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Coordinated brain activity reflects underlying cognitive processes and can be modeled as a net-
work of inter-regional functional connections. The most costly connections in the network are
long-distance correlations that, in the absence of underlying structural connections, are maintained
by sustained energetic inputs. Here, we present a spatial modeling approach that amplifies con-
tributions made by long-distance functional connections to whole-brain network architecture, while
simultaneously suppressing contributions made by short-range connections. We use this method to
characterize the long-distance architecture of functional networks and to identify aspects of commu-
nity and hub structure that are driven by long-distance correlations and that, we argue, are of greater
functional significance. We find that based only on patterns of long-distance connectivity, primary
sensory cortices occupy increasingly central positions and appear more “hub-like”. Additionally, we
show that the community structure of long-distance connections spans multiple topological levels
and differs from the community structure detected in networks that include both short-range and
long-distance connections. In summary, these findings highlight the complex relationship between
the brain’s physical layout and its functional architecture. The results presented here inform future
analyses of community structure and network hubs in health, across development, and in the case
of neuropsychiatric disorders.

INTRODUCTION

Cognitive and psychological processes are underpinned
by the coordinated activity of spatially distributed brain
areas [1]. This coordination pattern can be estimated
from observed brain activity and quantified as the statis-
tical dependence of brain regions’ activity on one another
[2]. The set of all such measurements can be modeled as
a functional network and analyzed using graph theoretic
methods [3, 4].

Analysis of functional networks has revealed a number
of key features of brain organization. Among the most
salient are the brain’s modular structure [5, 6] and the
presence of hub regions – brain areas whose connections
span modular boundaries [7, 8]. Both of these features
can be interpreted in the context of brain function: mod-
ules reflect units for performing specialized information
processing while hubs reflect the integration of that in-
formation from one module to another [9, 10].

In general, the organization of functional networks (in-
cluding hubs and modules) is guided and constrained by
many factors. One important factor is the brain’s un-
derlying anatomical network of white-matter fiber tracts
[11–13]. This anatomical network plays an important
role in shaping activity across the brain [14, 15] and is,
itself, subject to strong metabolic and spatial constraints
[16–18]. These constraints effectively place soft limits on
the possible number, length, and volume of structural
connections [19].
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The mapping of structural connectivity (SC) to func-
tional connectivity (FC) is complex [13, 20–22] and con-
straints on wiring-cost propagate to the level of FC, lead-
ing to gradients of distance-dependent inter-areal corre-
lations wherein activity recorded from nearby brain areas
tends to be more strongly correlated than that of distant
areas [6, 23].

How do we disambiguate patterns of FC that arise
out of functional necessity from those that arise as a
consequence of space? One possibility is to emphasize
long-distance FC while discounting short-range FC. Cor-
relations between distant brain areas have, in general,
little underlying structural support [11, 13, 20, 24, 25]
and are instead maintained via inter-areal communica-
tion along multi-step, polysynaptic pathways, requiring
sustained energy input [26–29]. Despite the energetic
cost, many brain areas exhibit correlated activity over
long distances. This observation suggests that the cog-
nitive processes supported by these communication pat-
terns cannot be easily subsumed by short-range connec-
tions, despite the fact that those short-range patterns
would likely have stronger structural underpinnings and
be more energetically efficient.

The principal aim of this study was to better charac-
terize long-distance functional connectivity and to un-
derstand its contribution to the community structure
and hub distribution of functional networks. To ac-
complish this goal, we developed a modeling framework
that enabled us to generate synthetic regional time se-
ries whose correlation structure exhibited a prescribed
distance-dependence [30]. While these synthetic net-
works exhibited typical patterns of short-range connec-
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tivity, they lacked the long-distance correlations that are
also observed in functional networks. To shift focus onto
those long-distance connections, we subtracted the ele-
ments of synthetic matrices from the corresponding el-
ements in the observed functional connectivity matrix.
The resulting network contained correlations among dif-
ferent brain regions that were stronger than expected,
given the distance between those regions.

Surprisingly, we found that synthetic networks exhib-
ited strong functional connections, both within and be-
tween well-characterized canonical brain systems, sug-
gesting that short-range and long-distance connections
make differential contributions to whole-brain functional
connectivity. Next, we show that, after correcting for
space, the participation coefficients of brain areas within
primary sensory systems (somatomotor and visual) in-
crease, suggesting that they may perform increasingly
“hub-like” functional roles based on long-distance con-
nectivity. We then use a data-driven approach for defin-
ing communities both with and without a distance cor-
rection. Overall, we find that the identified communities
are similar across methods, with subtle differences in pri-
mary sensory systems but also higher-order cognitive sys-
tems, including salience and dorsal attention networks.
In summary, these findings present a complex portrait of
the relationship between space and functional connectiv-
ity. These results inform future studies of brain network
communities and hubs, and may further clarify the role
of functional connectivity in health, development, and
disease.

