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Abstract

Clustering homologous sequences based on their similarity is a problem that appears in
many bioinformatics applications. The fact that sequences cluster is ultimately the
result of their phylogenetic relationships. Despite this observation and the natural ways
in which a tree can define clusters, most applications of sequence clustering do not use a
phylogenetic tree and instead operate on pairwise sequence distances. Due to advances
in large-scale phylogenetic inference, we argue that tree-based clustering is
under-utilized. We define a family of optimization problems that, given a (not
necessarily ultrametric) tree, return the minimum number of clusters such that all
clusters adhere to constraints on their heterogeneity. We study three specific constraints
that limit the diameter of each cluster, the sum of its branch lengths, or chains of
pairwise distances. These three versions of the problem can be solved in time that
increases linearly with the size of the tree, a fact that has been known by computer
scientists for two of these three criteria for decades. We implement these algorithms in a
tool called TreeCluster, which we test on three applications: OTU picking for
microbiome data, HIV transmission clustering, and divide-and-conquer multiple
sequence alignment. We show that, by using tree-based distances, TreeCluster generates
more internally consistent clusters than alternatives and improves the effectiveness of
downstream applications. TreeCluster is available at
https://github.com/niemasd/TreeCluster.

Introduction 1

Homologous molecular sequences across different species or even within the same 2

genome can show remarkable similarity due to their shared evolutionary history. These 3

similarities have motivated many applications to first group the elements of a diverse set 4

of sequences into clusters of set of sequences with high similarity for use in subsequent 5

steps. The precise meaning of clusters depends on the application. For example, when 6

analyzing 16S microbiome data, the standard pipeline is to use Operational Taxonomic 7

Units (OTUs), which are essentially clusters of closely related sequences that do not 8

diverge more than a certain threshold [1–3]. Another example is HIV transmission 9

inference, a field in which a dominant approach is to cluster HIV sequences from 10

different individuals based on their similarity (again using a threshold) and to use these 11

clusters as proxies to clusters of disease transmission [4, 5]. 12
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(b) Non-ultrametric tree T2

Fig 1. When the phylogenetic tree is ultrametric, clustering is trivial: for a threshold
α, cut the tree at α

2 height (a) When the tree is not ultrametric, it is not obvious how
to cluster leaves (b). In either cases, a set of cut edges defines a clustering.

Shared evolutionary histories, the origin of similarity among homologous sequences, 13

can be captured by a phylogenetic tree. The true phylogeny is never known, but it can 14

be inferred from sequence data, [6, 7] and recent advances have led to methods that can 15

infer approximate maximum-likelihood (ML) phylogenetic trees in sub-quadratic time, 16

which can easily scale to datasets of even millions of sequences [8]. Moreover, accurate 17

alignment of datasets with hundreds of thousands of species (a prerequisite to most 18

phylogenetic reconstruction methods) is now possible using divide-and-conquer 19

methods [9, 10]. 20

Most existing sequence clustering methods use the pairwise distances among 21

sequences as input but do not take advantage of phylogenetic trees. For example, the 22

widely-used UCLUST [2] searches for a clustering that minimizes the Hamming distance 23

of sequences to the cluster centroid while maximizes the Hamming distance between 24

centroids. Several other clustering methods have been developed for various contexts, 25

such as gene family circumscription [11,12] and large protein sequence databases [13]. 26

Using phylogenies for clustering has two potential advantages. i) Since phylogenies 27

explicitly seek to infer the evolutionary history, phylogeny-based clustering has the 28

potential to not only reflect evolutionary distances (i.e., branch lengths) but also 29

relationships (i.e., the tree topology). Recall also that branch lengths in a phylogeny are 30

model-based “corrections” of sequence distances in a statistically-rigorous way [7], and 31

therefore, may better reflect divergence between organisms. ii) When inferred using 32

subquadratic algorithms, the tree can eliminate the need to compute all pairwise 33

distances, which can improve speed and scalability. Moreover, a phylogeny often has to 34

be inferred for purposes other than clustering and thus typically is readily available. 35

However, despite these potentials, to our knowledge, no systematic method for 36

phylogeny-guided clustering exists. Built for analyzing HIV transmissions, 37

ClusterPicker [14] clusters sequences based on their distances while using the 38

phylogenetic tree as a constraint; however, it still uses sequence (not tree) distances and 39

scales cubically with respect to number of sequences in the worst case. 40

Given a rooted phylogenetic tree, if the tree is ultrametric (that is, distances of all 41

the leaves to the root are identical), clustering sequences based on the tree can proceed 42

in an obvious fashion: the tree can be cut at some distance from the root, thereby 43

partitioning the tree into clusters (Fig. 1a). This approach extends in natural ways to 44

unrooted ultrametric trees by first rooting the tree at the unique midpoint [15] and 45

proceeding as before. However, inferred phylogenetic trees are rarely ultrametric. 46

Different organisms can evolve with different rates of evolution, and even when the rates 47

are identical (leading to an ultrametric true tree), there is no guarantee that the 48
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inferred trees will be ultrametric. Given a non-ultrametric (and perhaps unrooted) tree, 49

the best way to cluster sequences is not obvious (Fig. 1b). 50

One way to approach tree-based clustering is to treat it as an optimization problem. 51

We can define problems of the following form: “find the minimum number of clusters 52

such that some criteria constrain each cluster.” Interestingly, at least two forms of such 53

optimization problems have been addressed as early as the 1970s by the theoretical 54

computer science community, in the context of proving more challenging theorems. Tree 55

partitioning problems were defined to partition any arbitrary tree into minimum number 56

of subtrees such that the maximum path length between any nodes [16] or sum of all 57

node weights [17] in each subtree are constrained by a given threshold. Both problems 58

can be solved exactly using straightforward linear-time algorithms; these algorithms, 59

however, to our knowledge, are mostly ignored by bioinformaticians.1 60

Here, we argue that the tree-based clustering approach should be revitalized in the 61

field of bioinformatics. In this paper, we introduce a family of tree partitioning problems 62

and describe linear-time solutions for three instances of the problem (two of which 63

correspond to the aforementioned max and sum problems with known algorithms). More 64

importantly, we show that these tree-based clustering algorithms can result in improved 65

downstream biological analyses in three different contexts: defining microbial OTUs, 66

HIV transmission clustering, and divide-and-conquer multiple sequence alignment. 67

Materials and methods 68

TreeCluster 69

Problem definition 70

Let T = (V,E) be an unrooted binary tree represented by an undirected acyclic graph 71

with vertices V either degree one or three, weighted edges E, and leafset L. We denote 72

the path length between leaves u and v on T with dT (u, v) or simply d(u, v) when clear 73

by context. The weight of an edge (u, v) (i.e., its branch length) is denoted by w(u, v). 74

A natural way to define a clustering of the leaves in L is to associate a clustering to a 75

cut set C ⊆ E on the edges of T . We define a partition {L1, L2 · · · , LN} of L to be an 76

admissible clustering if it can be obtained by removing some edge set C from E and 77

assigning leaves of each of the resulting connected components to a set Li (note: 78

N ≤ |C|+ 1). 79

For a given tree T , let fT : 2L → R be a function that maps a subset of the leafset L 80

to a real number. The purpose of fT (.) is to characterize the diversity of elements at 81

the leaves within each cluster, and it is often defined as a function of the edge weights in 82

the cluster. For example, it can be the diameter of a subset: fT (L) = maxu,v∈L dT (u, v). 83

