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Repositories 34 

Short read data are archived on the NCBI SRA repository, associated with BioProject 35 

accession PRJNA517467 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA517467; Table 36 

S1). 37 

 38 

Abstract  39 

Reference and type strains of well-known bacteria have been a cornerstone of microbiology 40 

research for decades. The sharing of well-characterised isolates among laboratories has 41 

parallelised research efforts and enhanced the reproducibility of experiments, leading to a 42 

wealth of knowledge about trait variation in different species and the underlying genetics. 43 

Campylobacter jejuni strain NCTC 11168, deposited at the National Collection of Type 44 

Cultures in 1977, has been adopted widely as a reference strain by researchers worldwide and 45 

was the first Campylobacter for which the complete genome was published (in 2000). In this 46 

study, we collected 23 C. jejuni NCTC 11168 reference isolates from laboratories across the 47 

UK and compared variation in simple laboratory phenotypes with genetic variation in 48 

sequenced genomes. Putatively identical isolates identified previously to have aberrant 49 

phenotypes varied by up to 281 SNPs (in 15 genes) compared to the most recent reference 50 

strain. Isolates also display considerable phenotype variation in motility, morphology, growth 51 

at 37oC, invasion of chicken and human cell lines and susceptibility to ampicillin. This study 52 

provides evidence of ongoing evolutionary change among C. jejuni isolates as they are 53 

cultured in different laboratories and highlights the need for careful consideration of genetic 54 

variation within laboratory reference strains. 55 

 56 

Impact statement 57 

In this paper, we comment on the changing role of laboratory reference strains. While the 58 

model organism allows basic comparison within and among laboratories, it is important to 59 

remember the effect even small differences in isolate genomes can have on the validity and 60 

reproducibility of experimental work. We quantify differences in 23 reference 61 

Campylobacter genomes and compare them with observable differences in common 62 

laboratory phenotypes.  63 

 64 
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Data summary 65 

Short read data are archived on the NCBI SRA associated with BioProject accession 66 

PRJNA517467 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA517467). 67 

All assembled genomes are also available on FigShare (doi: 10.6084/m9.figshare.7849268). 68 

Phylogeny visualised on microreact: https://microreact.org/project/NCTC11168. 69 

 70 

The authors confirm all supporting data, code and protocols have been provided within the article 71 

or through supplementary data files. 72 

  73 
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Introduction 74 

The sharing of bacterial reference or type strains among laboratories is a fundamental part of 75 

microbiology. This often informal, usually uncelebrated, enterprise has supported academic, 76 

health, food and veterinary research worldwide underpinning microbiology innovation. The 77 

history of the exchange and classification of bacterial type strains has incorporated the work 78 

of some of the most influential microbiologists [1]. One such strain belongs to the important 79 

food-borne pathogen species Campylobacter jejuni.  80 

 81 

For C. jejuni, the publication of a simplified culturing technique and deposition of a reference 82 

isolate at the National Collection of Type Cultures (NCTC 11168) in 1977 (by Martin 83 

Skirrow), marked the end of the first century of research into this organism [2]. The first 84 

description of an organism likely to be Campylobacter was made in Naples in 1884. Theodor 85 

Escherich observed spiral bacteria in stool specimens from patients with diarrhoeal disease 86 

but he was unable to culture them [3, 4]. Successful isolation of Bacterium coli commune 87 

(now Escherichia coli) from his young dysenteric patients helped pioneer bacterial genetics 88 

and lay the foundations of modern microbiology [1, 5]. However, throughout his career, 89 

Escherich continued to identify ‘spirilla’ in cases of cholera-like and dysenteric disease. It is 90 

likely that the microorganisms he described were Campylobacter with their typical spiral 91 

morphology and association with enteritis [4, 6].  92 

 93 

Early in the 20th century researchers investigating veterinary cases of foetal abortion and 94 

winter dysentery in cattle [7] described several species that would later become part of the 95 

Campylobacter genus, including Vibrio jejuni [8], V. fetus [9], V. fetus venerealis and V. fetus 96 

intestinalis [10]. Isolation techniques that permitted the growth of Campylobacter from 97 

human faeces drew attention to its importance as a human pathogen [11–13]. The genus name 98 