RESULTS

In this paper, we analyze the organization of long-
distance functional connections, the results of which are
presented in the following subsections. First, in the sec-
tion Modeling FC distance dependence, we explain
the basic features of our model and the procedure used
to fit the model to observed data. In the next section,
Comparison with cognitive systems, we introduce
the distance-corrected functional connectivity matrix, fo-
cusing on where it differs from the observed, functional
connectivity matrix. We also show that, given a set
of canonical cognitive systems, distance-corrected func-
tional connectivity forces us to rethink our current un-
derstanding of functional hub locations in cortex. Next,
in the section Incorporating distance-dependence
into community detection tools, we use the distance-
corrected functional connectivity matrix as input to a
community detection algorithm. With this algorithm, we
detect communities in both distance-corrected and ob-
served functional connectivity, and we compare the out-
puts. Finally, using detected communities, we describe
variations in hub organization as a function of commu-
nity size, reporting four distinct spatial patterns.

Modeling FC distance dependence

In order to study long-distance functional connectiv-
ity, we first needed a method for generating synthetic
functional connectivity with a prescribed distance depen-
dence. In addition, we wished to ensure that the result-
ing synthetic functional connectivity matrix was admis-
sible as a correlation matrix, being positive semidefinite
and satisfying transitive relationships. Briefly, our strat-
egy involved generating synthetic regional fMRI BOLD
time series using phase-randomization procedures (Fig-
ure. 1ai). Because phase randomization was performed
separately for every brain region, the resulting time se-
ries were uncorrelated, on average. To introduce spa-
tial correlations, we defined a new time series for each
region as a weighted sum of all other regional time se-
ries (Figure. 1aii). Here, the weights were defined to
be inversely proportional to the Euclidean distance be-
tween pairs of brain regions, so that nearby regions con-
tributed more than distance regions. As a result, the
magnitude of inter-regional correlations decreased mono-
tonically as a function of distance (Figure. 1aiii). The
rate of this decrease was modulated by a single parame-
ter (Figure. 1b,c) and fit to observed data (Figure. 1d).
The model is described in greater detail in Materials
and Methods.

Our approach is similar, in spirit, to previous meth-
ods for generating distance-dependent correlation ma-
trices using rational quadratic functions [31], which
have proven useful in geospatial statistics [32]. Our
approach, however, operates directly on time series
whereas the approach of [31] and others is model-based.
Both approaches generate positive-definite matrices with
distance-dependent elements. Throughout this section,
we use the synthetic matrices generated by this model as
a sort of null condition that allows us to identify a set of
spatially unexpected features [33].

Comparison with cognitive systems

Functional connectivity can be used to map the brain’s
organization at the level of systems [6, 34]. Analyses
of this type generated cortex-wide maps in which brain
areas or parcels are assigned to one or another system.
These systems, in turn, are often interpreted in the con-
text of brain and cognitive function; for example, some
are thought to comprise collections of brain areas that
support somatomotor function or for enacting cognitive
control. Importantly, in conjunction with network mea-
surements like participation coefficient, these systems
have also been used to detect and classify hubs areas
based on whether an area’s connections are distributed
across many systems (hub) or concentrated within an
area’s own system (non-hub) [7, 8, 35]. Here, we com-
pared observed patterns of functional connectivity with
those generated by the spatial model in order to gain in-
sight into the contribution of long-distance connections
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FIG. 1. Procedure for constructing matrices with distance-dependent FC. (a) i : The procedure begins by introducing
a random phase to the observed fMRI BOLD time series. This introduction is performed independently for each brain area,
resulting in an uncorrelated surrogate time series. ii : Next, we generate a new surrogate time series for each brain area
as the linear combination of all other time series. The weighted contribution of brain area j’s time series to that of area i
depends on the distance between those two areas in three-dimensional Euclidean space, Dij . Specifically, this distance-to-weight
transformation is modeled as a decaying exponential, wij = e−βDij , where β controls the decay rate. iii : This process results
in spatially correlated time series. (b) The value of β controls the rate of the exponential decay and therefore parameterizes the
extent to which time series exhibit more or less spatial correlation. For example, large values of β yield areal time series that are
correlated with only their nearby neighbors; smaller values of β yield spatial correlations with much wider neighborhoods. (c)
Examples of seed-based functional connectivity as we vary the value of β. (d) To select the value of β, we compare the similarity
of the observed and spatially constrained FC patterns. The optimal value of β is the one that maximizes the correspondence
between those matrices.

to the brain’s system-level organization and hub struc-
ture [36].

The analyses in this section focused on three inter-
dependent connectivity matrices: the observed pattern
of functional connectivity, FCobserved (Fig. 2a); the syn-
thetic patterns of connectivity generated by the spatial
model, FCobserved (Fig. 2b); and the distance-corrected
matrix of functional connections, FCcorrected (Fig. 2c),
which was calculated as the element-wise difference of the
observed and spatial matrices, FCobserved − FCspatial).
As expected, when we reordered the FCobserved by sys-
tem, we found that systems were cohesive with strong
intra-system correlations (Fig. 2b). When we plotted
FCspatial, we found that connections within many of the
systems were much weaker in comparison (for example,
the control networks Conta and Contb). On the other
hand, we were surprised to find that a number of sys-
tems maintained their cohesiveness despite the fact that
their connections reflect a spatial wiring rule rather than
relevance to a cognitive or psychological process. The
somatomotor and visual systems, for instance, as well
as Contc, a sub-component of the control network, were
dominated by strong short-range connectivity. In Fig. 2c,

we show the effect of correcting for these distance effects,
noting the now-attenuated connection weights within vi-
sual, motor, and control networks (see black arrows).