We define a family of problems that seek to minimize the number of clusters while each 84

cluster has to adhere to constraints defined using fT (.). More formally: 85

Definition 1 (Min-cut partitioning problem family). Given a tree T with leafset L and 86

a real number α, find an admissible partition {L1 . . . LN} of L that satisfies 87

∀i, fT (Li) ≤ α and has the minimum possible cardinality (N) among all such 88

clusterings. 89

A natural way to limit the diversity within a cluster is to constrain all pairwise 90

distances among members of the cluster to be less than a given threshold: 91

1 In fact, in our quest to design tree-based algorithms, we reinvented these same algorithms only to
later find out that they have been previously described.
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Definition 2 (Max-diameter min-cut partitioning problem). The Min-cut partitioning 92

problem (Definition 1) is called Max-diameter min-cut partitioning problem when 93

fT (L) = max
u,v∈L

d(u, v). 94

One potential disadvantage of max diameter min-cut partitioning is its susceptibility 95

to outliers: the largest distance within a cluster may not be always an accurate 96

representation of the degree of diversity in the cluster. A natural choice that may 97

confine the effect of outliers is the following: 98

Definition 3 (Sum-length min-cut partitioning problem). The Min-cut partitioning 99

problem is called Sum-length min-cut partitioning problem when 100

fT (L) =
∑

(u,v)∈edges(T |L)
w(u, v) where T |L is the tree T restricted to a subset of leaves L. 101

We also study a fourth problem, which we will motivate later: 102

Definition 4 (Single-linkage min-cut partitioning problem). The Min-cut partitioning 103

problem is called Single-linkage min-cut partitioning problem when 104

fT (L) = max
S⊂L
{ min
u∈S,v∈L−S

d(u, v)}. 105

Next, we will show linear-time algorithms for the Max-diameter, Sum-length, and 106

Single-linkage min-cut partitioning problems. Note that all of these algorithms use 107

variations of the same greedy algorithm. Two of these greedy algorithms (max and sum) 108

are already described in the theoretical computer science literature. Nevertheless, we 109

reiterate the solutions using consistent terminology and provide alternative proofs of 110

their correctness. 111

Linear-time solution for Max-diameter min-cut partitioning 112

A linear-time solution for the Max-diameter min-cut partitioning problem was first 113

published by Parley et al. [16]. We present Algorithm 1, which is similar to the 114

algorithm by Parley et al. (adding branch lengths), and we give an alternative proof. 115

The algorithm operates on T ′, which is an arbitrary rooting of T at node r. We 116

denote the subtree rooted at an internal node u as U . Let the two children of u be 117

called ul and ur, and let the tree rooted by them be Ul and Ur. We use wl and wr to 118

denote w(u, ul) and w(u, ur), respectively. We define B(u) to be the length of the path 119

from u to the farthest connected leaf in U under the optimal clustering. 120

The algorithm uses a bottom-up traversal of the tree. When we arrive at node u, 121

one or more new paths form between the two trees Ur and Ul. Among those paths, the 122

longest one has the length B(ul) + wl +B(ur) + wr. If this value exceeds the threshold, 123

we break either (u, ur) or (u, ul), depending on which minimizes B(u). Note that the 124

algorithm always cuts at most one child edge of every node, and thus, B(u) is always 125

well-defined. 126

We now show the algorithm correct. Let A(u) be the minimum number of clusters 127

under U , each with a diameter less than α; i.e., A(r) is the objective function. 128

Theorem 1. Algorithm 1 computes a clustering with minimum A(r) for rooted tree T ′. 129

In addition, among all possible such clusterings, the algorithm picks the solution with 130

minimum B(r). 131

Proof. The proof uses induction. The base case for the induction is the simple rooted 132

tree with root u and two leaves ul and ur. If wl + wr > α the algorithm cuts the longer 133

branch whereas if wl + wr ≤ α no branch is cut. In both cases, the theorem holds. 134

Th inductive hypothesis is that for a node u, the algorithm has computed A(ul), 135

A(ur), B(ul), and B(ur) optimally. We need to prove that a solution other than the 136
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Algorithm 1: Linear solution for Max diameter min-cut partitioning

Input: A tree T ′ = (V,E) and a threshold α
1 B(v)← 0 for v ∈ V
2 for u ∈ post order traversal of internal nodes of T ′ do
3 if B(ul) + wl +B(ur) + wr > α then
4 if B(ul) + wl < B(ur) + wr then
5 E ← E − {(u, ur)}
6 B(u)← B(ul) + wl
7 else
8 E ← E − {(u, ul)}
9 B(u)← B(ur) + wr

10 else
11 B(u)← max(B(ul) + wl, B(ur) + wr)

12 return Leafsets of every connected component in T ′

one computed by our algorithm i) cannot have a lower number of clusters, call it A′(u), 137

and ii) when A′(u) = A(u), cannot have a lower distance to the farthest connected leaf, 138

call it B′(u). 139

When B(ul) +wl +B(ur) +wr ≤ α, we have A(u) = A(ul) +A(ur)− 1, which is the 140

minimum possible by inductive hypothesis and the fact that the number of clusters 141

cannot go down by more than one on node u. Also, B(u) is optimal by construction. 142

When B(ul) + wl +B(ur) + wr > α, without loss of generality, assume that
B(ul) + wl ≥ B(ur) + wr and thus, the algorithm cuts the (u, ul) branch, getting
A(u) = A(ul) +A(ur) and B(u) = B(ur) +wr. Note that A′(u) < A(u) is only possible
if A′(ul) = A(ul) and A′(ur) = A(ur) and we do not cut any branch at u in the
alternative clustering. However, this scenario is not possible because

B′(ul) + wl +B′(ur) + wr ≥ B(ul) + wl +B(ur) + wr > α

where the first inequality follows from the inductive hypothesis and the final inequality 143

shows that we will have to cut a branch in any alternative setting. Finally, we need to 144

show that an alternative solution with A′(u) = A(u) but B′(u) < B(u) is not possible. 145

The inequality requires that either B′(ul) < B(ul) or B′(ur) < B(ur). First, consider 146

the B′(ul) < B(ul) case, which is possible only if A′(ul) = A(ul) + 1. Note that 147

A′(u) = A(u) requires A′(ur) = A(ur) (and thus B′(ur) = B(ur)) and that 148

B′(ul) + wl +B(ur) + wr < α, which is possible. Under this condition, we find: 149

B′(u) = max(B′(ul) + wl, B(ur) + wr) ≥ B(ur) + wr = B(u) (1)

If instead B′(ur) < B(ur), similar conditions can be written, resulting in 150

B′(u) = max(B(ul) + wl, B
′(ur) + wr) ≥ B(ul) + wl ≥ B(ur) + wr = B(u) (2)

Thus, A(u) and B(u) are optimal when B(ul) + wl +B(ur) + wr > α. 151

152

Corollary 1. Let C ′ be the cut set obtained by running Alg. 1 on any arbitrary rooting 153

T ′ of unrooted tree T . C ′ optimally solves the Max-diameter min-cut partitioning 154

problem. 155

Proof. Let rr and rl denote the right and the left child of the root of T ′. Every edge in 156

T can be mapped to T ′ except the edge (rright, rleft), from which we define a mapping 157
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to (r, rright) (w.l.o.g). Using this mapping, the optimal clustering (i.e. optimal cut-set) 158

on T can be translated to an alternative max diameter min-cut partitioning on T ′. 159

