95/hyprmtc
https://github.com/jrs95/hyprmtc
https://doi.org/10.1101/592238
http://creativecommons.org/licenses/by-nd/4.0/


17 

 

Acknowledgements 1 

The authors would like to thank Prof Frank Dudbridge, University of Leicester, who provided 2 

helpful comments on the manuscripts and Dr Robin Young, Robertson Centre for Biostatistics, 3 

University of Glasgow, for help with the simulation study. This work was funded by the UK 4 

Medical Research Council (MR/L003120/1, MC UU 00002/7), British Heart Foundation 5 

(RG/13/13/30194), and the UK National Institute for Health Research Cambridge Biomedical 6 

Research Centre. The LD information was computed using the phased haplotypes from the 7 

1000 Genomes study (http://www.internationalgenome.org/).  The data on coronary artery 8 

disease, glycaemic traits, lipid measures, smoking, education, renal function and arthritis have 9 

been contributed by CARDIoGRAMplusC4D (www.cardgogramplusc4d.org), MAGIC 10 

(www.magicinvestigators.org), GLGC (www.lipidgenetics.org), TAG 11 

(https://www.med.unc.edu/pgc/results-and-downloads), SSAGC (www.thessgac.org), 12 

DIAGRAM (www.diagram-investigators.org) and CKDGen (http://ckdgen.imbi.uni-13 

freiburg.de) and Okada et al. (plaza.umin.ac.jp/~yokada/datasource/software.htm) 14 

investigators, respectively. The data on adiposity measures and blood pressure are from the first 15 

release of the Neale Lab’s GWAS analysis of UK-Biobank (http://www.nealelab.is/uk-16 

biobank). The data on gene expression and protein expression in whole blood have been 17 

contributed by eQTLGen (http://www.eqtlgen.org/cis-eqtls.html) and Sun et al. 18 

(https://www.phpc.cam.ac.uk/ceu/proteins/), respectively.  19 

Author contributions 20 

C.N.F. developed the mathematical and statistical methodology, developed the statistical 21 

software and applied the methods to the analysis of CHD and related risk factors.  J.R.S advised 22 

on the statistical methodology and software, developed the bioinformatical software and 23 

command-line tool, designed and applied the methods to the analysis of CHD and related risk 24 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/592238doi: bioRxiv preprint 

http://www.internationalgenome.org/
http://www.internationalgenome.org/
http://www.cardgogramplusc4d.org/
http://www.cardgogramplusc4d.org/
http://www.magicinvestigators.org/
http://www.magicinvestigators.org/
http://www.lipidgenetics.org/
http://www.lipidgenetics.org/
https://www.med.unc.edu/pgc/results-and-downloads
https://www.med.unc.edu/pgc/results-and-downloads
http://www.thessgac.org/
http://www.thessgac.org/
http://www.diagram-investigators.org/
http://www.diagram-investigators.org/
http://ckdgen.imbi.uni-freiburg.de/
http://ckdgen.imbi.uni-freiburg.de/
http://ckdgen.imbi.uni-freiburg.de/
http://ckdgen.imbi.uni-freiburg.de/
http://plaza.umin.ac.jp/~yokada/datasource/software.htm
http://plaza.umin.ac.jp/~yokada/datasource/software.htm
http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
http://www.eqtlgen.org/cis-eqtls.html
http://www.eqtlgen.org/cis-eqtls.html
https://www.phpc.cam.ac.uk/ceu/proteins/
https://www.phpc.cam.ac.uk/ceu/proteins/
https://doi.org/10.1101/592238
http://creativecommons.org/licenses/by-nd/4.0/


18 

 

factors. P.G.B. contributed to the statistical methodology. B.B.S. designed the analysis of CHD 1 

and related risk-factors. P.D.W.K. and S.B. revised and reviewed the statistical methodology 2 

and scientific content. J.M.M.H contributed to the overall scientific content and goals of the 3 

project. All authors contributed to the writing of the manuscript.4 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/592238doi: bioRxiv preprint 

https://doi.org/10.1101/592238
http://creativecommons.org/licenses/by-nd/4.0/


19 

 

References 1 

1. Nica, A. C. & Dermitzakis, E. T. Using gene expression to investigate the genetic basis 2 

of complex disorders. Hum. Mol. Genet. 17, 129–134 (2008). 3 

2. Giambartolomei, C. et al. Bayesian Test for Colocalisation between Pairs of Genetic 4 

Association Studies Using Summary Statistics. PLoS Genet. 10, (2014). 5 

3. Guo, H. et al. Integration of disease association and eQTL data using a Bayesian 6 

colocalisation approach highlights six candidate causal genes in immune-mediated 7 

diseases. Hum. Mol. Genet. 24, 3305–3313 (2015). 8 

4. Hauberg, M. E. et al. Large-Scale Identification of Common Trait and Disease Variants 9 

Affecting Gene Expression. Am. J. Hum. Genet. 100, 885–894 (2017). 10 

5. Hormozdiari, F. et al. Colocalization of GWAS and eQTL Signals Detects Target Genes. 11 

Am. J. Hum. Genet. 99, 1245–1260 (2016). 12 

6. Wen, X., Pique-Regi, R. & Luca, F. Integrating molecular QTL data into genome-wide 13 

genetic association analysis: Probabilistic assessment of enrichment and colocalization. 14 

PLoS Genet. 13, 1–25 (2017). 15 

7. Jaffe, A. et al. Mapping DNA methylation across development, genotype, and 16 

schizophrenia in the human frontal cortex. Nat. Neurosci. 19, 40–47 (2016). 17 

8. Giambartolomei, C. et al. A Bayesian framework for multiple trait colocalization from 18 

summary association statistics. Bioinformatics 34, 2538–2545 (2018). 19 

9. Plagnol, V., Smyth, D. J., Todd, J. A. & Clayton, D. G. Statistical independence of the 20 

colocalized association signals for type 1 diabetes and RPS26 gene expression on 21 

chromosome 12q13. Biostatistics 10, 327–334 (2009). 22 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/592238doi: bioRxiv preprint 

https://doi.org/10.1101/592238
http://creativecommons.org/licenses/by-nd/4.0/


20 

 