The observation of commonalities and differences be-
tween FCobserved and FCspatial has implications for our
understanding of brain function. In particular, it sug-
gests that some network features may be driven dif-
ferentially by short-range or long-distance connections.
Here, we focus on the network property of “participa-
tion coefficient,” a local measure typically interpreted
as an index of a region’s “hubness”. To identify areas
whose observed participation coefficient may be driven
predominantly by short-range connectivity, we computed
each brain area’s signed participation coefficient [35] us-
ing the function participation_coef_sign.m in the
Brain Connectivity Toolbox (https://sites.google.
com/site/bctnet/) [4] with respect to the system as-
signments reported in [36] (Fig. 3a,b). We repeated this
procedure for both the observed (Fig. 3c) and distance-
corrected FC matrices. Next, to reduce bias from differ-
ences in average connection weight, we ranked participa-
tion coefficients and computed the difference in rank for
each brain area (Fig. 3d,e). Interestingly, we find that
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FIG. 2. Differences in correlation structure. (a) The original (uncorrected) inter-regional correlation matrix ordered by
cognitive system. (b) The correlation matrix obtained from the optimal spatial null model. (c) We correct for space-induced
inter-regional correlation structure by subtracting the spatial null model matrix from the original matrix. Here, the arrows are
used to draw attention to salient changes. The top arrow, for instance, shows that after correcting for distance, regions within
the “Contc” system become weakly connected to each other. Similarly, in the original network, the correlation magnitude
within somatomotor and visual systems are among the strongest across the brain. As with the control network component,
these systems exhibit marked reductions in their internal connection strength following correction.

the areas with the greatest increases in participation co-
efficient are concentrated in visual and motor systems
(p < 0.05; false discovery rate fixed at 5%), indicating
that a greater proportion of connections from these areas
now span system boundaries. These differences can be at-
tributed to the fact that in the distance-corrected matrix,
the weights of functional connections within somatomo-
tor and visual networks are massively attenuated. That
is, those connections are expected under the spatial null
model. We also observed that the participation within
components of the default mode, salience and ventral at-
tention networks decreased significantly (p < 0.05; false
discovery rate fixed at 5%).

In typical analyses of functional networks, connections
of all lengths are treated equally, making it difficult to
parse the unique contributions of long- and short-range
connections to any topological feature [4]. Our findings
suggest that short-range and long-distance connections
make differential contributions to the “hubness” of indi-
vidual brain regions. Specifically, we find that shifting
focus onto long-distance connections results in system-
wide increases within participation of primary sensory
systems. This observation is counter to the traditional
classification of these systems as non-hubs [7, 8], a clas-
sification that our findings suggest is likely driven by the
strong short-range connectivity among the brain regions
that comprise those systems. Notably, our observations
are in agreement with tract-tracing studies in animal
models that have reported long-distance projections vi-
sual and sensorimotor areas [37, 38]. Collectively, our
findings suggest an alternative and distance-dependent
interpretation of brain areas’ functional roles within the
broader context of the network.

Incorporating distance-dependence into community
detection tools

In the previous section, we treated the system labels
[36] though they are equivalent to communities. While
this approach is useful, communities can also be defined
by data-driven methods. Here, we use the community de-
tection heuristic “modularity maximization” to identify
and compare communities in the observed and distance-
corrected functional connectivity matrices [39].

Specifically, we used a variant of modularity maximiza-
tion known to work well with correlation matrices [40]
and that we have applied to functional connectivity ma-
trices in previous papers [16, 22, 41]. To ensure that com-
parisons between the two matrices are as appropriate as
possible, we guided the modularity maximization algo-
rithm so that it detected a prescribed number of commu-
nities, k (by selectively varying its resolution parameter,
γ). This additional constraint guaranteed that in every
comparison between the original and distance-corrected
networks was made using partitions that resulted in an
equal number of communities (Figure, 4a).

Each comparison entailed several steps. First, we com-
puted the pairwise similarity of the partitions using the z-
score of the Rand index [42] (see Materials and Meth-
ods). In general, larger z-scores indicated higher levels of
similarity. We used this measure to compare partitions
detected using the original and distance-corrected matri-
ces (Figure. 4b). In general, we found that partitions
detected using the two techniques were similar.