However, by Theorem 1, A(r) is optimal and cannot be improved by any alternative 160

partitioning. Since any admissible clustering on T ′ is also admissible on T , Alg. 1 161

minimizes N . 162

163

Linear solution for the Sum-length min-cut partitioning problem 164

A linear algorithm which partitions trees into the fewest clusters having total node 165

weights lower than or equal to α has been previously published by Kundu et al. [17]. In 166

order to solve Sum-length min-cut partitioning problem, we require an altered version of 167

the original algorithm that works on edge (instead of node) weights and focuses on 168

binary trees. Algorithm 1 with two simple modifications solves Sum-length min-cut 169

partitioning problem optimally (see Alg. 3 in Appendix B). The first modification is 170

that here we define the auxiliary variable B(u) denoting sum of weights of all 171

descendent edges connected to u at the stage it is processed by the algorithm. Secondly, 172

in the bottom-up traversal of internal nodes of T ′, for node u, w.l.o.g, let 173

B(ul) + wl > B(ur) + wr. If the sum of branch lengths in the combined subtree exceed 174

α, we break the edge (u, ul). Unlike Algorithm 1, where B(ul) + wl +B(ur) + wr ≤ α, 175

here, B(u) is set to B(ul) + wl +B(ur) + wr. The proof for the correctness of the 176

algorithm is analogous to that of Alg. 1 and is given in Appendix B. 177

Single linkage min-cut partitioning 178

We now address the Single-linkage problem (Definition 4), which can be considered a 179

relaxation of the max diameter min-cut partitioning. To motivate this problem, first 180

consider the following definition. 181

Definition 5 (Single-linkage clustering ). We call a partition of L to be a 182

Single-linkage clustering when for every a, b ∈ L, a and b are in the same cluster if and 183

only if there exist a chain H = c0, c1 . . . , cm, cm+1, where a = c0 and b = cm+1, and for 184

every 0 ≤ i ≤ m, we have d(ci, ci+1) ≤ α. 185

Thus, every pair of nodes are put in the same cluster if (but not only if) their 186

distance is below the threshold (the rest follows from transitivity). The next result 187

(proved in Appendix B.) motivates the choice of fT (.) in Definition 4. 188

Proposition 1. The optimal solution to the Single-linkage min-cut partitioning 189

problem (Definition 4) is identical to the Single-linkage clustering of Definition 5. 190

We now present Algorithm 2, a linear-time solution to the Single-linkage min-cut 191

partitioning problem. The algorithm first computes the distances to the closest node on 192

left, right, and outside each node u in a post-order followed by a pre-order traversal. 193

Then, on a post-order traversal, it cuts each child edge iff the minimum distance of 194

leaves under it to leaves under its sibling and to any leaf outside the node both exceed 195

the threshold. 196

Theorem 2. A min-cut partitioning computed by Algorithm 2 optimally solves 197

Single-linkage min-cut partitioning problem (Definition 5). 198

Proof. Let a! b be the path between leaves a and b on T . Fixing a and b, for each 199

node j, we use the term support of j denoted by s(j) to refer to the unique node on all 200

the three paths a! b, a! j, and b! j. We refer to a group of leaves that share a 201

mutual support with respect to a and b as a bubble (e.g., triangles in Fig. 2). Among all 202
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Algorithm 2: Single-Linkage Single-linkage min-cut partitioning

1 minBelow[u]← minAbove[u]←∞ for v ← V
2 for u ∈ post order traversal of T ′ do
3 if u in L then
4 minBelow[u]← 0;
5 else
6 minBelow[u]← min

(
minBelow[ul] + wl,minBelow[ur] + wr

)
;

7 for u ∈ pre order traversal of T ′ do
8 if u 6= r then
9 minAbove[u]← min

(
minBelow[s] + w(v, s),minAbove[v] + w(v, v)

)
;

10 for u ∈ post order traversal of internal nodes of T ′ do
11 if minBelow[ul] + wl +minBelow[ur] + wr > α and

minBelow[ul] + wl +minAbove[u] > α then
12 E ← E \ (u, ul)

13 if minBelow[ul] + wl +minBelow[ur] + wr > α and
minBelow[ur] + wr +minAbove[u] > α then

14 E ← E \ (u, ur)

15 if minBelow[ul] + wl +minAbove[u] > α and
minBelow[ur] + wr +minAbove[u] > α then

16 E ← E \ (v, u)

17 return Leafsets of every connected component in T ′

bubbles branching out of a! b, let the one with the closest support to a be A′. We 203

name the leaf closest to a on A′ as a′ (Fig. 2). 204

• If d(a, b) ≤ α holds, the algorithm will never cut any edge on a! b due to the 205

following observation. For every internal node u on a! b, let v and w be the 206

adjacent nodes on a! u and u! b respectively. Also let pa be the closest leaf 207

to u whose support s(pa) is on a! u, and pb to be the closest leaf to u whose 208

support s(pb) is on u! b. d(pa, u) + d(u, pb) ≤ d(a, u) + d(u, b) ≤ α holds, 209

therefore regardless of the rooting, (v, u) and (u,w) is never cut by Alg. 2. 210

• if a chain H exists, due to the previous observation, there is no cuts on ci ! ci+1 211

for every 0 ≤ i ≤ m. Consequently, a and b are connected through a path and 212

hence are in the same cluster. 213

• Assume Alg. 2 places a and b on the same cluster, i.e. does not cut any edge on 214

a! b. We present a procedure to generate a chain H described in Definition 1. 215

We define p0 = a and pm′ = b. For 1 ≤ i ≤ m′, we let pi be the closest leaf to pi−1 216

p1

s(p1)

a' 

s(a')

pi­1

s(pi­1)

pi

s(pi)

A'

b=pm'

pm'­1

a=p0

πi­1

Fig 2. A sketch showing the setup for constructing the chain H.
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whose support s(pi) is on pi−1 ! b and s(pi) 6= s(pi−1) (i.e., pi is in the bubble 217

to the right of the bubble of pi−1). Conversely, for 1 ≤ i ≤ m′, we let πi denote 218

the closest leaf to pi whose support is on a! s(pi−1) (i.e., is in a bubble to the 219

left of pi); note π1 = a. Every πi ∈ {p0 . . . pi−1} due to following observation: if 220

not, s(πi) has to be on s(pj−1) ! s(pj) for some j; but, we would have 221

d(pj−1, πi) ≤ d(pj−1, pj), which contradicts the definition of pi. The fact that Alg. 222

2 retains (a, s(a′)) indicates that min(d(a, a′), d(a, p1)) = d(a, p1) ≤ α; therefore, 223

we add a→ p1 to an auxiliary graph H′. Now, consider Alg. 2 when it processes 224

the node s(pi−1) for 1 < i. The fact that the first edge on path s(pi−1) ! s(pi) 225

(shown in red color in Fig. 2) is not cut indicate that either d(πi−1, pi) ≤ α or 226

d(pi−1, pi) ≤ α. Depending on which is true, we add a link from πi−1 → pi or 227

pi−1 → pi to H′. We repeat this process for all i until we reach i = m′, where we 228

add an edge to pm′ = b. Noting that πi ∈ {p0 . . . pi−1}, the H′ graph becomes a 229

directed tree, rooted at a with a directed path to the leaf b. This directed path 230

constitute the valid chain H. 231

232

Clade constraint for rooted trees 233

So far, we have focused on unrooted trees. This choice is partially driven by the fact 234

that phylogenetic reconstruction tools predominantly use time reversible models of 235

sequence evolution (e.g., GTR [18]), and therefore output an unrooted tree. 236

Nevertheless, researches have developed various methods for rooting trees [19,20] 237

including scalable algorithms [15]. When a rooted tree is available, each “monophyletic 238

clade”, i.e. a group of entities that includes all descendants of their common ancestor, 239

are biologically meaningful units. Thus, we may want to constrain each cluster to be a 240

clade. Such “clade” constraints, in fact, make clustering easier; our algorithms can be 241

easily altered to ascertain that each cluster is also a clade. Specifically on Algorithm 1, 242

when we have B(ul) + wl +B(ur) + wr > α, we simply need to cut both (u, ul) and 243