Campylobacter (meaning curved rod) was proposed by Sebald and Véron in 1963 and 99 

subsequently verified in 1973 with the broader acceptance of Campylobacter spp. as human 100 

pathogens [14, 15]. Skirrow’s more convenient culturing technique and the availability of a 101 

model reference strain sparked renewed interest in Campylobacter research later in the 20th 102 

century [16, 17]. Model strains allowed for comparison of experiments within laboratories 103 

and isolates were passed among laboratories across the world [18–23]. When the C. jejuni 104 

NCTC 11168 genome was sequenced in 2000 [24] this type strain was cemented as an 105 
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important reference strain for Campylobacter research. Additional detail was added to the C. 106 

jejuni genome following its re-annotation (accession: AL11168.1), including revised coding 107 

sequence (CDS) identification incorporating potential for phase variation [25–29].  108 

 109 

Today, many aspects of the biology of this organism are well characterised. Identification of 110 

genomic regions primed for posttranslational modification, in particular decoration of surface 111 

proteins with glycans [30], pseudaminic acid [31–33] and legionaminic acid [34] have 112 

improved understanding of the mechanisms of ganglioside mimicry [35], epithelial cell 113 

invasion, host immune-evasion, colonisation [36, 37] and development of neurological 114 

sequelae such as Guillain-Barré syndrome [38]. Furthermore, insights into virulence traits 115 

including strategies to sequester the iron required for infection were detailed using NCTC 116 

11168 [39–41]. Vaccine targets have been identified [42–44] and the mechanisms of core 117 

metabolic processes [45, 46], biofilm production [47–51], capsule production [52] and 118 

resistance to oxidative stress have been elucidated [53, 54]. Accidental passage through a 119 

laboratory worker also identified putative human host adaptations in vivo [55].  120 

 121 

Since 1977 the NCTC 11168 strain has been an important part of efforts to better understand 122 

this pervasive pathogen. However, there are limitations to the use of type strains, the most 123 

obvious being that bacteria display considerable variation within species. For example, in C. 124 

jejuni, some strains cause a significant amount of disease in humans while others do not – 125 

owing, in part, to their inability to survive the passage from reservoir host through the food 126 

production chain to contaminate human food [56]. This kind of phenotypic variation among 127 

strains is well-documented in many species and is a central reason for the growing emphasis 128 

on population genomics when trying to understand the ecology and evolution of bacteria [57]. 129 

A second, more inconspicuous limitation on the use of type strains shared among laboratories 130 

is that they might not all be the same. Strains are not sensu stricto clones and may display 131 

low levels of genetic variation. Clearly, when frozen there is little opportunity for genome 132 

evolution to occur [58]. However, whenever there is growth, for example in the process of 133 

sub-culturing isolates, there is an opportunity for genetic variability to be generated within 134 

the population. This may be important for interpreting research findings in different groups as 135 

even single SNPs can potentially have an impact on phenotype, for example in antimicrobial 136 

resistance [59] or host tropism [60]. The aim of our study was to investigate if, over time, 137 
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multiple passages under potentially different growth conditions in different laboratories have 138 

introduced genotypic and phenotypic variation into a collection of NCTC 11168 C. jejuni.   139 

  140 
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Methods  141 

Isolates and genome sequencing 142 

Twenty-three laboratory reference C. jejuni NCTC 11168 isolates from around the United 143 

Kingdom were collected and (re)sequenced. The year in which the laboratory received the 144 

isolate is noted along with its known heritage (Table 1). DNA was extracted using the 145 

QIAamp DNA Mini Kit (QIAGEN, Crawley, UK), according to manufacturer’s instructions 146 

and quantified using a Nanodrop spectrophotometer. Genome sequencing was performed on 147 

an Illumina MiSeq sequencer using the Nextera XT Library Preparation Kit. Libraries were 148 

sequenced using 2 × 300 bp paired end v3 reagent kit (Illumina). Short read paired-end data 149 

was trimmed using TRIMMOMATIC (version 0.35; paired-end mode) and assembled using 150 

the de novo assembly software, SPAdes (version 3.8.0; using the careful command). The 151 

average number of contigs in the resulting assemblies was 19.7 (range: 13-36) for an average 152 

total assembled sequence size of 1,629,408 bp (range: 1,612,402 - 1,694,909 bp). The 153 

average N50 contig length was 173,674 bp (range: 100,444 - 271,714 bp) (Table S1).  154 