Nonetheless, there were subtle differences between de-
tected partitions. To better characterize these differ-
ences, we identified the numbers of communities present
for which similarity was lowest. We found that these
minima occurred when the number of communities were
k = 16 and k = 31 (Figure. 4c). To identify the com-
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FIG. 3. Effect of distance correction on canonical brain systems and hubness. (a) A spring-embedded layout of
minimum spanning tree for the original network with no distance correction. Each node corresponds to a brain region, and
colors indicate the system to which that region is assigned. (b) A surface representation of system labels from panel a. (c)
Similar to panel a except color now indicates nodes’ ranked participation coefficients calculated using the original network and
with respect to the canonically defined brain systems. (d) The difference in ranked participation coefficient after correcting
for distance. (e) Participation coefficient differences projected onto the cortical surface. (f ) Mean difference in participation
coefficient aggregated by system. Opaque and labeled systems are those whose mean difference exceeded chance levels (false
discovery rate controlled at 5%).

munity features that were driving this dissimilarity, we
computed the difference in community co-assignment ma-
trices. Briefly, a co-assignment matrix (alternatively re-
ferred to as an “agreement”, “consensus”, or “allegiance”
matrix) counts the fraction of times that a pair of nodes
were co-assigned to the same community given an en-
semble of partitions. For non-deterministic community
detection methods like modularity maximization, the co-
assignment matrix serves as a pseudo-continuous way of
partitioning the network into communities. Comparing
co-assignment matrices allows us to identify differences
in communities between the two matrices.

To provide better context, we aggregated differences
in co-assignment probability by brain systems and com-
pared mean co-assignment differences to those obtained
using a permutation-based null model (p < 0.05; false
discovery rate fixed at 5%) (Fig. 4d,e). In both cases, we
observed many subtle yet significant differences. Among
the most salient when k = 16 were decreases in the co-
assignment probabilities of brain areas in the salience
network with those in the dorsal attention system and in-
creased co-assignment probability of control network sub-
components with one another. In other words, regions as-
sociated with these respective networks were more likely
to be observed in the same community after correct-

ing for distance than in the original network. Similarly,
when k = 31, we found increased co-clustering probabil-
ity within the broader visual and somatomotor systems.

We summarized these results further, calculating the
average co-assignment difference for each brain region
and subsequently averaging these values for every system
(Fig. 4f,g,h). As expected, when k = 16, the systems with
the greatest co-assignment decreases were concentrated
in the salience and dorsal attention systems (Fig. 4f, top),
whereas with k = 31, the greatest biggest changes oc-
curred within somatomotor and visual networks (Fig. 4f,
bottom).

Collectively, these results suggest that differences in
observed and distance-corrected functional connectivity
are subtle, as evidenced by the high z-score Rand in-
dices. However, these differences are also systematic and
emphasized within and between particular brain systems.
Moreover, these differences span multiple organizational
scales [43]. As in the previous section, these findings sug-
gest that accounting for spatially-driven patterns of FC
and focusing on long-distance patterns of inter-areal cou-
pling reveals novel network features; in this case, mani-
festing in the form of novel community structure.
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FIG. 4. Data-driven estimation and comparison of community structure. (a) We used modularity maximization to
detect communities in the original and distance-corrected FC matrices. (b) We arranged community partitions based on the
number of detected communities and compared them using the z-score of the Rand index. Here, we show the mean similarity
as a function of the number of communities. (c) To narrow our comparisons, we focused on partitions of the brain into 16
and 31 communities, which corresponded to local minima along the diagonal of the matrix shown in panel b. Panels d and
e show statistically significant differences in mean module co-assignment. Here and in all subsequent plots, the differences
in co-assignment values reflect distance-corrected minus original. Thus, warm colors indicate nodes/systems that are more
likely to be co-assigned after correcting for distance; cool colors reflect greater co-assignment in the original matrix than in the
distance-corrected matrix. Pairs of systems that survive statistical comparisons have black borders. To better identify those
regions and systems whose community co-assignment differed the greatest, we calculated the mean co-assignment difference for
every brain region with all other brain regions. In panel f we further average those mean differences by system for the k = 16
(top) and k = 31 (bottom) partitions. In panels g and h, we show mean differences plotted on the cortical surface.

Multi-scale changes in participation coefficient and
distinct contributions from somatomotor and visual

systems

In the previous two sections, we demonstrated that by
comparing observed and spatially constrained patterns of
functional connectivity, we were able to tease apart fea-
tures of networks that are driven differentially by short-

range or long-distance connections. Our results also sug-
gested that differences in community structure were man-
ifest at multiple topological scales. This observation is
consistent with the idea that brain networks exhibit neu-
roscientifically relevant features at and across different
levels of organization [43]. Here, we pursue this idea fur-
ther and characterize multi-scale structure of brain areas’
participation coefficients and the network’s hub distribu-
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tion.

To explore multi-scale hub structure, we first calcu-
lated the difference in participation coefficient estimated
using the distance-corrected and distance-uncorrected
networks. We performed this analysis separately for each
brain region and, because we were interested in relative
and not absolute changes in participation coefficient, we
rank-transformed these values. We then repeated this
procedure while varying the number of communities from
2 to 150 (Fig. 5a). Then, we used non-negative ma-
trix factorization (NMF) to generate low-rank approx-
imations of the participation coefficient differences. We
compared how well the reconstructed data fit the ob-
served data and found that increasing the number of di-
mensions beyond four led to little improvement in the
overall fit. We repeated the algorithm 100 times and
identified, from those repetitions, the group of factors
that best reconstructed the original data.