(u, ur) (instead of cutting only the longer one). This small modification allows 244

Max-Diameter, Sum-length, and Single-linkage min-cut partitioning problems to be 245

solved in linear time while imposing the clade constraint. 246

Three Applications of TreeCluster 247

While sequence clustering has many applications, in this paper, we highlight three 248

specific areas as prominent examples. 249

Application 1: OTU clustering 250

Biological Problem. For microbiome analyses using 16S sequences generated from 251

whole communities, the standard pipeline uses operational taxonomic units (OTUs). 252

Sequences with similarity at or above a certain threshold (say 97%) are grouped into 253

OTUs, which are the most fine-grained level at which organisms are distinguished. All 254

sequences assigned to the same OTU are treated as one organism in downstream 255

analyses, such as taxonomic profiling, taxonomic identification, sample differentiation, 256

or machine learning. The use of a similarity threshold instead of a biological concept of 257

species is to avoid the notoriously difficult problem of defining species for microbial 258

organisms. In addition, the use clusters of similar sequences as OTUs can provide a 259

level of robustness with respect to sequencing errors. 260

Most applications of OTUs are closed-reference: a reference database of known 261

organisms is selected and OTUs are defined for reference sequences using methods such 262

as UCLUST [2] and Dotur [3]. These methods cluster sequences based on a chosen 263
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threshold of similarity, often picking a centroid sequence to represent an OTU. Reads 264

from a 16S sample are then compared to the OTUs, and the closest OTU is found for 265

each read (judging distance by sequence similarity). Once all reads are processed for all 266

samples, an OTU table can be built where the rows are samples, the columns are OTUs, 267

and each cell gives the frequency of an OTU in a sample. This table is then used in 268

downstream analyses. Several large reference databases exist for these OTU-based 269

analyses [21–23]. One of these databases, popularized through pipelines such as 270

Qiita [24], is Greengenes [23]. 271

Regardless of the downstream application of an OTU table, one would prefer the 272

OTUs to be maximally coherent (i.e., internally consistent) so that they represent 273

organisms as faithfully as possible. We will focus our experiments on the 274

closed-reference OTU picking methods and the Greengenes as the reference library. 275

However, note that open-reference OTU picking and sub-operational-taxonomic-unit 276

(sOTU) methods [25–27] also exist and involve a similar need for sequence clustering. 277

Existing methods. Several hierarchical clustering tools have been proposed for OTU 278

clustering [3, 28]. Non-hierarchical clustering methods [2, 29] however gained popularity 279

due to being computationally less demanding compared to hierarchical methods. Two 280

prominent methods are UCLUST [2] and CD-HIT [29], which share the same algorithmic 281

strategy: for a given threshold α, UCLUST determines a set of representative sequences 282

dynamically by assigning query sequences into representative sequences (centroids) such 283

that, ideally, distance between each query and its assigned centroid is less than α while 284

distances between centroids is more than α. UCLUST is a heuristic algorithm, and the 285

processing order of the queries may affect the outcome clustering. CD-HIT is different 286

from UCLUST mostly in its strategy for computing distances. 287

Formulation as min-cut partitioning. We define OTUs by solving the 288

Min-diameter, Sum-Length, or Single-linkage min-cut partitioning problems using a 289

chosen threshold α and an inferred ML phylogeny. Each cluster in the resulting 290

partition is designated as an OTU. 291

Experiments. We evaluate the quality of tree-based OTU clustering by comparing it 292

to UCLUST as used by Greengenes [23]. We run TreeCluster on the phylogenetic tree of 293

203,452 sequences in Greengenes v13.5 database in three modes: max, sum, and 294

Single-linkage. We use the following 20 thresholds: [0.005, 0.05] with a step size of 0.005 295

and (0.05, 0.15] with a step size of 0.01. For Single-linkage, we only go up to 0.1 because 296

above this threshold, the number of clusters becomes much smaller than other methods. 297

From the same Greengenes database, we extract OTU clusters for all available 298

sequence identity thresholds up to 0.15 (i.e., 0.03, 0.06, 0.09, 0.12, and 0.15). We 299

measure the quality of a clustering {L1, . . . , LN} by its weighted average of average 300

pairwise distance per cluster (which we call cluster diversity for shorthand), given by 301

the following formula: 302

µ({L1, . . . , LN}) =

N∑
k=1

|Lk|
∑

i,j∈Lk

d(i,j)
|Lk|2

N∑
k=1

|Lk|
=

1

n

N∑
k=1

∑
i,j∈Lk

d(i, j)

|Lk|
(3)

where n denotes the number of sequences clustered. We compute distance d(i, j) 303

between two elements using two methods: tree distance, which is the path lengths on the 304

inferred phylogenetic tree, or the sequence-based hamming distance. Hamming distances 305

are computed pairwise from the multiple sequence alignment of all 203,452 sequences in 306
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Greengenes database and ignore any site that includes a gap in the pairwise alignment. 307

Clearly, cluster diversity alone is not sufficient to judge results (singletons have zero 308

diversity). Instead, we compare methods at the same level of clustering with respect to 309

their diversity. Thus, as we change the threshold α, we compare methods for choices of 310

the threshold where they result in (roughly) equal numbers of clusters. Given the same 311

number of clusters, a method with lower cluster diversity is considered preferable. 312

Application 2: HIV transmission cluster analyses 313

Biological Problem. HIV sequences evolve fast and therefore their phylogenetic 314

relationships have a trace of the transmission chains from one person to another [30]. 315

The ability to perform phylogenetic analyses of HIV sequences is critical for 316

epidemiologists who design and evaluate HIV control strategies [31–35]. The results of 317

these analyses can provide information about the genetic linkage [36] and transmission 318

histories [37], as well as mixing across subpopulations [38]. A recent advancement in 319

computational molecular epidemiology is the use of transmission clustering to predict 320

at-risk individuals and epidemic growth: infer transmission clusters from pairwise 321

sequence distances, monitor the growth of clusters over time, and prioritize clusters with 322

the highest growth rates [39]. In this monitoring framework, two natural questions come 323

about: What is the optimal way to infer transmission clusters from molecular data, and 324

how can transmission cluster inference be performed more efficiently? 325

Existing methods. Two existing tools perform such clustering. Cluster Picker [4] is 326

given a distance threshold, a phylogenetic tree, and sequences. It clusters individuals 327

such that each cluster defines the leaves of a clade in the tree, the maximum pairwise 328

sequence-based distance in each cluster is below the threshold, and the number of 329

clusters is minimized. HIV-TRACE is a tool that, given a distance threshold and 330

sequences, clusters individuals such that, for each pair of individuals u and v, if the 331

Tamura-Nei 93 (TN93) distance [40] between u and v is below the threshold, u and v 332

are placed in the same cluster [5]. Both methods scale worse than linearly with the 333

number of sequences (quadratically and cubically, respectively, for HIV-Trace and 334

Cluster Picker), and for large datasets, they can take hours, or even days, to run 335