10. Wallace, C. et al. Statistical colocalization of monocyte gene expression and genetic risk 1 

variants for type 1 diabetes. Hum. Mol. Genet. 21, 2815–2824 (2012). 2 

11. Hippisley-Cox, J. et al. Predicting cardiovascular risk in England and Wales: Prospective 3 

derivation and validation of QRISK2. Bmj 336, 1475–1482 (2008). 4 

12. Rodondi, N. et al. Framingham Risk Score and Alternatives for Prediction of Coronary 5 

Heart Disease in Older Adults. 7, (2012). 6 

13. Wakefield, J. Bayes Factors for Genome-Wide Association Studies : Comparison with P 7 

-values. 86, 79–86 (2009). 8 

14. The 1000 Genomes Project Consortium. A global reference for human genetic variation. 9 

Nature 526, 68–74 (2015). 10 

15. The CARDIoGRAMplusC4D Consortium. Large-scale association analysis identifies 11 

new risk loci for coronary artery disease. Nat. Genet. 45, 25–33 (2012). 12 

16. Nikpay, M., Goel, A., Won, H.-H. & Hall, L. M. A comprehensive 1000 Genomes-based 13 

genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 14 

1121–1130 (2015). 15 

17. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their 16 

impact on type 2 diabetes risk. Nat Genet 42, 105–116 (2010). 17 

18. Gorski, M. et al. 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney 18 

function. Sci. Rep. 7, 1–10 (2017). 19 

19. Scott, R. A. et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in 20 

Europeans. Diabetes 66, 2888–2902 (2017). 21 

20. Teslovich, T. M. et al. Biological, Clinical, and Population Relevance of 95 Loci for 22 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/592238doi: bioRxiv preprint 

https://doi.org/10.1101/592238
http://creativecommons.org/licenses/by-nd/4.0/


21 

 

Blood Lipids. Nature 466, 707–713 (2010). 1 

21. The Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple 2 

loci associated with smoking behavior. Nat. Genet. 42, 441–447 (2010). 3 

22. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug 4 

discovery. Nature 113, 190–196 (2014). 5 

23. Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J. & Pers, T. H. Genome-wide 6 

association study identifies 74 loci associated with educational attainment. Nature 533, 7 

539–542 (2016). 8 

24. Berisa, T. & Pickrell, J. K. Approximately independent linkage disequilibrium blocks in 9 

human populations. Bioinformatics 32, 283–285 (2015). 10 

25. Van Der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an 11 

expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 12 

433–443 (2018). 13 

26. Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL 14 

meta-analysis. bioRxiv 18, 10 (2018). 15 

27. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 273–79 16 

(2018). 17 

28. Forouzanfar, M. H. et al. Global burden of hypertension and systolic blood pressure of 18 

at least 110 to 115mmHg, 1990-2015. JAMA - J. Am. Med. Assoc. 317, 165–182 (2017). 19 

29. Howson, J. M. M., Zhao, W. & Barnes, D. R. Fifteen new risk loci for coronary artery 20 

disease highlight arterial wall-specific mechanisms. Nat Genet 49, 1113–1119 (2017). 21 

30. Nelson, C. P. et al. Association analyses based on false discovery rate implicate new loci 22 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/592238doi: bioRxiv preprint 

https://doi.org/10.1101/592238
http://creativecommons.org/licenses/by-nd/4.0/


22 

 

for coronary artery disease. Nat. Genet. 49, 1385–1391 (2017). 1 

31. The IBC 50K CAD Consortium. Large-scale gene-centric analysis identifies novel 2 

variants for coronary artery disease. PLoS Genet. 7, (2011). 3 

32. The Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association 4 

study in Europeans and South Asians identifies five new loci for coronary artery disease. 5 

Nat. Genet. 43, 339–346 (2011). 6 

33. Klarin, D. et al. Genetic Analysis in UK Biobank Links Insulin Resistance and 7 

Transendothelial Migration Pathways to Coronary Artery Disease. Nat Genet 49, 1392–8 

1397 (2017). 9 

34. Schunkert, H. et al. Large-scale association analyses identifies 13 new susceptibility loci 10 

for coronary artery disease. Nat Genet 43, 333–338 (2011). 11 

35. Turley, P. et al. Multi-trait analysis of genome-wide association summary statistics using 12 

MTAG. Nat Genet 50, 229–237 (2018). 13 

36. International Consortium for Blood Pressure Genome-Wide Association Studies. 14 

Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular 15 

Disease Risk. Nature 478, 103–109 (2011). 16 

37. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 17 

204–213 (2017). 18 

38. Kessler, T., Wobost, J., Wolf, B., Eckhold, J. & Vilne, B. Functional characterization of 19 

the GUCY1A3 coronary artery disease risk locus. Circulation 136, 476–489 (2017). 20 

39. Erdmann, J., Kessler, T., Venegas, L. M. & Schunkert, H. A decade of genome-wide 21 

association studies for coronary artery disease : the challenges ahead. Cardiovasc. Res. 22 

49, 1241–1257 (2018). 23 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/592238doi: bioRxiv preprint 

https://doi.org/10.1101/592238
http://creativecommons.org/licenses/by-nd/4.0/


23 

 

40. Gertow, K. et al. Identification of the BCAR1-CFDP1-TMEM170A Locus as a 1 

Determinant of Carotid Intima-Media Thickness and Coronary Artery Disease Risk. 2 

Circ. Cardiovasc. Genet. 5, 656–665 (2012). 3 

41. Boardman-Pretty, F. et al. Functional Analysis of a Carotid Intima-Media Thickness 4 

Locus Implicates BCAR1 and Suggests a Causal Variant. Circ. Cardiovasc. Genet. 8, 5 

696–706 (2015). 6 

42. Webb, T. R. et al. Systematic Evaluation of Pleiotropy Identi fi es 6 Further Loci 7 

Associated With Coronary Artery Disease. J. Am. Coll. Cardiol. 69, 735–1097 (2017). 8 

43. Nelson, M. R. et al. The support of human genetic evidence for approved drug 9 

indications. Nat. Genet. 47, 856–860 (2015). 10 

44. Benner, C. et al. Prospects of Fine-Mapping Trait-Associated Genomic Regions by 11 

Using Summary Statistics from Genome-wide Association Studies. Am. J. Hum. Genet. 12 

101, 539–551 (2017). 13 

45. Province, M. A. & Borecki, I. B. A correlated meta-analysis strategy for data mining 14 

‘OMIC’ scans. Pac. Symp. Biocomput. 236–46 (2013). 15 

46. Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 16 

human traits. Nat Genet 48, 709–717 (2016). 17 

47. Lee, D., Bigdeli, T. B., Riley, B. P., Fanous, A. H. & Bacanu, S. A. DIST: Direct 18 

imputation of summary statistics for unmeasured SNPs. Bioinformatics 29, 2925–2927 19 

(2013). 20 

48. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 1–14 (2016). 21 

49. Staley, J. R. et al. PhenoScanner: A database of human genotype-phenotype associations. 22 

Bioinformatics 32, 3207–3209 (2016). 23 

24 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/592238doi: bioRxiv preprint 

https://doi.org/10.1101/592238
http://creativecommons.org/licenses/by-nd/4.0/


24 

 