Analyzing those four factors further, we found that
their expression varied more or less smoothly as a func-
tion of the number of communities (Fig. 5b). Broadly
speaking, the first three factors were similar to one an-
other, in that they emphasized increased participation
coefficient within visual and somatomotor areas. How-
ever, the extent to which those systems and respective
subsystems was expressed varied (Fig. 5c-e). For in-
stance, the first factor (W1) exhibited differences in the
participation coefficient of visual areas and peaked ear-
lier, in terms community number, than factors W2 and
W3 (Fig. 5g). Those factors, on the other hand, peaked
later and emphasized the differences in somatomotor par-
ticipation coefficient. These differences are made more
pointed when we directly compare W1 with W2 in a scat-
terplot (Fig. 5h). We find, in both cases, that visual and
motor areas are among the strongest values, but that the
somatomotor system (SMN A) falls to the left of the main
diagonal (stronger in W2) while the visual system (Vis-
Cent) falls to the right of the main diagonal (stronger in
W1). The fourth factor, on the other hand, peaked the
latest and exhibited neither motor nor visual systems,
but more spatially diffuse differences among control and
dorsal attention systems (Fig. 5f,g).

The import of these findings spans several domains.
First, the results suggest that space-corrected hub struc-
ture varies, as a function of the number of detected com-
munities., albeit subtly. This observation agrees with
recent multi-scale accounts of brain network structure
that have suggested that the brain exhibits unique and
functionally relevant organizational features at multiple
topological scales [43]. Multi-scale and hierarchical orga-
nization is critical for complex systems, as it engenders
robustness to perturbations and separation of dynamical
timescales [44], properties that are essential for embod-
ied nervous systems that interact with variable environ-
ments.

DISCUSSION

In this report, we analyzed the contributions of long-
distance connectivity to the community and hub struc-
ture of functional brain networks. To do this, we de-
veloped a surrogate-based method that generates syn-
thetic networks lacking long-distance correlations but
preserving short-range connectivity. We found that even
these null networks exhibited neuroscientifically interest-
ing structure, including strong correlations within pri-
mary sensory systems, such as visual and somatomotor
areas, as well as sub-components of higher-order cogni-
tive systems, such control networks. These observations
suggested that connections of different lengths contribute
to shape the overall character of the network.

Next, to better understand those distinct contribu-
tions, we suppressed the contributions from short-range
connections by constructing a “distance-corrected” con-
nectivity matrix in which we simply subtracted the short-
range synthetic network from the observed. The resulting
network expressed long-distance connections but effec-
tively suppressed those made between proximal brain ar-
eas. We compared the features of the distance-corrected
network to those of the observed network and found
that the participation coefficient of visual and somato-
motor regions increased in the distance-corrected net-
work, suggesting that the long-distance connectivity pat-
terns of these brain areas leave those systems increasingly
well-situated for integrating information across commu-
nities. We also found evidence that the community struc-
tures of the two networks differed across multiple topo-
logical scales, confirming further that long-distance and
short-range connections uniquely shape the organization
of functional networks. In summary, our work shows
that the weights of functional connections exhibit a com-
plicated relationship with space and distance, but also
presents a flexible corrective strategy for teasing apart
the contributions of spatial sources to functional con-
nectivity. Our approach outlines a procedure that en-
ables future studies to conduct a more nuanced analysis
of functional networks in both health and disease.

Spatial constraints and brain connectivity

Here, we present a careful analysis of functional net-
works in which we discount the effect of short-range
connections. Why bother doing so? What can we
learn about brain organization and function by study-
ing connections of different lengths? The primary justi-
fication for focusing on longer connections is that they
entail greater costs than short connections (all other
things equal) and that their mere existence suggests func-
tional relevance [17, 45]. This is certainly true in the
case of structural and anatomical connections, where the
metabolic and material costs of forming and maintaining
axonal projections or fiber tracts grow as a function of
their length and diameter [18, 46, 47]. It is also likely
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FIG. 5. Results of non-negative matrix factorization. (a) Ranked differences in participation coefficients for all brain
regions and with the number of communities ranging from 2 to 150. This matrix served as input to the NMF algorithm. (b)
NMF identified four factors that approximately reconstructed the original data. Broadly, these factors were associated with
different topological regimes corresponding to different numbers of communities. In panels c-f we show the factors mapped
onto the cortical surface. Note that the first three factors emphasize participation coefficient differences in motor and visual
systems while the fourth factor highlights widespread, multi-system differences. (g) We show system-averaged and z-scored
differences in participation coefficient. Note that the first three factors all emphasize motor and visual systems but in different
proportions. (h) Scatterplot of first two factors against one another. Note that somatomotor and visual areas tend to display
the largest values in general. However, note also that those areas deviate from the diagonal, indicating that differences in these
systems are emphasized differentially by the two factors and at different topological scales.

true in the case of functional connections, which are the
focus of this study and which require energy to maintain
correlated activity over long distances, especially in the
absence of direct structural support [48]. In this light, the
analyses presented can be viewed as effectively shifting
focus onto the more costly features of functional networks
and ones that, we argue, are of greater relevance to the
overall network function.