(however, HIV-Trace does enjoy trivial parallelism). 336

Formulation as min-cut partitioning. Transmission clustering is similar to our 337

problem formulation in that it involves cutting edges such that the resulting clusters (as 338

defined by the leafsets resulting from the cuts) must adhere to certain constraints. Both 339

Cluster Picker and HIV-TRACE utilize pairwise distances computed from sequences, 340

but when reformulated to utilize tree-based distances from an inferred phylogeny, 341

Cluster Picker becomes analogous to our Max-diameter min-cut partitioning (with an 342

added constraint that clusters must define clades in the phylogeny), and HIV-TRACE 343

analogous to the Single-linkage min-cut partitioning. 344

Experiments. To evaluate the effectiveness of HIV transmission clustering, we first 345

simulate HIV epidemic data using FAVITES [41]. For the simulation parameters, we use 346

the parameters described in Moshiri et. al. [41] to model the San Diego HIV epidemic 347

between 2005 and 2014. However, we deviate from the original parameter set in one key 348

way: originally, all HIV patients were sequenced at the end time of the epidemic, 349

yielding an ultrametric tree in the unit of time, but to better capture reality, we instead 350

sequence each patient the first time they receive Antiretroviral Treatment (ART). In our 351

simulations, we vary two parameters: the expected time to begin ART as well as the 352

expected degree of the social contact network, which underlies the transmission network. 353
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Higher ART rates and lower degrees both result in a slower epidemic and change 354

patterns of phylogenetic branch length [41]. The complete FAVITES parameter set can 355

be found in the supplementary materials. We infer phylogenies from simulated 356

sequences under the GTR+Γ model using FastTree-II [8], and we use MinVar algorithm 357

to root the trees using FastRoot [42]. 358

We use HIV-TRACE [5] as well as multiple clustering modes of TreeCluster to infer 359

transmission clusters. We were unable to use Cluster Picker [4] due to its excessive 360

running time. For HIV-TRACE, we use a clustering threshold of 1.5% as suggested by 361

its authors [39]. Because HIV-TRACE estimates pairwise sequences distances under the 362

TN93 model, [40] which tend to be underestimates of phylogenetic distance estimated 363

under the GTR model, we use a clustering threshold of 3% for Single-Linkage 364

TreeCluster. The default Cluster Picker threshold for Max-diameter clustering is 365

4.5%, [4], so we use this as our clustering threshold for Max-Diameter TreeCluster (both 366

with and without the Clade constraint). For Sum-length TreeCluster (with and without 367

the Clade constraint), we simply double the Max-diameter threshold and use 9%. In 368

addition to using these default thresholds, we also test a wide range of thresholds for 369

each transmission clustering method for robustness. 370

We measure cluster growth from year 8 to year 9 of the simulation and select the 371

1,000 highest-priority individuals, where individuals are prioritized in descending order 372

of respective cluster growth. To measure the risk of a given individual u, we count the 373

number of HIV transmission events u→ v between years 9 and 10. To measure the 374

effectiveness of a given clustering, we average the risk of the selected top 1,000 375

individuals and use this as a metric of how effective the clustering method is. Higher 376

numbers imply the ability to prevent more transmissions by targeting a fixed (1,000) 377

number of individuals and thus are desirable. As a control, we also show the mean 378

number of transmissions per population, which is what a random selection of 1,000 379

individuals would give in expectation (we call this “expected” risk). 380

Application 3: Divide-and-conquer Multiple Sequence alignment 381

Algorithmic idea. Tree-based clustering has also been used for divide-and-conquer, 382

a technique that has proved particularly useful for scaling existing methods for tree 383

inference and multiple sequence alignment (MSA) to very large datasets [10,43–47]. 384

Divide-and-conquer methods first use some approach to build a quick-and-dirty 385

estimate of the phylogeny and then divide the dataset into smaller sets using the 386

phylogeny, such that sequences inside each subset are less diverse than the full set; given 387

the subsets, an accurate (but often computationally demanding) method is run on the 388

subsets to infer the MSA and/or the tree; finally, the results on the subsets are merged 389

using various techniques. The accuracy of the output depends not only on the accuracy 390

of the base method used on the subsets and the the merging method, but also, on the 391

effectiveness of the method used to divide the tree into subsets [48]. 392

Here, we specifically focus on MSA using divide-and-conquer. In particular, we focus 393

on a method called PASTA that infers both MSAs and trees for ultra-large datasets 394

(tested for up to 1,000,000 sequences). PASTA computes an initial alignment using 395

HMMs implemented in HMMER [49] and an initial tree using FastTree-II [8]; then, it 396

performs several iterations (default: 3) of the divide-and-conquer strategy described 397

before using Mafft [50] for aligning subsets and using a combination of OPAL [51] and a 398

technique using transitivity for merging subalignments. A tree is generated using 399

FastTree-II at the end of each iteration, which is then used as the guide tree for the next 400

iteration. The method has shown great accuracy on simulated and real data, especially 401

in terms of tree accuracy, where it comes very close to the accuracy obtained using the 402

true alignment, leaving little room for improvement. However, in terms of the alignment 403

accuracy, it has substantial room for improvement on the most challenging datasets. 404
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The divide-and-conquer of PASTA is based on the centroid-edge decomposition. 405

Given the guide tree (available from the previous iteration), the decomposition is 406

defined recursively: divide the tree into two halves, such that the two parts have equal 407

size (or, are as close in size as possible). Then, recurse on each subtree, until there are 408

no more than a given number of leaves (default: 200) in each subset. 409

Formulation as min-cut partitioning. The centroid edge decomposition involves 410

cutting edges and includes a constraint defined on the subsets. However, it is defined 411

procedurally and does not optimize any natural objective function. The min-cut 412

partitioning can produce a decomposition that is similar to the centroid decomposition 413

in its constraints but is different in outcome. Take the guide tree and set all edge 414

weights to 1. Then solve our Sum-length min-cut partitioning problem with the 415

threshold set to α = 2m− 2; the result is a partition such that no cluster has more than 416

m leaves and the number of subsets is minimized. Thus, this “max-size min-cut 417

partitioning” is identical to centroid decomposition in its constraints, but also 418

guarantees to find the minimum number of clusters. 419

Experiments. To evaluate how our new decomposition impacts PASTA, we compare 420

the old version to a new version that uses the decomposition based on max-size min-cut 421

partitioning, with other parameters (including maximum subset size) all kept fixed. We 422

run both versions on two datasets both from the original PASTA paper: 10 replicates of 423

a simulated RNAsim dataset with 10,000 leaves and a set of 19 real HomFam datasets 424

with 10,099 to 93,681 protein sequences. The RNASim is based on a very complex 425

model of RNA evolution. Here, the true alignment, known in simulations, is used as the 426

reference. For HomFam, since the true alignment is not known, following previous 427

papers, we rely on a very small number of seed sequences with a hand-curated reliable 428

alignment as reference [45,52]. In both cases, we measure alignment error using two 429

standard metrics computed using FastSP [53]: SPFN (the percentage of homologies in 430

the reference alignment not recovered in the estimated alignment) and SPFP (the 431

percentage of homologies in the estimated alignment not present in the reference). 432

Results 433

Results for Application 1: OTU clustering 434

On the Greengenes dataset, as we change the threshold between 0.005 and 0.15, we get 435

between 181, 574 and 10, 112 clusters (note that singletons are also counted). The 436

cluster diversity has a non-linear relationship with the number of clusters; it drops 437

quicker with higher thresholds where fewer clusters are formed (Figs. 3 and S1). 438