 155 

Population structure and phylogenies 156 

Sequence alignments and genome content comparison analyses using BLAST were 157 

performed gene-by-gene, as implemented in the BIGSdb platform [61, 62] as described in 158 

previous Campylobacter studies [63–66]. A gene was considered present in a given genome 159 

when its sequence aligned to a NCTC 11168 locus with more than 70% sequence identity 160 

over at least 50% of sequence length using BLAST [67]. Genomes were aligned by 161 

concatenating single-gene alignments using MAFFT [68]. For context, collected NCTC 162 

11168 isolates were augmented with 83 previously published genomes representing the 163 

known genetic diversity in C. jejuni (Table S2). Genes present in 90% or more of the isolate 164 

genomes were aligned (1,359,883 bp; Supplementary File 1) and a maximum-likelihood 165 

phylogeny constructed in FastTree (version 2.1.10; with the generalized time reversible 166 

substitution model)[69]. A second alignment of just the collected NCTC 11168 strains was 167 

made (1,555,326 bp; Supplementary File 2) to build an additional maximum-likelihood tree, 168 

which was used as input for ClonalFrame-ML to mask putative recombination sites (version 169 

1.11-3)[70] and visualised in microreact: https://microreact.org/project/NCTC11168 [71].  170 

 171 

Estimating genome variation  172 
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Sequence reads were compared to the completed NCTC 11168 reference genome 173 

(AL11168.1) using SNIPPY (version 3.2dev)[72] to estimate nucleotide differences between 174 

our laboratory reference isolates and the originally sequenced genome. Assembled genomes 175 

were annotated with PROKKA (version 1.13)[73] and recombination was inferred using 176 

Gubbins (version 2.3.1)[71]. All high performance computation was performed on MRC 177 

CLIMB in a CONDA environment [74, 75].  178 

 179 

Phenotype testing 180 

Isolates were recovered from frozen storage on Columbia blood agar (E&O Labs, 181 

BonnyBridge, UK) and incubated in microaerobic conditions at 37°C and sub-cultured in 182 

Mueller Hinton broth (Oxoid Ltd, Basingstoke, UK) and grown microaerobically overnight at 183 

37oC.  184 

 185 

Bacterial growth assays  186 

Broth cultures were standardised to an OD600 nm of 0.05. For growth curves at 37 oC and 187 

42oC, 20 μl of the standardised broth culture was added to 180 μl of Mueller Hinton broth in 188 

a microtitre plate. Optical densities were measured at hourly intervals over a period of 48 189 

hours using an OMEGA FLUOstar (BMG LabTech, Aylesbury, UK) plate reader with an 190 

atmospheric environment of 10% CO2 and 3% O2. Growth curve assays were performed in 191 

triplicate, with three technical replicates for each biological replicate. Multiple comparisons 192 

among isolates at 37°C and 42°C were compared using a one-way ANOVA with a Tukey 193 

post-test [76].  194 

 195 

Swarming assays and motility 196 

For each isolate, a 1 ml aliquot of the standardised pre-culture (OD600=0.05) was transferred 197 

to 5 ml of fresh Mueller Hinton broth and 2 µl pipetted onto the centre of semi-solid Mueller 198 

Hinton agar (11.5 g of Muller Hinton Broth, 2.5 g of Agar 3 (Oxoid) in 500 ml of deionised 199 

water) and incubated at 42°C for 24 hours. Variation in isolate swarming was observed on 200 

Mueller-Hinton motility plates. Motile isolates spread across the plates and halo diameters 201 

were measured after 1 day of incubation. Isolates were grouped into three categories: non-202 

motile isolates did not spread across the plate; isolates with halo diameters up to 1.5 cm were 203 
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categorised as motile; and those with halos of a diameter above 1.5 cm were designated as 204 

hyper-motile [36].   205 

 206 

Invasion assays 207 

A chicken gut epithelial cell line (MM-CHiC clone, 8E11; Micromol, Germany) and a human 208 

colon epithelial adenocarcinoma cell line (HT29) were used to assay invasion of 209 

Campylobacter in vivo. A 24-well plate was seeded with 8E11 cells in assay medium 210 

(modified McCoy’s 5A/DMEM/F-12 with L-glutamine (5 mM) and supplemented with 5% 211 