We acknowledge that in focusing on long and costly
functional connections, we necessarily overlook network

features that are driven by short-range connectivity. This
is not to say that short connections are irrelevant to
network function. Short-range connections are generally
among the strongest in functional networks, and they
factor disproportionately in the weighted shortest path
structure of anatomical networks [16], and enhancing the
cohesiveness of communities [10]. Accordingly, we view
short-range and long-distance connections as complemen-
tary, with each delivering unique insights into the orga-
nization and behavior of functional networks.
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In addition to characterizing the organization of long-
distance functional connections, our study also con-
tributes some useful methodology. An important com-
ponent of any network neuroscience study is the compar-
ison of some measurement made on the observed network
with a null distribution of the same measure made on an
ensemble of appropriately constructed random networks.
Because the randomized networks tend to preserve only
low-level features of the observed network, e.g. aver-
age binary density, degree sequence, etc., this hypoth-
esis testing framework allows us to identify higher-level
features of the observed network that are not easily at-
tributable to random fluctuations [49]. Increasingly, it
is becoming understood that the traditional random net-
work models can be too liberal for many of the hypothesis
testings [50–53]. That is, though they preserve degree (in
un-weighted network) or strength (in weighted network)
sequences, they also fail to preserve other key attributes
of real-world brain networks, including wiring cost, or vi-
olate mathematical relationships when applied to corre-
lation matrices [33]. These failures can result in mischar-
acterizations of networks, which identify features that act
as “spandrels” and emerge as a result of relatively benign
processes. The spatial null model we use here addresses
some of these concerns, as it generates admissible cor-
relation matrices and allows the user to flexibly model
spatial relationships. In future work, similar null mod-
els could be used both to identify novel network features
and better clarify the relationship of known features with
psychological phenomena and brain function.

Increased participation coefficient in primary
sensory regions

One of the most salient findings we report is the in-
creased participation coefficient of brain regions compris-
ing the visual and somatomotor systems. The conven-
tional interpretation of high-participation nodes is that
they serve as network “hubs” [7, 54]; their connections
form bridges across multiple sub-systems, which engen-
ders or reflects the polyfunctionality of those regions
[9, 35]. In past studies, somatomotor and visual areas
were generally reported among the least hub-like parts
of the brain; regions in those systems made strong con-
nections within their respective communities but weak
extra-community connections [7, 8, 54]. Our findings,
on the other hand, suggest that the low levels of “hub-
ness” in those regions is a direct consequence of their
strong short-range connectivity and that, in terms of
their longer connections, visual and motor systems can be
regarded as much more hub-like. These observations sug-
gest expanded functional roles for these systems, which
are traditionally associated with uni-modal information
processing. Future work should investigate this question
more directly.

A less severe approach to control for spatial artifacts

Occasionally spatial relationships have been discussed
in the context of FC, most often with respect to the ori-
gins of short-range FC. Many influential studies, for in-
stance, regard short-range FC as having artifactual ori-
gins and, as a way of addressing such artifacts, simply
discard all FC between regions separated by distances
less than some threshold, e.g. 20 millimeters [6]. While
this strategy is effective in reducing the number of false-
positives (artifactually strong short-range correlations),
it may inadvertently discard true-positives and does so
in a binary way – connections are either retained or dis-
carded, with no middle ground. The strategy we pro-
pose here, on the other hand, offers a graded and more
systematic way of taking into account the spatial prox-
imity of connections in functional connectivity analysis.
Specifically, the severity with which we discount a con-
nection’s observed weight decays monotonically with the
distance between nodes. So the closer two nodes are to
one another, the greater the extent to which they are
discounted. In this sense, our strategy may prove more
beneficial, in that the continuous discounting of connec-
tions does not throw away connectivity information; the
short-range connections can still contribute to estimates
of community structure or participation, but with less
overall influence.

Limitations

Though this study makes several important contribu-
tions, it also has a number of limitations. First, this
study focuses on group-averaged FC rather than FC of
single subjects. While this strategy facilitates computa-
tion (we only have to fit the models to a single connec-
tivity matrix), the lack of single-subject analyses means
that we may fail to appreciate the individual variability
in weight-distance dependencies [55] and also run the risk
of characterizing patterns in the group matrix that are
not representative of any typical subject [56]. Indeed,
future applied studies are needed to determine how re-
sults reported here map onto individual subjects and how
those mappings are related to inter-individual variability
in subjects’ performances on psychometric and cognitive
tests.

Another challenge involves processing decisions made
as part of modeling distance-dependent FC. Essentially,
we treat the observed FC as though it were made up of
three components: “extra-spatial” + “spatial” + “error”
FC. Our aim was, as best as possible, to subtract away
the spatial component, leaving only the true FC and er-
ror terms. The challenge, however, is that we do not
know the actual forms of any of the three components
nor do we know the function by which they are inter-
mixed. Here, we assume that the spatially-driven FC
decays exponentially with distance and that by 60 mil-
limeters its effect is small [31]. We also assume that the
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spatial component enters linearly, so that its effect can be
subtracted out. While these assumptions were made with
practical considerations in mind, such as model parsi-
mony and computational complexity, future work should
investigate and test these assumptions systematically and
explicitly.

Finally, here we have used Euclidean distance to ob-
tain the weighted contribution of different brain areas.
However, previous studies [57] suggest that using Eu-
clidean distance could potentially reduce the spatial se-
lectivity meaning that functionally different regions could
be selected by voxel selection methods that depend on
Euclidean distance. Therefore, other distance measures
such as geodesic distance that respect the curvature of
the cortex during calculations should be studied and its
performance compared to Euclidean distance.