Comparing the three objective functions that can be used in TreeCluster, we observe 439

that Max-diameter and Sum-length have similar trends of cluster diversity scores 440

whereas Single-linkage min-cut partitioning has substantially lower diversity compared 441

to the other two methods (Fig. S1). This pattern is observed whether distances are 442

computed using tree distances or sequence distances, but differences are larger for tree 443

distance. Finally, note that even though tree distances are, as expected, larger than 444

sequence distances (Fig. S2), the cluster diversity is lower when computed using tree 445

distances, showing that clusters are tight in the phylogenetic space. 446

Compared to default Greengenes OTUs, defined using UCLUST, Max-diameter 447

min-cut partitioning defines tighter clusters for tree-based scores (Fig. 3). When 448

distances between sequences are measured in tree distance, cluster diversity score for 449

Greengenes OTUs is substantially lower for all thresholds, and the gap is larger for 450

higher thresholds. For example, the cluster diversity of Greengenes OTUs is three times 451
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Fig 3. Clustering diversity, defined as weighted average pairwise distance within a
cluster (Eq. 3) for Greengenes and TreeCluster versus the number of OTUs. For any
number of OTUs (x-axis), a lower OTU diversity (y-axis) is preferrable. The threshold
α is shown for all data points corresponding to GreenGeenes and for some points of
TreeCluster. See Fig. S1 for comparison to other TreeCluster versions.

higher than TreeCluster OTUs for α = 0.15. When distances between sequences are 452

measured in hamming distance, Greengenes and TreeCluster perform similarly for low 453

threshold values (e.g., note α = 0.03 for Greengenes, which is similar to α = 0.02 for 454

TreeCluster in terms of the number of clusters). However, when the number of OTUs is 455

reduced, remarkably, TreeCluster outperforms Greengenes OTUs by up to 1.4 folds (for 456

α = 0.15). This is despite the fact that UCLUST is working based on sequence 457

distances and TreeCluster is not. 458

Size of the largest cluster in Greengenes is larger compared to TreeCluster (Table 1). 459

For example, for α = 0.09, both methods have similar number of clusters (22,090 and 460

23,631 for Greengenes and TreeCluster, respectively) but the size of largest cluster in 461

Greengenes is three times that of TreeCluster (1,659 versus 540). On the other hand, for 462

the same threshold value, the number of singleton clusters comprises 48% of all clusters 463

for Greengenes whereas only 27% of the clusters are singletons for TreeCluster. Thus, 464

GreenGenes has more clusters that are very small or very large, compared to 465

TreeCluster. 466

TreeCluster-Max-Diameter GreenGenes-UCLUST
α σ Σ max σ Σ max

0.015 86387 123456 47 (n.a) (n.a) (n.a)
0.03 42510 77263 96 70415 99322 527
0.045 24795 54068 171 (n.a) (n.a) (n.a)
0.06 15257 39809 305 26485 46256 894
0.09 6396 23631 540 10560 22090 1659
0.12 3003 15052 808 4153 10544 2131
0.15 1525 10112 1209 1735 5088 3765

Table 1. Number of singleton clusters (σ), total number of clusters (Σ), and maximum
cluster size (max) for TreeCluster and GreenGenes on various threshold levels. In
GreenGenes database, OTU definitions for threshold level α = 0.015 and α = 0.045 are
not available.
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Fig 4. Effectiveness of transmission clustering, where effectiveness is measured as the
average number of individuals infected by the selected 1,000 individuals. The horizontal
axis depicts the expected time to begin ART (a), the expected degree (i.e., number of
sexual contacts) for individuals in the contact network (b), and the number of clusters
using various thresholds (c).

Results for Application 2: HIV dynamics 467

Comparing various versions of TreeCluster, regardless of the parameters that we vary, 468

Sum-Branch Tree Cluster consistently outperforms the other clustering methods, and 469

the inclusion of the Clade constraint has little impact on effectiveness (Fig. 4). 470

Compared to a random selection of individuals, the risk of selected individuals can be 471

substantially higher; for example, with expected ART time set to 1 year, expected risk 472

is 0.55 transmissions while the risk of top 1,000 individuals from Sum-length clusters is 473

0.85. In all the conditions, a close second to TreeCluster Sum-length, is TreeCluster 474

Max-diameter. Other methods, however, are substantially less effective than these two 475

modes of TreeCluster. 476

When varying expected time to begin ART and expected degree, Single-Linkage 477

TreeCluster and HIV-TRACE consistently perform lower than the other approaches. 478

Single-Linkage TreeCluster typically performing around the theoretical expectation of a 479

random selection while HIV-TRACE performing slightly better (Fig. 4a-b). Recall that 480

these two methods are conceptually similar. Moreover, these patterns are not simply 481

due to the chosen thresholds. Even when we change the thresholds to control the 482

number of clusters, Single-Linkage TreeCluster and HIV-TRACE consistently perform 483

worse than expected by random selection (Fig. 4c). The effectiveness of other methods 484

is maximized when they create between 2,000 to 5,000 clusters for Sum-length, or 485

between 2,000 to 3,000 clusters for Max-Diameter. 486
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a) RNASim b) HomFam
Centroid    Mincut Centroid    Mincut Centroid    Mincut Centroid    Mincut

Fig 5. Alignment error for PASTA using the old (centroid) and the new (mincut)
decompositions. We show Sum of Pairs False Negative (SPFN) and Sum of Pairs False
Psotive (SPFP) computed using FastSP [53] over two datasetes: Simulated RNASim
dataset (10 replicates) with 10 replicates and biological HomFam dataset (19 largest
families; all 20 largest, except “rhv” omitted due to the warning on the Pfam website).
We show boxplots in addition to mean (red dot) and standard error (red error bars).

Results for Application 3: improving PASTA 487

When we replace centroid decomposition with max-size min-cut partitioning in PASTA, 488

the alignment error reduces substantially for the RNASim dataset, but less so on the 489

Homfam dataset (Fig. 5). On the RNASim data, mean SPFN drops from 0.12 to 0.10, 490

which corresponds to a 17% reduction in error. These drops are consistent across 491

replicates and are substantial given the fact that the only change in PASTA was to 492

replace its decomposition step with our new clustering algorithm, keeping the rest of the 493

complex pipeline unchanged. In particular, the method to align subsets, to merge 494

alignments, and to infer trees, were all kept fixed. On the HomFam dataset, too, errors 495

decreased, but the reductions were not substantial (Fig. 5b). Based on these results, we 496

have now changed PASTA to use max-size min-cut partitioning by default. 497

Discussion 498

Several theoretical and practical issues should be further discussed. 499

Mean-diameter min-cut partitioning Some of the existing methods, such as 500

ClusterPicker [4], can define their constraints based on mean pairwise distance between 501

nodes. Similar to those, we can define a variation of the min-cut partitioning problem 502

where fT (L) = 1

(|L|
2 )

∑
i,j∈L

d(i, j). Unfortunately, this “mean-diameter” min-cut 503

partitioning problem can be solved in linear time using our greedy algorithm only if we 504

also have clade constraints (Algorithm 4 in Appendix B). As demonstrated by the 505

counter example given in Fig. S3, the greedy algorithm fails if we do not have clade 506

constraints. More generally, the use of mean as function fT (·) creates additional 507

complexity and we conjecture the problem will not be solvable in linear time. Whether 508

mean diameter is in fact a reasonable criteria is not clear. For example, it is possible 509

that the mean diameter of a cluster is below the threshold while the mean diameter of 510

clusters embedded in that cluster are not; such scenarios may not make sense for 511

downstream applications. 512
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Fig 6. An example showing that number of minimal clusterings under diameter
threshold can be exponential of number of leaves. When threshold is equal to 3.5, each
unit has to be split into two clusters and there are three equally legitimate way of
splitting. The minimum of clusters is therefore 2n. Total number of distinct optimal
solutions is 3n whereas there are 3n leaves.