FBS) and incubated at 37oC in 5% CO2 between 4 and 7 days. Liquid cultures were 212 

standardised by diluting with Mueller Hinton broth to between 0.030 and 0.080. Aliquots of 213 

200 µl from each isolate were deposited into a 96 well plate and diluted serially. The original 214 

stock and dilutions were spread onto Columbia horse blood agar and incubated for 24 hours 215 

microaerobically at 42oC. Once the cells had reached confluent growth, the medium was 216 

removed and the monolayer washed 3 times with warm PBS. An aliquot of 1 ml pre-warmed 217 

antibiotic-free supplemented DMEM medium was added to each well and inoculated with 218 

100 µl 1x107 colony-forming units (CFU). Following incubation in 5% CO2 at 37°C for 4 219 

hours, the cells were washed twice with 2 ml PBS supplemented with 4 µl (100 µl/ml) 220 

gentamicin and incubated for a further 1.5 hours. Cells were washed 3 times with PBS and an 221 

aliquot of 1 ml of warmed TrypLE (Gibco) added to each well and incubated at 37°C for 10 222 

minutes. The lysed monolayer solution was diluted serially and spread onto Columbia horse 223 

blood agar in duplicate. Plates were incubated overnight at 42°C in a microaerobic 224 

environment and enumerated pre- and post- invasion to calculate the percentage of invaded 225 

inoculum. Assays with human HT29 cells were performed with McCoys growth media. 226 

Invasion assays were performed in triplicate and analysed using unpaired T-tests with 227 

Welch’s correction.  228 
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Results and discussion 229 

Not all reference strains are equal 230 

Since its deposition at the NCTC there have been two main dissemination hubs of NCTC 231 

11168. Ten of the 23 isolates we collected were obtained by contributing laboratories directly 232 

from the NCTC collection, while 13 isolates had come via another laboratory (Figure 1). 233 

DNA was extracted from each isolate, sequenced, and the genome was assembled (Table 234 

S1). All 23 isolates clustered closely in the host-generalist ST-21 lineage when compared on 235 

a maximum-likelihood phylogenetic tree (Figure 2A; 236 

https://microreact.org/project/NCTC11168). This suggests that despite some phenotypic 237 

heterogeneity, all isolates derived were from a recent common ancestor and no strains were 238 

misidentified during passage. Micro-evolutionary differences among closely related NCTC 239 

11168 isolates were observed on a recombination-free phylogeny constructed using 240 

ClonalFrameML (Figure 2B). Genomes were compared to the original NCTC 11168 genome 241 

and as many as 281 SNP differences were observed (up to 15 genes) among collected 242 

laboratory strains and the reference (Figure 2C; Table 1). Although, in 21 of 23 isolates 243 

(91%) there were 32 or fewer SNP differences compared to the reference (Table 1). There 244 

was an average of 29 SNP differences between the laboratory strains and the reference, and 245 

fewest SNPs in any comparison was eight SNP differences (in five genes).  246 

 247 

Under ideal storage conditions we might not expect to see any evidence of recent 248 

recombination in the laboratory reference strains. Nevertheless, we estimated the number of 249 

mutations and recombination events using Gubbins. In total, 436 of the 632 SNPs (69%) we 250 

identified were found within protein coding regions, of which 83 were synonymous 251 

mutations (19%; Table 1). The only isolate where we inferred any recombination was isolate 252 

17. This isolate has acquired four recombination blocks (combined 14,816 bp, r/m of 9.76) 253 

and lost a block of 15 genes (Cj1319-1333; wgMLST supplementary file), which includes a 254 

maf-family gene (maf3/Cj1334) involved in posttranslational modification of flagellins. Also 255 

missing were the neuC2/Cj1328, neuB2/Cj1327, ptmA/Cj1332, and ptmB/Cj1331 genes 256 

involved in the addition of pseuaminic/legionaminic  acid to C. jejuni flagellins [32, 77, 78]. 257 

A knockout mutant of the final gene in this block, Cj1333, demonstrated compromised 258 

agglutination and reduced invasion (in INT-407 cells)[78]. This region of the C. jejuni 259 

genome is prone to recombination and has shown a high level of diversity and is often 260 
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implicated in bacterial virulence [34, 35, 37, 79–82]. Isolate 17 was hyper-motile and also 261 

among the most invasive isolates when tested against chicken cell lines, but invaded human 262 

cell lines poorly (Table 2).  263 

 264 

Isolate motility was tested in vitro [83] and phenotypic variation was observed among NCTC 265 