Methods 1 

SNP association models  2 

Let 𝑌𝑖 denote one of 𝑖 = 1,2, … , 𝑚, traits assessed in a maximum of 𝑚 studies, i.e. two or more 3 

traits can be measured in the same study, and 𝐺𝑖𝑗 denote the genotype of the 𝑗th genetic variant. 4 

It is assumed that the outcome model for 𝑌𝑖 is given by 5 

𝔼[𝑌𝑖 | 𝐺𝑖𝑗] = ℎ𝑖
−1(𝛼𝑖𝑗 + 𝛽𝑖𝑗𝐺𝑖𝑗), 6 

where 𝛼𝑖𝑗 is the intercept term and ℎ𝑖 is a function linking the 𝑖𝑡ℎ outcome to the genotype 𝐺𝑖𝑗, 7 

for all 𝑗 = 1,2, … , 𝑄 genetic variants in the genomic region. The function ℎ𝑖 is typically taken 8 

as the identity function for continuous traits and the logit function for binary traits. The aim of 9 

colocalization analyses is to identify genomic loci where there exists an 𝐺𝑖𝑗 that is causally 10 

associated with at least two of the 𝑚 traits. For each of the 𝑚 traits and 𝑄 genetic variants, we 11 

assume that GWAS summary statistics �̂�𝑖𝑗 and var(�̂�𝑖𝑗) are available. We use these data to 12 

perform colocalization analyses in genomic loci. 13 

Colocalization posterior probability 14 

Using binary vectors to indicate whether a variant putatively causally influences a trait, we can 15 

define causal configurations (𝑆) that can be grouped into sets (𝒮𝐻) which belong to a single data 16 

generating hypothesis (𝐻). We use the notation ℋ(𝑖,𝑗,… ) to denote a set of hypotheses in which 17 

a collection of 𝑖 traits share a causal variant, a separate collection of 𝑗 traits share a distinct 18 

causal variant, and so on (Figure 1). For, example, ℋ(2,1) denotes the set of hypotheses in 19 

which each hypothesis specifies uniquely 2 traits that share a causal variant, a single trait has a 20 

distinct causal variant and all remaining 𝑚 − 3 traits do not have a causal variant in the region. 21 

Assuming at most one causal variant for each trait these data generating hypotheses can be 22 

combined to generate a hypothesis space (Ω). The posterior probability of hypothesis 𝐻, given 23 
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the combined data 𝐷 from all 𝑚 studies, can therefore be computed using (Supplementary 1 

Material), 2 

𝑃(𝐻|𝐷) =   
∑ 𝐵𝐹(𝑆)

𝑝(𝑆)
𝑝(𝑆0)𝑆∈𝒮𝐻

∑ ∑ 𝐵𝐹(𝑆)
𝑝(𝑆)
𝑝(𝑆0)𝑆∈𝒮𝐻𝑖

𝐻𝑖∈Ω

 , 7 

where 𝑝(𝑆)/𝑝(𝑆0)  is the prior-odds of configuration 𝑆 ∈ 𝒮𝐻  compared with the null-3 

configuration 𝑆0, i.e. no genetic association with any trait. See2 for a derivation with 𝑚 = 2 4 

traits. 𝐵𝐹(𝑆) is a Bayes factor which is the likelihood of the data being generated under 𝑆 ∈ 𝒮𝐻 5 

relative to the likelihood of the data being generated 𝑆0. 6 

Computing Bayes Factors: independent studies 8 

If the trait associations are calculated using independent studies (i.e. no overlapping samples in 9 

the GWAS datasets), the Bayes factors can be computed using Wakefield’s Approximate Bayes 10 

Factors13 (𝐴𝐵𝐹) for each trait 𝑖 and genetic variant 𝑗, i.e. 11 

𝐴𝐵𝐹𝑖𝑗 = √
𝑣𝑖𝑗

2

𝑣𝑖𝑗
2 + 𝑤𝑖𝑗

2  exp (
𝑧𝑖𝑗

2

2
 ×  

𝑤𝑖𝑗
2

𝑣𝑖𝑗
2 + 𝑤𝑖𝑗

2 ) , 12 

where 𝑧𝑖𝑗, 𝑣𝑖𝑗 and 𝑤𝑖𝑗 are the Z-statistic, standard error and the prior standard deviation for �̂�𝑖𝑗, 13 

respectively. Following2, for continuous variables 𝑤𝑖𝑗 is set to 0.15 while for binary traits it is 14 

set to 0.2. As an example, the 𝐴𝐵𝐹 for the hypothesis that all 𝑚 traits colocalize at genetic 15 

variant 𝑗 (𝑆𝑗 ∈ 𝒮𝑚) is given by,  16 

𝐴𝐵𝐹(𝑆𝑗) = ∏ 𝐴𝐵𝐹𝑖𝑗

𝑚

𝑖

 . 17 

Calculating Bayes Factors: non-independent studies 18 
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If the trait associations are not calculated using independent studies i.e. there are overlapping 1 

samples, the Bayes factor for each causal configuration can be computed using a Joint 𝐴𝐵𝐹 2 

(𝐽𝐴𝐵𝐹) (Supplementary Material). The 𝐽𝐴𝐵𝐹 for causal configuration 𝑆 is given by, 3 

𝐽𝐴𝐵𝐹(𝑆) = √
|Σ�̂�|

|Σ�̂� + Σ̃𝜷|
 exp (

1

2
 �̂�𝑇(Σ�̂� + Σ̃𝜷)

−1
 Σ̃𝜷Σ�̂�

−1�̂�) , 4 

where �̂�  is the vector of regression coefficients for all 𝑚  traits, Σ�̂�  is an 𝑚 × 𝑚  variance-5 

covariance matrix of the regression coefficients (i.e. 𝑉�̂�𝑉, where 𝑉2 is a diagonal matrix of 6 

variances for the regression coefficients, e.g. with 𝑖 th diagonal element 𝑣𝑖∙
2 , and �̂�  is the 7 

observed correlation matrix for the regression coefficients) and Σ̃𝜷  is the ‘adjusted’ prior 8 

variance-covariance matrix (i.e. �̃�𝝆�̃� , where �̃�𝟐  is a diagonal matrix of prior variance 9 

divided by estimated variance, e.g. with 𝑖 th diagonal element 𝑤𝑖∙
2/𝑣𝑖∙

2 , and 𝝆  is the prior 10 

correlation matrix between traits). The correlation matrix (�̂�) is computed using the tetrachoric 11 

correlation method45 and we discuss our approach to setting 𝝆 in the Supplementary Material. 12 