Set of optimal solutions. It is possible that multiple distinct partitions with equal 513

number of clusters are all optimal solutions to any of our min-cut partitioning problems. 514

Moreover, as the example given in Figure 6 shows, the number of optimal solutions can 515

be exponential with respect to number of leaves in a binary phylogenetic tree. This 516

observation renders listing all optimal solutions of diminished interest since there could 517

be too many of them. However, finding a way to summarize all partitions may have 518

practical utility. We do not currently have such a summarization approach. However, as 519

shown in Lemma S1 of Appendix B, although the optimal solution space is potentially 520

exponentially large, one can easily determine the set of all edges that could appear in 521

any of the optimal solutions. Thus, we could find absolutely unbreakable edges that will 522

not be cut in any optimal clustering of the data. 523

Choice of criterion. Among the three methods that we discussed, we observed that 524

Max-diameter and Sum-diameter are consistently better than the Single-linkage. This 525

observation makes intuitive sense. Single-linkage can increase the diversity within a 526

cluster simply due to the transitive nature of its criterion. Thus, a very heterogeneous 527

dataset may still be collapsed into one cluster, simply due to transitivity. Our desire to 528

solve the Single-linkage problem was driven by the fact that a similar concept is used in 529

HIV-TRACE, arguably the most widely used HIV clustering method. However, we did 530

not detect any advantage in this type of clustering compared to Max-diameter or 531

Sum-length; thus, our recommendation is to use these two criteria instead. Between the 532

two, Max-diameter has the advantage that its α threshold is easier to interpret. 533

Centroid node. OTU picking methods, in addition to clustering, also choose a 534

centroid node per cluster. Our clustering approach is centroid-free. However, if a 535

representative is needed, many natural choices are available. For example, one can in 536

linear time find the midpoint of a cluster or its balance point [15]; then, the leaf closest 537

to the midpoint or balance point can be used as the representative. Alternatively, as 538

some recent papers argue [54], constructing and using a consensus sequence (or perhaps 539

even a reconstructed ancestral sequence) may be preferable to using one of the given 540

sequences as the centroid. 541
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Fig 7. Execution times of Cluster Picker, HIV-TRACE, and TreeCluster in log-scale.
Execution times (in seconds) are shown for each tool for various values of n sequences,
with 10 replicates for each n. The full dataset was obtained by downloading all HIV-1
subtype B pol sequences (HXB2 coordinates 2,253 to 3,549) from the Los Alamos
National Laboratory (LANL) database. All programs were run on a CentOS 5.8
machine with an Intel Xeon X7560 2.27 GHz CPU.

Running time We focused on comparing effectiveness of TreeCluster to other 542

methods, but we note that its running time also compares favorably to other clustering 543

methods (once the tree is inferred). For example, on a real HIV dataset, we ran 544

HIV-TRACE, Cluster Picker, and TreeCluster for subsets of the data ranging from 100 545

to 5,000 sequences (Fig. 7). Even on the largest dataset, the running time of 546

TreeCluster did not exceed 2 seconds. In contrast, the sequence-based HIV-Trace 547

required close to a minute, (which is still quite fast) but Cluster Picker needed more 548

than an hour. Even on the Greengenes dataset with more than 200,000 leaves, 549

TreeCluster performed clustering in only 30 seconds. The high speed of TreeCluster 550

makes it possible to quickly scan through a set of α thresholds to study its impact on 551

the outcomes of downstream applications. 552

We note that these numbers do not include the time spent for inferring the tree, 553

which should also be considered if the tree is not already available. For example, based 554

on previous studies, MSA and tree inference on datasets with 10,000 sequences can take 555

close to an hour using PASTA and 12 CPUs. Around a third of this time is spent on 556

tree inference (e.g., see Figure 4 of [45]) and the rest is spent on the estimating 557

alignment, which is also needed by most alternative clustering methods. 558

Conclusion 559

We introduce TreeCluster, a method that can cluster sequences at the tips of a 560

phylogenetic tree using several optimization problems. We showed that our liner time 561

algorithms can be used in several downstream applications, including OTU clustering, 562

HIV transmission clustering, and divide-and-conquer alignment. Using the tree to build 563

the cluster increases their internal consistency and improves downstream analyses. 564
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Fig S1. Comparison of various TreeCluster options and Greengenes.
Clustering quality of Greengenes and various options of TreeCluster, where quality is
measured as average pairwise distance within a cluster (the lower the better). The
horizontal axis shows the number of clusters for a given method and a threshold value.
TreeCluster OTUs based on Max-diameter and Sum-length options outperform
Single-linkage option as well as Greengenes OTUs. Computation of Hamming distance
based cluster diversity for α ≥ 0.7 did not complete within 24 hours and had to be
terminated.
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Fig S2. Tree distance versus hamming distance. On 16S data, the relationship
between tree distances and hamming distances cannot be established using
Jukes-Cantor formula (red curve).
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Fig S3. An example showing that mean-diameter min-cut partitioning is not
conforming locality when α = 72, thus cannot be solved by a greedy algorithm analogous
to Alg. 1. When a greedy algorithm is at the stage where it processes u, it makes the
decision for cutting its children edges (u, v) and (u, a) based on the information
available at the subtree rooted by u. When α = 72, T1 and T2 require different cut-sets
({(u, v)} and {(u, a)} respectively) for the optimal Mean-diameter partitioning despite
the fact that the subtree rooted by u remains unchanged in T1 and T2.
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B Proofs and supplementary algorithms 729

B.1 Linear solution for Sum-length min-cut partitioning 730

problem 731

Algorithm 3: Linear solution for Sum-length min-cut partitioning

Input: A tree T ′ = (V,E) and a threshold α
1 B(u)← 0 for v ∈ V
2 for u ∈ post order traversal of internal nodes of T ′ do
3 if B(ul) + wl +B(ur) + wr > α then
4 if B(ul) + wl < B(ur) + wr then
5 E ← E − {(u, ur)}
6 B(u)← B(ul) + wl
7 else
8 E ← E − {(u, ul)}
9 B(u)← B(ur) + wr

10 else
11 B(u)← B(ul) + wl +B(ur) + wr

12 return Leafsets of every connected component in T ′

We now show the Algorithm 3 correct. Let A(u) be the minimum number of clusters 732

under U all with a diameter less than α; i.e. A(r) is the objective function. 733

Theorem S1. Algorithm 1 computes a clustering with minimum A(r) for rooted tree 734

T ′. In addition, among all possible such clusterings, the algorithm picks the solution 735

with minimum B(r). 736

Proof. The proof uses induction. The base case for the induction is the simple rooted 737

tree with root u and two leaves ul and ur. If wl + wr > α the algorithm cuts the longer 738

branch whereas if wl + wr ≤ α no branch is cut. In both cases, the theorem holds. 739

Th inductive hypothesis is that for a node u, the algorithm has computed A(ul), 740