11168 isolates (Table 2). Since its original dissemination, motile, non-motile and hyper-266 

motile variants have been reported [25, 28, 84]. All three hyper-motile strains were passed 267 

between at least two laboratories before entering our collection. Only 50% of the isolates 268 

received by laboratories directly from the NCTC collection were motile (Table 2). Changes 269 

in motility can be a result of differences in the flaA and flaB genes resulting in attenuated 270 

flagella assembly [36]. However, we did not identify any non-synonymous mutations within 271 

the flaA or flaB genes. A shared frameshift mutation was identified in two hyper-motile 272 

isolates (11 and 16) within the core motor protein, fliR [85–87]. Isolate motility is also 273 

influenced by phase-variable gene expression as a result of upstream homopolymeric repeat 274 

regions [24, 88, 89]. Several motility associated genes (maf1/Cj1348, maf4/Cj1335 and 275 

maf7/Cj1342c) were among 31 phase-variable regions recently identified in NCTC 11168 276 

[90] and were among SNPs we identified in non-coding intergenic regions (196 of 632; 31%; 277 

Table 1). Twelve genes contained nucleotide substitutions in 10 or more NCTC 11168 278 

isolates, of which five have been shown to be subject to phase variation [89]. Growth of 279 

motile bacteria in culture media can result in loss of motility as flagella construction is 280 

energetically expensive [91, 92]. In batch culture, rapid growth is prioritised and loss of 281 

flagella can be advantageous [93, 94]. 282 

 283 

Adequate flagella construction is an important virulence factor as, in addition to motility, 284 

flagella also contribute to invasion and secretion [95, 96], without which colonisation is 285 

impaired [28]. The ability of isolates to invade human and chicken intestinal epithelial cell 286 

lines was tested in vitro by gentamicin protection assay (Figure 3AB). Fourteen of twenty 287 

one isolates tested invaded the 8E11 chicken cell line more effectively compared to the 288 

human HT-29 cell line (Figure 3C). Broadly, motile and hyper-motile isolates invaded both 289 

cell lines in greater numbers Figure 3AB). Several genes containing SNPs in multiple 290 

isolates have been shown previously to contribute to increased invasion and virulence, 291 

including mreB, cheA, Cj0431, Cj0455, Cj0807 and Cj1145 [55, 81, 97]. Isolate growth was 292 
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tested at 37°C and 42°C, with all growing to a higher optical density at avian body 293 

temperature (42°C) (Figure 3D). Isolate 15 grew particularly poorly at 37°C. We identified 294 

the OXA-61 gene in the majority of isolates, but only two were resistant to ampicillin, 295 

according to CLSI guidelines (Isolates 3 and 8; Table 2; Figure 3E) [98]. 296 

 297 

The role of model strains in an age of population genomics   298 

In most cases (21 of 23 isolates; 91%) we observed fewer than 32 SNPs among the laboratory 299 

isolate and the type strain deposited in the NCTC archive. However, even these minor 300 

changes are associated with observable phenotype differences (motility and invasion as seen 301 

here). This could be seen as a challenge to the reproducibility of experiments in different 302 

laboratories that use ostensibly identical strains [55, 97]. It is accepted among microbiologists 303 

that there is potential for variation among type strains that may display considerable genome 304 

plasticity, such as in Helicobacter pylori [99]. Consistent with this, variants of C. jejuni 305 

NCTC 11168 are defined as motile/non-motile, coloniser/non-coloniser for use in specific 306 

experiments.  307 

 308 

Technical advances in high-throughput genome sequencing and analysis methods continue to 309 

improve understanding of C. jejuni from bottom-up studies that test the function of specific 310 

genes or operons, often with insertion or deletion mutants [55, 97], to top-down comparative 311 

genomic approaches in which isolates are clustered by phenotype and associated genomic 312 

variations are identified in large genome collections [50, 64, 100]. Early genome typing using 313 

DNA microarrays hinted at the level of diversity among C. jejuni isolates [27, 101], and 314 

comparisons of large isolate genome collections are now linking strain variation to 315 

differences in ecology [65, 102–105], epidemiology and evolution [63, 100, 106–110]. 316 