Configuration prior probabilities  13 

We consider two different strategies for determining the priors for different hypotheses: variant-14 

level priors and uniform priors. 15 

Variant-level prior probabilities 16 

 The prior probability space for a single genetic variant can be fully partitioned into the prior 17 

probability that the genetic variant is not associated with any of the 𝑚 traits, 𝑝0 , the prior 18 

probability that the genetic variant is associated with only the first trait, 𝑝1 ,… , the prior 19 

probability that the SNP is associated with a subset of 𝑘 traits {𝑗1, 𝑗2, … , 𝑗𝑘},  𝑝𝑗1𝑗2…𝑗𝑘
, …, the 20 

prior probability that the genetic variant is associated with all traits, 𝑝12…𝑚. Hence, 21 
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𝑝0 + ∑ ( ∑ ∑ … ∑ 𝑝𝑗1𝑗2…𝑗𝑘

𝑗𝑘>𝑗𝑘−1𝑗2>𝑗1

𝑚

𝑗1=1

)

𝑚

𝑘=1

= 1 . 1 

Following2,8 we set that the prior probability to not vary by genetic variant, nor by the specific 2 

collection of colocalized traits of a given size, but by the number of colocalized traits, i.e. a 3 

SNP associated with a total of 𝑘 traits has a prior probability that depends on the number 𝑘 but 4 

not the specific collection of traits. To allow for the assessment of large numbers of traits we 5 

propose variant-level priors where the prior probability that a genetic variant is associated with 6 

𝑘 traits is given by, 7 

𝑝12…𝑘 = 𝑝 ∏ (1 − 𝛾𝑖−1)
𝑘

𝑖=2
 ,      𝑘 = 2, … 𝑚 , 8 

where 𝑝 is the probability of the genetic variant being associated with one trait and 𝛾  is a 9 

parameter which controls the probability that a genetic variant is associated with an additional 10 

trait. Notably, 1 − 𝛾 is the probability of a variant being causal for a second trait given it is 11 

causal for one trait, 1 − 𝛾2 is the probability it is causal for a third trait given it is causal for 12 

two traits, and so on. It follows that, 13 

𝑝(𝑆)

𝑝(𝑆0)
=

𝑝12…𝑘

𝑝0
=

𝑝

𝑝0
∏ (1 − 𝛾𝑖−1) ,      𝑘 = 2, … , 𝑚

𝑘

𝑖=2
 , 14 

for configurations 𝑆 ∈ 𝑆ℋ𝑘
, where 𝑘 traits share a causal variant and the remaining 𝑚 − 𝑘 15 

traits do not have a casual variant, and 16 

𝑝(𝑆)

𝑝(𝑆0)
=

𝑝12…(𝑚−1)𝑝1

𝑝0
2 = (

𝑝

𝑝0
)

2

∏ (1 − 𝛾𝑖−1)
𝑚−1

𝑖=2
 , 17 

for configurations 𝑆 ∈ 𝑆ℋ(𝑚−1,1)
, where 𝑚 − 1 traits share a causal variant and the remaining 18 

trait has a distinct causal variant. This prior set-up allows evidence to grow in favour of 𝑘 traits 19 

colocalizing conditional on evidence supporting  𝑘 − 1 traits colocalizing (Supplementary 20 
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Material). For example, if the first 𝑘 traits are believed to share a causal variant a priori, then 1 

the prior probability that the (𝑘 + 1)𝑡ℎ is also colocalized, conditional on the other 𝑘 traits, 2 

increases as the number of colocalized traits 𝑘 grows. The marginal prior probability of 𝑘 traits 3 

colocalizing is always very small, however, which controls the false positive rate (Figures 6 4 

and S3; Supplementary Tables S2-3). Conditional growth limits the loss of power when 5 

assessing colocalization across a large number of traits. A loss in power necessarily occurs 6 

when analysing large numbers of colocalized traits, due to the rapid growth in the number of 7 

hypotheses in which a subset of traits can colocalize relative to all traits colocalizing. Evidence 8 

supporting these ‘subset’ hypotheses will eventually overwhelm evidence in favour of the 9 

maximum number of truly colocalized traits for fixed sample size (Figure 5A).   10 

Conditionally uniform prior probabilities  11 

An alternative prior strategy is to assume uniform priors for each configuration within a 12 

hypothesis46. This strategy benefits from: (i) not setting variant-level information and (ii) 13 

implicitly accounting for large differences in the causal configuration space between 14 

hypotheses, which limits the loss in power of the PPFC for very large 𝑚. These priors take the 15 

form, 16 

𝑃(𝑆|𝐻)

𝑃(𝑆0|𝐻0)
=

1
|𝒮𝐻|⁄

1
|𝑆0|⁄

= 1
|𝒮𝐻|⁄  , 17 

where |𝒮ℋ𝑘
| = 𝑄 and 18 

|𝒮ℋ(𝑚−1,1)
| = {

𝑄(𝑄 − 1)    ∶    𝑚 = 2,
𝑚𝑄(𝑄 − 1) ∶    𝑚 > 2.

 19 

Through simulations, we identified the conditionally uniform prior as less conservative than 20 

variant-level priors, having an increased false detection rate of colocalization. (Supplementary 21 
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Material; Figures S2-4). This could lead to an increased false positive detection rate in 1 

practice. 2 

HyPrColoc posterior approximation 3 

To compute the posterior probability of full colocalization across a large number of traits we 4 

propose the HyPrColoc posterior approximation. Let 𝑃(𝐻𝑚|𝐷), 𝑃𝑠𝑐𝑣, 𝑃(𝑚−1,1) and 𝑃𝑎𝑙𝑙 denote: 5 

(i) the posterior probability of full colocalization; (ii) the sum of the posterior probabilities in 6 

which no traits have a causal variant, a subset of 𝑚 − 1 traits share a causal variant (the 7 

remaining trait does not have a causal variant) and all 𝑚 traits colocalize (𝑃𝑠𝑐𝑣); (iii) the sum of 8 

posterior probabilities in which a subset of 𝑚 − 1 traits share a causal variant and the remaining 9 

trait has a distinct causal variant (𝑃(𝑚−1,1)) and; the sum of all posterior probabilities of at most 10 

one causal variant per trait (𝑃𝑎𝑙𝑙). That is, 11 

 𝑃𝑠𝑐𝑣 = 𝑃(𝐻0|𝐷) + 𝑃(ℋ𝑚−1|𝐷) + 𝑃(𝐻𝑚|𝐷) and  𝑃(𝑚−1,1) =  𝑃(ℋ(𝑚−1,1)|𝐷) . 12 

The HyPrColoc posterior is computed in two steps. Step 1 computes the regional association 13 

probability 𝑃𝑅, defined as:  14 

𝑃𝑅 =
𝑃(𝐻𝑚|𝐷)

𝑃𝑠𝑐𝑣
 ≥  𝑃(𝐻𝑚|𝐷). 15 

Step 2 computes the alignment probability 𝑃𝐴, defined as: 16 

𝑃𝐴 =
𝑃(𝐻𝑚|𝐷)