A(ur), B(ul), and B(ur) optimally. We need to prove that a solution other than the 741

one computed by our algorithm i) cannot have a lower number of clusters, call it A′(u), 742

and ii) when A′(u) = A(u), cannot have a lower distance to the farthest connected leaf, 743

call it B′(u). 744

When B(ul) +wl +B(ur) +wr ≤ α, we have A(u) = A(ul) +A(ur)− 1, which is the 745

minimum possible by inductive hypothesis and the fact that the number of clusters 746

cannot go down by more than one on node u. Also, B(u) is optimal by construction. 747

When B(ul) + wl +B(ur) + wr > α, without loss of generality, assume that
B(ul) + wl ≥ B(ur) + wr and thus, the algorithm cuts the (u, ul) branch, getting
A(u) = A(ul) +A(ur) and B(u) = B(ur) +wr. Note that A′(u) < A(u) is only possible
if A′(ul) = A(ul) and A′(ur) = A(ur) and we do not cut any branch at u in the
alternative clustering. However, this scenario is not possible because

B′(ul) + wl +B′(ur) + wr ≥ B(ul) + wl +B(ur) + wr > α

where the first inequality follows from the inductive hypothesis and the final inequality 748

shows that we will have to cut a branch in any alternative setting. Finally, we need to 749

show that an alternative solution with A′(u) = A(u) but B′(u) < B(u) is not possible. 750

The inequality requires that either B′(ul) < B(ul) or B′(ur) < B(ur). First, consider 751

the B′(ul) < B(ul) case, which is possible only if A′(ul) = A(ul) + 1. Note that 752
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A′(u) = A(u) requires A′(ur) = A(ur) (and thus B′(ur) = B(ur)) and that 753

B′(ul) + wl +B(ur) + wr < α, which is possible. Under this condition, we find: 754

B′(u) = B′(ul) + wl +B(ur) + wr ≥ B(ur) + wr = B(u) (4)

If instead B′(ur) < B(ur), similar conditions can be written, resulting in 755

B′(u) = B(ul) + wl +B′(ur) + wr ≥ B(ul) + wl ≥ B(ur) + wr = B(u) (5)

Thus, A(u) and B(u) are optimal when B(ul) + wl +B(ur) + wr > α. 756

757

Corollary S1. Let C ′ be the cut set obtained by running Alg. 1 on any arbitrary 758

rooting T ′ of unrooted tree T . C ′ optimally solves the Max-diameter min-cut 759

partitioning problem. 760

Proof. Let rr and rl denote the right and the left child of the root of T ′. Every edge in 761

T can be mapped to T ′ except the edge (rright, rleft), from which we define a mapping 762

to (r, rright) (w.l.o.g). Using this mapping, the optimal clustering (i.e. optimal cut-set) 763

on T can be translated to an alternative max diameter min-cut partitioning on T ′. 764

However, by Theorem 1, A(r) is optimal and cannot be improved by any alternative 765

partitioning. Since any admissible clustering on T ′ is also admissible on T , Alg. 1 766

minimizes q. 767

768

B.2 Proofs for Single-linkage min-cut partitioning problem 769

Proof of Proposition 1. (⇐) If d(a, b) ≤ α but a and b are in distinct clusters La, Lb 770

respectively, N can be reduced by one by simply merging La and Lb. fT (La ∪ Lb) ≤ α 771

is satisfied if for any split of La ∪ Lb, there exists a pair of leaves that are from distinct 772

splits and are within α threshold. For any pair of non-empty sets S and S′ that satisfy 773

S ⊂ La and S′ ⊂ Lb, we have min
j∈S∪S′,k∈(La∪Lb)−(S∪S′)

d(j, k) ≤ min
j∈S,k∈La−S

d(j, k) ≤ α 774

and min
j∈S∪(Lb−S′),k∈S′∪(La−S)

d(j, k) ≤ min
j∈S,k∈La−S

d(j, k) ≤ α. On the other hand, 775

min
j∈La,k∈Lb−S

d(j, k) ≤ d(a, b) ≤ α. This concludes that for L = La ∪ Lb, fT (L) ≤ α is 776

satisfied. La and Lb can still be merged if the chain H described above exists. It is 777

trivial to show that there is a link 〈ci, ci+1〉 in H such that ci ∈ La and ci+1 /∈ La. 778

Using the argument above, we can iterate over H and keep merging clusters (and 779

decrease N) every time we see such a link until we finally merge La with Lb. 780

(⇒) We describe a procedure to compute the chain H. If a and b in the same cluster 781

L, min
k∈L−{a}

d(a, k) ≤ max
S⊂L
{ min
j∈S,k∈L−S

d(j, k)} ≤ α holds, implying that there is a leaf c1 782

in set L− {a} such that d(a, c1) ≤ α. If c1 = b, theorem follows. If c1 6= b, we union a 783

and c1, call the union set La, and add the link a→ c1 to H′. Iteratively, we find the 784

pair 〈j, k〉 that yields to min
j∈La,k∈L−La

d(j, k), add the link j → k to H′, and add k to La 785

until we finally add b to La. The elements forming the path between a, and b in H′, 786

which can be computed using depth-first-search, constitute a valid chain H. 787

B.3 Average-clade clustering 788
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Algorithm 4: Average Diameter Clade Average diameter clade min-cut
partitioning

1 for u ∈ post order traversal of T ′ do
2 totPairDist[u]← 0; totLeafDist[u]← 0;
3 if u in L then
4 numLeaves[u]← 1; avgPairDist[u]← 0;
5 else
6 numLeaves[u]← numLeaves[ul] + numLeaves[ur];
7 totPairDist[u]← totPairDist[ul] + totPairDist[ur] + totLeafDist[ul]×

numLeaves[ur] + totLeafDist[ur]× numLeaves[ul];
8 totLeafDist[u]← totLeafDist[ul] + wl × numLeaves[ul] +

totLeafDist[ur] + wr × numLeaves[ur];
avgPairDist[u]← totPairDist[u]/

(
numLeaves[u]

2

)
;

9 toExplore← queue containing the root of T ′;
10 while toExplore 6= ∅ do
11 curr ← toExplore.dequeue();
12 if u not in L and avgPairDist[u] > α then
13 E ← E \ (u, ul); E ← E \ (u, ur);
14 toExplore.enqueue(ul); toExplore.enqueue(ur);

15 return Leafsets of every connected component in T ′

B.4 All optimal solutions 789

Lemma S1. Let {e1, e2, · · · , em} be the set of edges in an unrooted tree T . Consider 790

the following algorithm: root T at ej and run Max algorithm , and let Sj be the set of 791

edges cut by the algorithm in this run. Any optimal clustering for T has to draw its cut 792

set from Σ = ∪mj=1Sj. 793

Proof. The proof is by contradiction. Assume there is an optimal cut set S ′ that does 794

contain an edge ei that ei /∈ Σ. Consider the T rooted at ei. We call root of this tree as 795

v, immediate left and right branches of v as el and er, and left and right child nodes of 796

v as vl and vr. Note that el and er correspond to ei in T . Because of our assumption, 797

el /∈ Sj and er /∈ Sj . When ei is removed from T , two new trees form, called Tleft (the 798

one containing the node vl) and Tright (the one containing the node vr). If p number of 799

cuts in S ′ are in Tright, and q number of cuts in S ′ are in Tleft, |S ′| equals a+ b+ 1. 800

Number of cuts in S ′ and Sj are equal and el and er is not cut, which implies that 801

either the tree rooted by vl or vr has an alternative clustering with one less cut. By the 802

design of the Max algorithm, if this was the case, algorithm would choose the 803

alternative cut. 804
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