Advances in sequencing technology are helping us study genomes variation in greater depth 317 

and long read sequencing of isolate 2 identified large inversions (>90,000 bp) compared to 318 

the original finished genome (Table S1).  319 

 320 

In conclusion, the genotypic and phenotypic differences among NCTC 11168 strains in this 321 

study, probably as a result of evolution during repeated passages, emphasises the need for 322 

laboratories to maintain isolate collections with detailed records and good culture practices. 323 

This essentially reaffirms the work of microbiology pioneers who developed practices to 324 
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minimise variation between strains and laboratories. However, in the genomics era, it may 325 

also be prudent to sequence strains more routinely, particularly as the costs continue to 326 

decline. While the interpretation of experiments using reference type strains may be adapting 327 

to more detailed genomic data and improved understanding of genome evolution, the strains 328 

themselves remain an essential resource in microbiology. The perceived power of large-scale 329 

comparative genomics and statistical genetics studies typically lies in the ability to identify 330 

genes or genetic variation that confers putative functional differences to the bacterium. 331 

Confirming these associated gene functions [56] requires traditional microbiology based upon 332 

a detailed understanding of reliable reference type control strains such as NCTC 11168. 333 

  334 
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Figures and tables 389 

Figure 1. The location of laboratories contributing C. jejuni NCTC11168 isolates. The 390 

most recent NCTC 11168 isolate was obtained by Swansea (isolate 13) in 2016 from the 391 

NCTC collection. Other isolates obtained directly from the NCTC collection are coloured 392 

black, isolates obtained via a second laboratory are coloured white.  393 

 394 

Figure 2. Genetic variation among C. jejuni NCTC11168 genomes. (A) NCTC11168 395 

isolates were contextualised with 83 previously published genomes representing the 396 

known genetic diversity in C. jejuni (total of 106 isolates). Genes present in 90% or more 397 

of the isolate genomes were aligned (1,359,883 bp) and a maximum-likelihood phylogeny 398 

constructed in FastTree2 with the generalized time reversible substitution model. The scale 399 

bar represents a genetic distance of 0.01. (B) Recombination was masked using 400 

ClonalFrame-ML to produce an alignment of the NCTC11168 isolates only (n=23; 401 

1,555,326 bp). The scale bar represents 15 nucleotide substitutions. (C) The position of all 402 

nucleotide substitutions identified using SNIPPY were mapped against the original 403 

NCTC11168 genome (AL11168.1). SNPs found within coding regions (CDS) are represented 404 

with circles and SNPs located in intergenic regions are represented with an X. Gene names 405 

are given where variation was observed in 10 or more of the isolates.  406 

 407 

Figure 3. Phenotype variation among C. jejuni NCTC11168 genomes. Invasion assays 408 

were carried out for strains categorised by motility phenotypes in (A) human HT-29 and (B) 409 

chicken cell lines. Comparisons were made between (C) invasiveness in these cell lines and 410 

(D) maximum growth at different temperatures. Minimum inhibitory concentration of 411 

ampicillin was determined for isolates grouped by source (E) and motility (F).  412 

 413 

Table 1: Summary of genome differences in 23 NCTC11168 isolates.  414 

Table 2: Summary of phenotype differences in 23 NCTC11168 isolates. 415 

 416 

Supplementary data 417 

Table S1: Isolate list 418 

Table S2: Isolates used for genomic context 419 

File S1: Alignment file: NCTC11168 isolates and 83 previously published genomes. 420 

File S2: Alignment file: NCTC11168 isolates only. 421 
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File S3: wgMLST 422 

File S4: SNP matrix 423 
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Isolate ID Source laboratory Variant / comment
Aberrant 

phenotype*
Genome size 

(bp)
Total substitutions 

(Snippy)
Genes with 

substitutions (BIGS)

Number of 
recombination blocks 

(Gubbins)

Bases in 
recombination 

(Gubbins)
1 5920 Aberystwyth Primary lab strain 1,626,801 8 5 0 0
2 5921 Aberdeen Primary lab strain 1,626,067 11 6 0 0
3 5922 Bristol Non-motile  1,634,599 26 17 0 0
4 5923 Bristol Hyper-motile  1,626,519 22 15 0 0
5 5925 Glasgow Hyper-motile  1,625,874 11 7 0 0
6 5926 Glasgow Original strain 1,625,293 9 9 0 0
7 5927 Glasgow Sequenced variant 1,626,367 10 8 0 0
8 5928 Norwich Primary lab strain 1,626,763 32 23 0 0
9 5929 Norwich Hyper-motile  1,625,378 15 11 0 0