𝑃(𝐻𝑚|𝐷) + 𝑃(𝑚−1,1)
 ≥  𝑃(𝐻𝑚|𝐷). 17 

Note that 𝑃𝑅 is computed using (𝑚 + 1)𝑄 causal configurations and 𝑃𝐴 is computed using an 18 

additional 𝑚𝑄(𝑄 − 1) causal configurations. Hence, computation of 𝑃𝑅  and 𝑃𝐴  has 𝒪(𝑚𝑄2) 19 

computational cost. We let 𝑃𝑎𝑙𝑙
𝑐 = 𝑃𝑎𝑙𝑙 − 𝑃𝑠𝑐𝑣 − 𝑃(𝑚−1,1) , then it follows that the posterior 20 

probability of all traits sharing a single causal variant is given by 21 
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𝑃(𝐻𝑚|𝐷) =
𝑃(𝐻𝑚|𝐷)

𝑃𝑎𝑙𝑙
 1 

=
𝑃(𝐻𝑚|𝐷)

𝑃𝑠𝑐𝑣

𝑃𝑠𝑐𝑣

𝑃𝑎𝑙𝑙
 2 

=
𝑃(𝐻𝑚|𝐷)

𝑃𝑠𝑐𝑣

𝑃𝑠𝑐𝑣

𝑃(𝐻𝑚|𝐷)
𝑃(𝐻𝑚|𝐷)

𝑃𝑠𝑐𝑣

𝑃(𝐻𝑚|𝐷)
(𝑃(𝐻𝑚|𝐷) + 𝑃(𝑚−1,1)) −

𝑃𝑠𝑐𝑣

𝑃(𝐻𝑚|𝐷)
((1 −

𝑃(𝐻𝑚|𝐷)
𝑃𝑠𝑐𝑣

) 𝑃(𝑚−1,1) −
𝑃(𝐻𝑚|𝐷)

𝑃𝑠𝑐𝑣
𝑃𝑎𝑙𝑙

𝑐 )

 3 

=
𝑃𝑅𝑃𝐴

1 − ((1 − 𝑃𝑅)(1 − 𝑃𝐴) − 𝑃𝑅(1 − 𝑃𝐴)
𝑃𝑎𝑙𝑙

𝑐

𝑃(𝑚−1,1)
)

 4 

= 𝑃𝑅𝑃𝐴 +  𝒪(𝛿𝐴
2 + 𝛿𝑅𝛿𝐴), 𝛿𝑅 , 𝛿𝐴 ⟶ 0, 5 

where 𝛿𝑅 = 1 − 𝑃𝑅,  𝛿𝐴 = 1 − 𝑃𝐴  and 6 

𝑃𝑎𝑙𝑙
𝑐

𝑃(𝑚−1,1)
= 𝒪(𝛿𝑅 + 𝛿𝐴) , 7 

(Supplementary Material). By definition, 𝑃(𝐻𝑚|𝐷) → 1 ⟺  𝑃𝑅 ⟶ 1 and 𝑃𝐴 ⟶ 1. Hence 8 

together the regional and alignment probabilities when multiplied form a statistic that is 9 

sufficient to accurately assess evidence of the full colocalization hypothesis. The objects 𝑃𝑅 10 

and 𝑃𝐴 can be defined for various collections of hypotheses that partition 𝑃𝑎𝑙𝑙. However, the 11 

major insight is that the hypotheses contained in 𝑃𝑅  and 𝑃𝐴  are computed with minimal 12 

computation burden, i.e. computed using ≤ 𝑚𝑄2  causal configurations, amongst all 13 

alternatives, making the HyPrColoc approximation tractable for very large numbers of traits 𝑚.  14 

Our software allows for the assessment of the HyPrColoc approximation by increasing the 15 

number of hypotheses used to approximate 𝑃𝑅, e.g. we can compute   16 

𝑃𝑅
′ =

𝑃(𝐻𝑚|𝐷)

𝑃(𝐻0|𝐷) + 𝑃(ℋ𝑚−2|𝐷) + 𝑃(ℋ𝑚−1|𝐷) + 𝑃(𝐻𝑚|𝐷)
, 17 
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which is computed from 𝒪(𝑚2𝑄)  causal configurations and assess the relative difference 1 

between 𝑃𝑅 and 𝑃𝑅
′ . We show that 𝑃𝑅

′ = 𝑃𝑅(1 + 𝛿𝑅) (Supplementary Material) and through 2 

simulations that there very close correspondence between 𝑃𝑅
′  and 𝑃𝑅  (Supplementary table 3 

S4). 4 

Branch and Bound divisive clustering algorithm 5 

To identify complex patterns of colocalization amongst all traits, we propose a branch and 6 

bound (BB) divisive clustering algorithm that utilizes the HyPrColoc approximation to identify 7 

a cluster of traits with the greatest evidence of colocalization at each iteration (Figure 3 and 8 

Supplementary Material). Starting with all of the traits in a single cluster, the algorithm 9 

explores evidence supporting any of 2𝑚 branches - a branch represents a hypothesis whereby 10 

𝑚 − 1 traits share a causal variant and either the remaining trait does not have a causal variant 11 

or has a causal variant elsewhere in the region - against the full colocalization hypothesis. These 12 

branches represent the hypotheses used in the computation of the regional and alignment 13 

probabilities 𝑃𝑅 and 𝑃𝐴. There are two bounds: (i) the minimum probability required to accept 14 

evidence that all 𝑚 traits are regionally associated 𝑃𝑅
∗ and (ii) the minimum probability required 15 

to accept that the causal variant for all 𝑚 traits aligns at a single variant 𝑃𝐴
∗. The BB algorithm 16 

accepts evidence supporting all 𝑚 traits sharing a single causal variant if 𝑃𝑅𝑃𝐴 ≥ 𝑃𝑅
∗𝑃𝐴

∗, after 17 

which the algorithm returns the HyPrColoc estimate of 𝑃𝑃𝐹𝐶 and stops. If either 𝑃𝑅 < 𝑃𝑅
∗ or 18 

𝑃𝐴 < 𝑃𝐴
∗ there is insufficient evidence supporting all traits sharing a causal variant and the BB 19 

algorithm moves to the branch with maximum evidence supporting 𝑚 − 1 traits sharing a 20 

causal variant. At this point the traits are partitioned into two clusters: one containing 𝑚 − 1 21 

traits deemed most likely to share a causal variant and a second cluster containing the remaining 22 

trait. We repeat this process of branch selection and partitioning on the cluster of 𝑚 − 1 traits 23 

until we identify either: (A) a cluster of traits of size 𝑘 ≥ 2 whose regional and alignment 24 

statistics satisfy 𝑃𝑅𝑃𝐴 ≥ 𝑃𝑅
∗𝑃𝐴

∗, or (B) there is one trait left in the cluster. In scenario A, the 25 
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HyPrColoc posterior probability that all 𝑘 traits colocalize is presented and the remaining 𝑚 −1 