MATERIALS AND METHODS

Human Connectome Dataset

In this study, we aimed to characterize the relation-
ship between space and resting state FC. To address this
aim, we leveraged data from the Human Connectome
Project (HCP), a multi-site consortia that collected ex-
tensive MRI, behavioral, and demographic data from a
large cohort of subjects (>1000) [58]. As part of the HCP
protocol, subjects underwent two separate resting state
scans along with seven task fMRI scans. All functional
connectivity data analyzed in this report came from these
scans and was part of the HCP S1200 release [58]. Sub-
jects that completed both resting-state scans and all task
scans were analyzed. We utilized a cortical parcellation
that maximizes the similarity of functional connectivity
within each parcel (N = 400 parcels) [36].

We processed ICA-FIX data provided by the HCP,
which used ICA to remove nuisance and motion signals
[59]. In addition, the 12 detrended motion estimates pro-
vided by the Human Connectome Project were regressed
out from the time series, the mean global signal was re-
moved, and the time series was bandpass filtered from
0.009 to 0.08 Hz.

For all scans, the MSMAII registration was used, and
the mean time series of vertices on the cortical surface
(fsL32K) in each parcel was calculated. These time se-
ries were z-scored and concatenated across all subjects. A
group representative functional connectivity matrix was
then calculated as the pairwise Pearson correlation (sub-
sequently Fisher z-transformed) between concatenated
node time series. We denote this matrix as A and whose
element Aij refers to the Fisher-transformed correlation
between regions i and j.

Modeling distance dependence

Our goal was to understand the role of spatial relation-
ships in shaping whole-brain FC. To investigate this ques-
tion, we constructed a distance-based null model. We
reasoned that this model should have the following prop-
erties: 1) FC should decay monotonically with distance,
so that proximal brain areas are more strongly correlated
than distant brain areas; 2) the connectivity matrix must
be admissible as a correlation matrix [33]. These require-
ments are in contrast to current null models for FC, in
which binarized connections are rewired while preserving
degree – an operation that can result in edge configura-
tions that violate transitive relationships associated with
the correlation metric [31].

There are many ways of realizing such a model, though
here we focused on a single possibility based on surrogate
time series analysis. Suppose xi = [xi(t)] is the observed
activity recorded from brain area i ∈ N . We could gener-
ate a surrogate time series with the same power spectrum
by taking the discrete Fourier transform of xi, adding or
subtracting random amounts of phase to each frequency
bin, and performing an inverse Fourier transform. We
denote the resulting time series as x′i. We note that
the phase-randomization surrogate procedure was always
carried out at the level of individual subjects; all surro-
gate time series were subsequently concatenated.

If we performed this operation independently and for
each brain area, the resulting inter-areal correlations
would be weak, and the full matrix would exhibit no
structure. To induce spatial dependencies, we generate

for each brain area another time series, xspatiali , that is
the linear combination of every other regions’ time series,
but where the mixing coefficients are distance-dependent:

xdi =
∑
j

αijx
′
j , (1)

where αij is defined according to the function f(Dij , β).
Here, Dij is the Euclidean distance between nodes i and
j, and β is the parameter that controls the decay rate
of FC with distance. In general, we define this function
in any way, but for practical reasons and to maintain
consistency with previous work, we defined it to be the
exponential: f(Dij , β) = exp(−β ·Dij) [30, 60].

Fitting this model amounted to choosing the β param-
eter that optimizes some objective function. Here, we
used the bisection method to maximize the correlation of
the observed FC matrix, A, with the distance-dependent
FC matrix, Aspatial. We defined model fitness as the av-
erage fitness over 50 independently generated surrogate
time series (optimal fitness of r = 0.35 at β = 0.078).

Modularity Maximization

It is generally understood that brain networks can be
decomposed into clusters defined based on nodes’ con-
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nectivity patterns. These clusters, also called commu-
nities or modules, are typically unknown ahead of time
and estimated using data-driven approaches. Of so-called
community detection methods, modularity maximization
remains one of the most widely used. Modularity max-
imization operates on a simple principle: compare the
connectivity patterns we observe with those we would
expect by chance. Communities are defined as groups
of nodes more strongly connected to one another than
expected. This intuition can be formalized by the mod-
ularity heuristic. If Bij = Aij −Pij represents the differ-
ence in weight of the observed and expected connection
between node i and j, then we can define the following
quality function:

Q =
∑
ij

Bijδ(σiσj). (2)

In this expression, δ(·, ·) is the Kronecker delta function,
whose value is 1 if its arguments are equal and 0 oth-
erwise. Here, its arguments are the σi and σj , which
denote the community assignments of nodes i and j. As
a result of the delta function, the only elements Bij that
contribute to the summation are those that fall within
communities.

The value of Q can be used to rate the quality of a
proposed community partition. Alternatively, an opti-
mal community structure can be uncovered by assign-
ing nodes to the communities that optimize Q. This
optimization procedure is computationally intractable,
though the optimal solution can be approximated using
several heuristics, the most popular of which is the so-
called “Louvain algorithm”: a non-deterministic and ag-
glomerative method that generally performs well on most
benchmarking tests.