10 5930 London -- 1,624,738 14 8 0 0
11 5931 London Hyper-motile  1,641,300 13 11 0 0
12 5932 Manchester Hyper-motile  1,628,343 12 9 0 0
13 5933 Swansea Recently purchased 1,694,909 11 6 0 0
14 5934 Oxford Primary lab strain 1,625,944 11 6 0 0
15 5935 Sheffield Primary lab strain 1,625,814 59 44 0 0
16 5936 Sheffield Hyper-motile  1,626,210 18 16 0 0
17 5937 Sheffield WT-2000 1,612,402 281 78 4 14,816
18 5938 Sheffield WT-2010 (subcultured from WT-2000) 1,625,308 14 11 0 0
19 5939 London Hyper-motile  1,625,123 11 10 0 0
20 5940 London [Genome previously sequenced] 1,625,478 -- -- -- --
21 5941 Surrey Primary lab strain 1,625,755 15 9 0 0
22 5942 Surrey -- 1,624,913 17 11 0 0
23 5943 Edinburgh -- 1,626,490 12 9 0 0

Reference AL11168.1 NCTC Original sequenced isolate 1,641,481 -- -- 0 0
*Aberrant phenotypes observed include diffrences in motility, growth and invasivness
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Isolate ID Source laboratory Variant / comment
Aberrant 

phenotype
Observed 
motility

Maximum 
growth at 37°C 

(OD600)

Maximum 
growth at 42°C 

(OD600)

Invasion
 (HT-29 cell line)

Invasion 
(chicken cell line)

Ampicillin 
MIC (µg/ml)

blaOXA-61

1 5920 Aberystwyth Primary lab strain -- -- -- -- -- -- 1
2 5921 Aberdeen Primary lab strain Non-motile 0.024 0.331 0.003 0.002 2 1
3 5922 Bristol Non-motile  Non-motile 0.032 0.364 0.001 0.001 8 1
4 5923 Bristol Hyper-motile  Motile 0.040 0.216 0.002 0.005 2 1
5 5925 Glasgow Hyper-motile  Motile 0.042 0.286 0.002 0.002 4 1
6 5926 Glasgow Original strain Motile 0.049 0.270 0.001 0.002 0.015 1
7 5927 Glasgow Sequenced variant Motile 0.039 0.277 0.002 0.002 2 1
8 5928 Norwich Primary lab strain Motile 0.017 0.236 0.001 0.001 8 1
9 5929 Norwich Hyper-motile  Motile 0.081 0.599 0.001 0.003 0.015 1

10 5930 London -- Hyper-motile 0.021 0.338 0.003 0.002 4 1
11 5931 London Hyper-motile  Hyper-motile 0.034 0.135 0.003 0.002 2 1
12 5932 Manchester Hyper-motile  Motile 0.028 0.321 0.008 0.001 4 1
13 5933 Swansea Recently purchased Non-motile 0.119 0.250 0.001 0.003 1 1
14 5934 Oxford Primary lab strain Non-motile 0.042 0.323 0.001 0.004 1 1
15 5935 Sheffield Primary lab strain Motile 0.001 0.205 0.004 0.006 0.015 1
16 5936 Sheffield Hyper-motile  Motile 0.034 0.077 0.002 0.005 4 1
17 5937 Sheffield WT-2000 Hyper-motile 0.023 0.304 0.001 0.003 4 1
18 5938 Sheffield WT-2010 (subcultured from WT-2000) Motile 0.018 0.289 0.000 0.002 0.015 1
19 5939 London Hyper-motile  Motile 0.086 0.172 0.000 0.008 1 1
20 5940 London [Genome previously sequenced] -- -- -- -- -- -- 0
21 5941 Surrey Primary lab strain Non-motile 0.046 0.236 0.001 0.000 1 1
22 5942 Surrey -- Motile 0.084 0.226 0.001 0.001 0.015 1
23 5943 Edinburgh -- Motile 0.095 0.245 0.001 0.002 2 1

Reference AL11168.1 NCTC Original sequenced isolate -- -- -- -- -- -- 0
*Aberrant phenotypes observed include diffrences in motility, growth and invasivness
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