𝑘 traits are assessed for evidence of colocalization using the branch selection and partitioning 2 

scheme. In scenario B, the trait is deemed not colocalize with any other trait in the sample and 3 

the BB selection algorithm is repeated using 𝑚 − 1 traits. The entire process is repeated until 4 

all clusters of colocalized traits, whereby each cluster of traits colocalize at a distinct causal 5 

variant, have been identified, all other traits are deemed not to share a causal variant with any 6 

other trait. 7 

Simulation study 8 

To create genomic loci with realistic patterns of LD, for each simulation scenario we simulated 9 

1,000 datasets and for each dataset we resampled phased haplotypes from the European samples 10 

in 1000 Genomes14 and randomly chose one of the first 50 regions confirmed to be associated 11 

with CHD15. Unless stated otherwise, for traits that have a causal variant in the region, the 12 

variant explains 1% of trait variance and each trait was assumed to be measured in studies with 13 

a sample size of 𝑁 = 10,000. Variant-level priors were chosen for the simulation study with 14 

the stringent choice of 𝛾 = 0.98 and setting 𝑝 = 10−4 as in2.  15 

Application to CHD and cardiovascular risk factors 16 

The GWAS results used in the assessment of colocalization of CHD with related traits were 17 

taken from large-scale analyses of CHD16, blood pressure (http://www.nealelab.is/uk-biobank), 18 

adiposity measures (http://www.nealelab.is/uk-biobank), glycaemic traits17, renal function18, 19 

type II diabetes19, lipid measurements20, smoking21, rheumatoid arthritis22 and educational 20 

attainment23 (Table S1). All datasets had either been imputed to 1000 Genomes14 prior to 21 

GWAS analyses or were imputed up to 1000 Genomes from the summary results using DIST47 22 

(INFO>0.8). We performed colocalization analyses in two steps. In step one, we assessed 23 

colocalization of CHD with the 14 risk-factors in pre-specified LD blocks from across the 24 
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genome24. We used a conservative variant-level prior structure with 𝑝 = 1 × 10−4 and 𝛾 = 1 

0.95, i.e. 1 in 200,000 variants are expected to be causal for two traits, and set strong bounds 2 

for the regional and alignment probabilities, i.e. 𝑃𝑅
∗=𝑃𝐴

∗ = 0.8 so that the algorithm identified a 3 

cluster of colocalized traits only if 𝑃𝑅𝑃𝐴 > 0.64. The full results from this analysis are available 4 

at https://jrs95.shinyapps.io/hyprcoloc_chd.  5 

To prioritise candidate causal genes in regions where CHD and at least one related trait 6 

colocalized, we re-ran the colocalization analysis and included whole blood cis eQTL26 (31,684 7 

samples) and cis pQTL27 (3,301 samples) data in addition to the primary traits, in a second step. 8 

A colocalization analysis was performed for every transcript with data within each region. cis 9 

eQTL were defined 1MB upstream and downstream of the centre of the gene probe (1,828 10 

genes were analysed across the 43 regions). cis pQTL were defined 5MB upstream and 11 

downstream of the transcript start site (854 proteins were analysed across the 43 regions). We 12 

integrated gene expression information taken from whole blood tissue as: (i) the eQTLGen 13 

dataset26 has a large sample size relative to other publicly available gene expression data 14 

resources and; (ii) the pQTL data were also measured in whole blood tissues, so there was 15 

consistency in the tissue analysed. 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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 1 

Figure legends 2 

Figure 1: Colocalization hypotheses and causal configurations. Statistical colocalization 3 

hypotheses and examples of their associated SNP configurations that allow for at most one 4 

causal variant for each of 𝑚 traits in a region containing 𝑄 genetic variants. For clarity, the 5 

hypotheses and a single configuration associated with each hypothesis are shown for 𝑚 ≥ 4 6 

traits, but the column totals 𝐵𝑒𝑙𝑙(𝑚 + 1) and (𝑄 + 1)𝑚 are correct for 𝑚 ≥ 2. 7 

Figure 2: Illustration of the HyPrColoc approximation. We illustrate the HyPrColoc 8 

approach with 𝑚 = 2 traits. Statistical colocalization between traits which do not share an 9 

association region, i.e. do not have shared genetic predictors, is not possible (no colocalization 10 

criteria satisfied). However, traits which do (satisfying criterion 1) possess the possibility. 11 

HyPrColoc first assesses evidence supporting all 𝑚 traits sharing an association region, which 12 

quickly identifies utility in a colocalization mechanism. HyPrColoc then assesses whether any 13 

shared association region is due to colocalization between the traits (criteria 1 and 2) or due to 14 

a region of strong LD between two distinct causal variants, one for each trait (criterion 1 only). 15 

Results from these two calculations are combined to accurately approximate the 𝑃𝑃𝐹𝐶. 16 

Figure 3: Branch and bound divisive clustering algorithm. Illustration of the pipeline used 17 

to detect complex patterns of colocalization. The set of all 𝑚 traits is denoted 𝑀, 𝑇 denotes a 18 

subset (i.e. cluster) of traits in 𝑀 and 𝑡 a single trait. The algorithm aims to identify one or more 19 

clusters of colocalized traits and stores these clusters in the set 𝐾. The remaining traits 𝐿, where 20 

𝐿 = 𝐾\𝑀, are identified as not having or sharing a causal variant with any other trait. The traits 21 

in the sample are partitioned into multiple clusters via a regional or an alignment selection 22 

criterion. Regional selection (software default) has 𝒪(𝑚𝑄) time cost and identifies the trait 23 

least likely to share an associated region with the other 𝑚 − 1 traits. Alignment selection 24 
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identifies the trait whose causal variant is least likely to be shared with the other 𝑚 − 1 traits 1 

and has 𝒪(𝑚𝑄2) time cost (Supplementary Note).   2 

Figure 4: Comparison of HyPrColoc and MOLOC computation time and posterior 3 

probability of colocalization. (Left panel) Computation time (seconds) for HyPrColoc 4 

(yellow) and MOLOC (blue) to assess full colocalization across 𝑀 ≤ 1000 traits in a region 5 

containing 𝑄 = 1000 SNPs (middle panel). MOLOC was restricted to 𝑀 ≤ 5 traits owing to 6 

the computational and memory burden of the MOLOC algorithm when 𝑀 > 5. Three reference 7 

lines are plotted: (i) 𝐵𝑒𝑙𝑙(𝑀 + 1) , which denotes the theoretical cost of exhaustively 8 

enumerating all hypotheses; (ii) 𝑀2, denoting quadratic cost and; (ii) 𝑀1, denoting the linear 9 

complexity of the HyPrColoc algorithm. (Right panel) Distribution of the posterior probability 10 

of colocalization using HyPrColoc (yellow) and MOLOC (blue) across 𝑀 ∈ {2,3,4}  traits. 11 