Here, we use a modularity framework that has been
extended in several important ways. First, we focus on
a “multi-scale” version in which a structural resolution
parameter, γ, is introduced to the modularity matrix:
Bij = Aij−γPij . The value of γ can be tuned to smaller
or larger values to, effectively, uncover communities of
correspondingly larger or smaller size, respectively. Sec-
ond, we define the expected weight of connections to be
Pij = 1 for all {i, j}. This particular null model has
proven to be compatible with correlation matrices and
results in an intuitive definition of communities as groups
of nodes whose average internal density exceeds a value
of γ. To detect the community structure of observed FC
(uncorrected for distance), we optimized the following
multi-scale modularity index:

Q(γ) =
∑
ij

[Aij − γ]δ(σi, σj). (3)

Distance-dependent modularity maximization

We optimized a similar modularity index to detect
communities for distance-corrected FC by defining the

modularity matrix: Bcorrected
ij = [Aij − Asptl

ij ] − γ. The
distance-corrected modularity can then be expressed as:

Q(γ) =
∑
ij

[Aij −Asptl
ij − γ]δ(σi, σj). (4)

We optimized both the original and distance-
dependent modularity using a generalized version of the
Louvain algorithm. Typically, as part of multi-scale com-
munity detection, the value of γ is either systematically
or randomly sampled over some predefined range. Here,
we aimed to compare the multi-scale community struc-
ture of distance-corrected and uncorrected FC. To en-
sure that the comparison was as fair as possible, e.g., not
comparing a partition of the network into two commu-
nities with another that divides the network into twenty
communities, we used an adaptive algorithm to sample
partitions of both distance-corrected and uncorrected FC
into the same number of communities.

To do so, we used a two-step adaptive algorithm. First,
we coarsely sampled 1001 different γ values over the
range of γ = −0.2 to γ = 0.7, which encompasses the
range of neuroscientifically interesting partitions. We op-
timized Q(γ) for each network and for each value of γ
and calculated the number of communities in the result-
ing partition. Using this approach, we obtained a rough
mapping of γ to the number of communities. This map-
ping allowed us to select a number of communities, e.g.,
k = 14, and specify a range of γ values for which we could
reasonably expect to obtain 14 communities. Finally, we
varied the value of k from 2 to 150, sampling γ from re-
stricted ranges until, for each value of k, we sampled 250.
We repeated this procedure for both the uncorrected and
distance-corrected FC matrices, resulting in two sets of
37,500 partitions in total.

Z-scored Rand index for partition similarity

We used the z-score of the Rand index to measure the
similarity of partitions detected using the uncorrected
and distance-corrected FC matrices. This measure is sim-
ilar to the traditional Rand index but corrects for biases
induced by the number and size of the communities in
the partitions being compared. For two partitions, X
and Y , we measure their similarity as:

ZXY =
1

σwXY

wXY −
WXWY

W
. (5)

Here, W is the total number of node pairs in the network,
WX and WY are the number of pairs in the same modules
in partitions X and Y , respectively, wXY is the number
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of pairs assigned to the same module in both X and Y ,
and σwXY

is the standard deviation of wXY . The value
of ZXY can be interpreted as how great, beyond chance,
is the similarity of partitions X and Y .

Participation coefficient

Using the detected communities and based on FC, we
can also identify those brain regions whose connections
span the boundaries of communities (polyfunctional) and
those whose connections are confined, largely, to their
own community (unifunctional). To identify these kinds
of brain regions, we calculated the network measure par-
ticipation coefficient for each brain region, i, which we
denote as Pi:

Pi = 1−
K∑
s=1

(
kis
ki

)2

. (6)

Here, ki =
∑

j Aij is node i’s weighted degree and

kis =
∑

j∈sAij is the total weight of node i’s connec-
tions to module s. Participation coefficients range from
0 to 1, where larger values indicate that connections are
evenly spread over modules. Here, because our matrices
were signed, we used a modified version of participation
coefficient that considers only positive connections. To
ensure that comparisons were unbiased by the effect of
weight, we rank-transformed brain regions’ participation
coefficients.

Non-negative matrix factorization

Non-negative matrix factorization (NMF) is a tech-
nique that generates low-rank approximations of a, po-

tentially, high-dimensional dataset, X ∈ Rn×p. Briefly,
this approach entails identifying matrices W ∈ Rn×k

and H ∈ Rk×p such that W × H ≈ X and subject to
the constraint that all elements of W and H are non-
negative. Here, we used NMF to decompose brain-wide
participation coefficients as the number of communities
varied from 2 to 150. Thus the dataset had dimensions
X ∈ R400×149. The MATLAB implementation of NMF
uses the non-deterministic alternating least squares al-
gorithm to determine W and H. Consequently, we re-
peated the algorithm 100 times with different initial con-
ditions as we varied the rank from k = 2 to k = 20. We
observed that the root mean square of the residual (a
measure of fitness) decreased sharply until k = 4, sug-
gesting that the original dataset could be reasonably ap-
proximated using four dimensions.
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