Where error bars are present, plotted are the 1st, 5th (median), and 9th deciles. Despite differences 12 

in the prior set-up between the methods, the median absolute relative difference between the 13 

two posterior probabilities was ≾ 0.005. 14 

Figure 5: Assessment of the HyPrColoc posterior probability. Simulation results for a 15 

sample size 𝑁 ∈ {5000, 10000, 20000} and a causal variant explaining {0.5%, 1%, 2%} of 16 

variation across 𝑚 ∈ {2, 5, 10, 20, 100} traits. Presented is the distribution of the HyPrColoc 17 

posterior for variant-level priors only (top); the probability of correctly identifying the causal 18 

variant (middle) and; linkage disequilibrium between an incorrectly identified causal variant 19 

and the true causal variant (bottom). Where error bars are present, plotted are the first, fifth 20 

(median), and ninth deciles. 21 

Figure 6: Assessing the performance of the BB clustering algorithm. In each of the three 22 

scenarios presented, 𝑚 = 100 traits with non-overlapping samples were generated, all traits 23 

had a study sample size of 𝑁 = 10000 and variant-level causal configuration priors were used. 24 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/592238doi: bioRxiv preprint 

https://doi.org/10.1101/592238
http://creativecommons.org/licenses/by-nd/4.0/


36 

 

In all scenarios there exists at least one cluster of 10 traits which share a causal variant, 80 traits 1 

which do not have a causal variant and either: (a) the remaining traits do not have a causal 2 

variant in the region; (b) there exists another cluster of 10 traits which share a distinct causal 3 

variant or; (c) all remaining traits have a causal variant and these variants are ‘distinct’ from 4 

one another (a distinct variant can be in perfect LD, i.e. 𝑟2 = 1, with another distinct variant 5 

and/or the shared causal variant). In all scenarios the detection probability is presented by 6 

posterior probability of colocalization, i.e. 𝑃𝑅𝑃𝐴 ≥ (0.6, 0.7) . Where indicated, detection 7 

probabilities are presented by LD (𝑟2) between the causal variant, shared across the 10 (default) 8 

colocalized traits, and any other distinct causal variant, i.e. when 𝑟2 ≤ (1, 0.95). 9 

Figure 7: Genome-wide multi-trait colocalization analysis of CHD and fourteen related 10 

traits. (a) Summary of the number of regions across the genome in which CHD colocalizes 11 

with at least one related trait. Results are aggregated by trait family, e.g. lipid fractions, and by 12 

each individual trait. (b) Stacked association plots of CHD with high density lipoprotein (HDL), 13 

low density lipoprotein (LDL), systolic blood pressure (SBP), diastolic blood pressure (DBP) 14 

and rheumatoid arthritis (RA). HyPrColoc implicated both the SH2B3-ATXN2 locus and risk 15 

variant rs713782, both of which have been previously reported as associated with CHD risk25. 16 

However, HyPrColoc extended this result by identifying that the risk loci and variant are shared 17 

with 5 conventional CHD risk factors11. (c) HyPrColoc identified rs713782 as a candidate 18 

causal variant explaining the shared association signal between CHD and the 5 related traits, 19 

i.e. rs713782 explained over 76% of the posterior probability of colocalization whereas the 20 

next candidate variant explained < 20%. 21 
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Tables 

Table 1. Forty-three regions with colocalized associations across CHD and 14 related traits. Loci are sorted into three categories: (i) those 

known at the time of the release of CARDIoGRAMplusC4D 2015 data for CHD16; (ii) those later identified in a subsequent study (or studies) or; 

(iii) those that have not been previously reported and are considered future candidate CHD loci.  

 Known CHD loci identified by HyPrColoc that share associations with CHD related traits 

Chr Locus Traits 
Colocalized SNP 

(consequence) 
Gene 

Known CHD 

locus (known 

CHD SNP) 

PPFC (PPE) 
Expressed 

gene (eQTL) 
Protein (pQTL) 

2 ABCG8, ABCG5 CHD, LDL rs4299376 (Intron) ABCG8 Yes31 (Yes31) 0.9176 (0.9486) - - 

4 GUCY1A1 CHD, DBP 
rs72689147 

(Intron) 
GUCY1A1 Yes15 (Yes16) 0.931 (0.2409) 

GUCY1A1 

(rs12643599) 
- 

6 PHACTR1, EDN1 CHD, SBP 
rs9349379  

(Intron) 
PHACTR1 

Yes32,34 

(Yes32) 
0.9994 (1) - - 

6 LPA CHD, LDL 
rs10455872 

(Intron) 
LPA 

Yes31,34 

(Yes31,34) 
0.998 (0.5383) - - 

7 HDAC9 CHD, SBP 
rs2107595 

(Intergenic) 
HDAC9 Yes15 (Yes16) 0.9961 (0.7294) - - 

7 
ZC3HC1, 

KLHDC10 
CHD, DBP 

rs11556924 

(Missense) 
ZC3HC1 

Yes15,31,34 

(Yes15,31,34) 
0.9998 (0.9936) - - 

8 TRIB1 

CHD, 

HDL, 

LDL, TG, 

eGFR 

rs2954029  

(Intron) 

RP11-

136O12.2 
Yes15 (Yes15) 0.925 (0.8724) - - 

9 
ANRIL, CDKN2B-

AS1 
CHD, DBP 

rs2891168  

(Intron) 

CDKN2B-

AS1 
Yes16 (Yes16) 0.8696 (0.7552) - - 

9 ABO 

CHD, 

LDL, DBP, 

T2D 

rs507666  

(Intron) 
ABO 

Yes15,34 

(Yes16) 
0.9835 (0.5825) - - 
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10 KIAA1462 CHD, DBP 
rs1887318  

(Intron) 
KIAA1462 

Yes15,32 

(Yes16) 
0.9369 (0.4331) - - 

11 APOA1-C3-A4-A5 

CHD, 

HDL, 

LDL, TG 

rs964184 

(3 prime UTR) 

ZPR1, 

BUD13 
Yes34 (Yes34) 0.9572 (1) - 

Apolipoprotein 

A-V  

(rs964184) 

12 ATP2B1 CHD, SBP 
rs2681492  

(Intron) 
ATP2B1 Yes16 (Yes16) 0.9803 (0.3027) - - 

12 SH2B3 

CHD, 

HDL, 

LDL, SBP, 

DBP, RA 

rs7137828  

(Intron) 
ATXN2 Yes34 (Yes16) 0.9094 (0.7684) 

TRAFD1 

(rs7137828) 
- 

15 FES, FURIN 
CHD, SBP, 

DBP 

rs35346340  

(Splice region) 
FES Yes15 (Yes16) 0.9597 (0.5789) 

FES 

(rs8027450) 
- 

18 MC4R, PMAIP1 

CHD, 

HDL, TG, 

BMI, WC 

rs12967135 

(Intergenic) 
- Yes16(Yes16) 0.8585 (0.4337) - - 

19 LDLR, SMARCA4 CHD, LDL 
rs112374545 

(Intergenic) 
LDLR 

Yes15,34 

(Yes16) 
0.9374 (0.5563) - - 

19 
APOC1, APOE, 

PVRL2, COTL1 

CHD, 

HDL, WC 

rs4420638 

(Downstream) 
APOC1 Yes16 (Yes16) 0.9596 (0.9997) - 

Apolipoprotein E 

(rs4420638) 

21  KCNE2 CHD, DBP 
rs28451064 

(Intron) 

AP000318.

2 
Yes16 (Yes16) 0.9982 (0.9735) - - 

        

 CHD loci reported after time of data release (2015) identified by HyPrColoc to share associations with CHD related traits  

1 PRDM16 
CHD, SBP, 

DBP 

rs2493288  

(Intron) 
PRDM16 Yes25 (Yes25) 0.8009 (0.3471) - - 

1 FHL3 CHD, SBP 
rs34655914 

(Missense) 
INPP5B Yes25 (Yes25) 0.9468 (0.0832) 

SF3A3 

(rs28428561); 

UTP11L 

(rs4360494); 

RNU6-510P 

(rs61776719) 

- 

1 SORT1 
CHD, 

HDL 

rs12740374  

(3 prime UTR) 
CELSR2 Yes25 (Yes25) 0.9898 (0.9997) - - 

1 LMOD1 
CHD, 

BMI, WC 

rs2678204  

(Intron) 
IPO9 Yes29 (Yes29) 0.8273 (0.1627) 

IPO9 

(rs2494115) 
- 
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2 FIGN CHD, SBP 
rs268263 

(Intron) 

AC092684.

1 
Yes25 (Yes25) 0.789 (0.995) - - 

2 IRS1 
CHD, 

HDL, TG 

rs62188784 

(Intergenic) 

AC068138.

1 
Yes25 (Yes25) 0.8234 (0.4852) - - 

3 RHOA 
CHD, 

BMI, EDU 

rs73078367 

(Downstream) 
NCKIPSD Yes25 (Yes25) 0.9541 (0.5656) - - 

3 RHOA CHD, SBP 
rs7623687  

(Intron) 
RHOA Yes33 (Yes33) 0.9713 (0.2455) - - 

4 FGF5, PRDM8 
CHD, SBP, 

DBP 

rs13125101 

(Intergenic) 
FGF5 Yes25 (Yes25) 0.9827 (0.4148) - - 

5 MAP3K1 

CHD, 

HDL, TG, 

WC, SBP, 

T2D 

rs9686661  

(Intron) 
C5orf67 Yes25 (Yes25) 0.7755 (0.7115) - - 

6 VEGFA 

CHD, 

HDL, TG, 

BMI, WC 

rs998584 

(Downstream) 
VEGFA Yes25 (Yes25) 0.8376 (0.9746) - - 

10 
TSPAN14, 

FAM213A 
CHD, RA 

rs2343306  

(Intron) 
TSPAN14 Yes25 (No) 0.9064 (0.7279) - - 

11 ARNTL CHD, DBP 
rs10832013 

(Upstream) 
ARNTL Yes25 (Yes25) 0.9403 (0.0823) - - 

11 SIPA1 
CHD, 

HDL, TG 

rs12801636 

(Intron) 
PCNX3 Yes29 (Yes29) 0.8369 (0.8945) - - 

12 HNF1A CHD, LDL 
rs1169288 

(Missense) 
HNF1A Yes29 (Yes29) 0.9645 (0.5762) - - 

13 N4BP2L2, PDS5B CHD, BMI 
rs35193668 

(Intron) 
N4BP2L2 Yes25 (Yes25) 0.6785 (0.0911) 

N4BP2L2 

(rs9337) 
- 

16 CDH13 CHD, DBP 
rs7500448  

(Intron) 
CDH13 Yes25 (Yes25) 0.9947 (1) - - 

16 CTRB2, BCAR1 CHD, T2D 
rs55993634 

(Downstream) 
CTRB2 Yes33 (Yes25) 0.8296 (0.3868) 

BCAR1 

(rs28595463) 
- 

17 IGF2BP1 
CHD, 

BMI, T2D 

rs11079849 

(Intron) 
IGF2BP1 Yes25 (Yes25) 0.8389 (0.831) - - 

17 
PECAM1, DDX5, 

TEX2 

CHD, SBP, 

DBP 

rs1867624 

(Upstream) 
RPL31P57 Yes29 (Yes29) 0.7963 (0.4276) - - 

         

 New CHD loci shown to share associations with CHD related traits using HyPrColoc and yet to be reported 
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6 FHL5 CHD, SBP 
rs9486719  

(Intron) 
FHL5 - 0.844 (0.1542) - - 

10 CYP26A1 CHD, TG 
rs2068888 

(Downstream) 
CYP26A1 - 0.8454 (0.7669) - - 

16 ANKRD11 CHD, WC 
rs11643561 

(Intron) 
ANKRD11 - 0.7827 (0.0795) - - 

19 RSPH6A CHD, SBP 
rs8108474  

(Intron) 
RSPH6A - 0.7802 (0.1435) - - 

20 PREX1 
CHD, SBP, 

DBP 

rs79044887 

(Intron) 
PREX1 - 0.7237 (0.132) - - 

Colocalization analyses were performed genome-wide using publicly available data (Table S1). Chr: chromosome; Locus: labelled with candidate causal 

genes as listed by Erdmann et al. 
39

; Gene: nearest gene to colocalized SNP; eQTL: gene expression26; pQTL: protein expression27; Colocalized 

SNP(consequence); SNP marking the association shared across the traits and its annotation in VEP48 obtained from PhenoScanner49; Locus at time of 

2015 CHD data release16: region was either known and published in16 or later identified25; PPFC: posterior probability of colocalization;  PPE: proportion 

of PPFC explained by the listed SNP; traits: the traits with the colocalized SNP association. The full results from these analyses are available at 

https://jrs95.shinyapps.io/hyprcoloc_chd. 
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Figure 2 
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Figure 3  
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Figure 4 
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Figure 5 
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Figure 6 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/592238doi: bioRxiv preprint 

https://doi.org/10.1101/592238
http://creativecommons.org/licenses/by-nd/4.0/


47 

 

Figure 7 
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